Методы поиска и устранения неисправностей. А также причин неработоспособности электронных устройств. Поиск неисправностей в электронных схемах

Методы поиска и устранения неисправностей. А также причин неработоспособности электронных устройств. Поиск неисправностей в электронных схемах

Проверка электронных компонентов с использованием мультиметра это довольно простая задача. Для ее выполнения нужен обычный мультиметр китайского производства, покупка которого не представляет проблемы, важно только избегать самых дешевых, откровенно некачественных моделей.

Аналоговые приборы со стрелочным указателем до сих пор способны выполнять такие задачи, но более удобны в применении цифровые мультиметры , в которых выбор режима осуществляется при помощи переключателей, а результаты измерения отображаются на электронном дисплее.

Внешний вид аналоговых и цифровых мультиметров:


Сейчас чаще всего используются цифровые мультиметры, так как у них меньший процент погрешности, их легче использовать и данные выводятся сразу на дисплей прибора.

Шкала цифровых мультиметров больше, имеются удобные дополнительные функции – температурный датчик, частотомер, проверка конденсатора, и др.

Проверка транзистора


Если не вдаваться в технические подробности, то транзисторы бывают полевые и биполярные


Биполярный транзистор представляет собой два встречных диода, поэтому проверка выполняется по принципу «база-эмиттер» и «база-коллектор». Ток может идти только в одном направлении, в другом его быть не должно. Не нужно проверять переход «эмиттер-коллектор». Если на базе нет напряжения, но ток все же проходит, прибор неисправен.

Для проверки полевого транзистора N-канального типа, нужно присоединить черный (отрицательный) щуп к выводу стока. К выводу истока транзистора присоединяется красный (положительный) щуп. В таком случае транзистор закрыт, мультиметр высвечивает падение напряжения примерно 450 мВ на внутреннем диоде, и бесконечное сопротивление на обратном. Теперь нужно присоединить красный щуп к затвору, после чего вернуть на вывод истока. Черный щуп при этом остается присоединен к выводу стока. Показав на мультиметре 280 мВ, транзистор открылся от прикосновения. Не отсоединяя красный щуп, дотронемся черным щупом к затвору. Полевой транзистор закроется, а на дисплее мультиметра увидим падение напряжения. Транзистор исправен, что и показали данные манипуляции. Диагностика Р-канального транзистора выполняется аналогично, но щупы меняют местами.

Проверка диода


Сейчас выпускается несколько основных типов диодов (стабилитрон, варикап, тиристор, симистор, свето- и фотодиоды), каждый из них используется для определенных целей. Для проверки на диоде замеряется сопротивление с плюсом на аноде (должно быть от нескольких десятков до нескольких сотен Ом), затем с плюсом на катоде – должна быть бесконечность. Если показатели другие – прибор неисправен.

Проверка резисторов

Как можно понять из картинки, резисторы тоже бывают разные:


На всех резисторах производителями указывается номинальное сопротивление. Его мы и замеряем. Допускается 5% погрешности значения сопротивления, если погрешность больше – прибор лучше не использовать. Если резистор почернел, его тоже лучше не использовать, даже если сопротивление в пределах нормы.

Проверка конденсаторов

Сначала осматриваем конденсатор. Если на нем нет никакие трещин и вздутий, нужно попытаться (осторожно!) покрутить выводы конденсатора. Если получается прокрутить или даже вообще вытащить – конденсатор сломан. Если внешне все нормально, проверяем мультиметром сопротивление, показания должны быть равны бесконечности.

Катушка индуктивности

В катушках поломки могут быть разные. Поэтому сначала исключаем механическую неисправность. Если внешне повреждений нет, измеряем сопротивление, подключая мультиметр к параллельным выводам. Оно должно быть близким к нулю. Если номинальное значение превышено, возможно, поломка произошла внутри катушки. Можно попытаться перемотать катушку, но проще поменять.

Микросхема

Микросхему мультиметром проверять не имеет смысла – в них десятки и сотни транзисторов, резисторов и диодов. На микросхеме не должно быть механических повреждений, пятен от ржавчины и перегрева. Если внешне все в порядке, микросхема скорее всего повреждена внутри, починить ее не удастся. Однако можно проверить выходы микросхемы на напряжение. Слишком низкое сопротивление выходов питания (относительно общего) свидетельствует о коротком замыкании. Если хотя бы один из выходов неисправен, скорее всего схему уже не вернуть в строй.

Работа с цифровым мультиметром

Подобно аналоговому, цифровой тестер имеет щупы красного и черного цвета, а также 2-4 дополнительных гнезда. Традиционно, «масса» или общий вывод маркируется черным. Гнездо общего вывода обозначается знаком «-» (минус) или кодом СОМ. Конец вывода бывает оснащен зажимом типа «крокодильчик», для укрепления на проверяемой схеме.

Красный вывод всегда использует гнездо с маркировкой «+» (плюс) или кодом V. В более сложных мультиметрах имеется дополнительное гнездо для красного щупа, обозначенное кодом «VQmA». Его использование позволяет измерять сопротивление и напряжение в миллиамперах.

Гнездо, обозначенное 10ADC предназначено для измерения постоянного тока, силой до 10А.

Главный переключатель режимов, имеющий круглую форму и расположенный в большинстве мультиметров посредине передней панели, служит для выбора режимов измерения. При выборе напряжения следует выбирать режим больший, чем сила тока. Если требуется проверить бытовую розетку, из двух режимов, 200 и 750 В, выбираем режим 750.

Р аздел Мастерская составлен для начинающих радиолюбителей , которые хотят не только собирать и мастерить самоделки, но и самостоятельно производить ремонт бытовой электроники.

З десь Вы найдёте статьи по ремонту, начиная с таких аппаратов как CD/MP3-проигрыватели и заканчивая бытовыми компактными люминесцентными лампами. Узнаете, как правильно разобрать/собрать CD деку автомобильного проигрывателя и как восстановить работоспособность портативной звуковой колонки. Также рассматриваются основные моменты ремонта и приводятся качественные фотографии для наглядности.

Н а страницах этого раздела найдётся информация о том, как отремонтировать DVD – плеер и музыкальный центр. Рассказано о таких типичных неисправностях современных цветных телевизоров, как, например, появление цветных пятен на экране кинескопа. Есть статьи и о современной портативной технике – MP3 плеерах, переносных звуковых колонках и малогабаритных LCD-телевизорах.

Д ля более полного освоения информации приводятся качественные фотографии ремонтируемых аппаратов и их узлов. В некоторых случаях приводятся принципиальные схемы, фотографии радиодеталей и их цоколёвка. Вся предоставленная информация основывается исключительно на личном опыте ремонта бытовой электроники.

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку-иконку, расположенную рядом с кратким описанием материала.

Удачного ремонта!

Ремонт телевизионной техники

Что делать, если у ЖК-телевизора слетела прошивка и он не включается? Перепрошиваем SPI Flash память 25 серии. Подробный мануал для начинающих радиомехаников и электронщиков.

В телевизорах Erisson распространена неисправность транзистора 2SB764 в цепях кадровой развёртки. Однако неисправность проявляется повторно даже после замены неисправного транзистора на новый. Причина неисправности - "баг", ошибка при проектировании аппарата. В статье подробно рассмотрен пример устранения данного дефекта при ремонте телевизоров Erisson моделей 1401 и 2102.

В статье рассмотрен ремонт переносного LCD-телевизора Prology HDTV-909S. Неисправность - телевизор не включается. В процессе ремонта портативного телевизора был заменён отечественным аналогом транзистор 2SA2039, что никак не сказалось на работоспособности LCD-телевизора Prology.

Ремонт аппаратуры с лазерным оптическим приводом

Главная часть любого дискового устройства - лазерный привод. Немного знаний о ремонте и устранении причин сбоев этих устройств не помешает, особенно начинающим радиомеханикам!

Основные неисправности DVD плееров и методы их устранения (No disk и Error). Наиболее уязвимые детали DVD плееров - лазерный считыватель, привод шпинделя, драйвер и главный процессор. Рекомендации по ремонту и замене неисправных деталей и узлов DVD проигрывателей.

Как быстро заменить оптический лазерный блок в DVD? Простая пошаговая методика избавит начинающих радиомехаников от кропотливой работы по разборке DVD-привода и замены в нем лазера.

При ремонте автомобильных CD/MP3-проигрывателей иногда необходимо произвести чистку линзы оптического лазерного блока, заменить двигатель шпинделя в CD-приводе. Как правильно и быстро разобрать/собрать CD-привод? В статье рассмотрена пошаговая методика разборки CD-привода, для наглядности приводится много фотографий.

Переносной CD/MP3-проигрыватель плохо воспроизводит запись с диска? Узнайте о том, как устранить сбой в CD/MP3-проигрывателе при воспроизведении записи с диска. Пример из реальной практики ремонта, плюс несколько советов о том, как устранить неисправность переносного CD/MP3-проигрывателя.

Ремонт звуковоспроизводящей аппаратуры

С данной статьи мы начнём знакомство с устройством, схемотехникой, а также "комплектухой" автомобильного усилителя. Несмотря на кажущиеся различия, все автомобильные усилители имеют схожую конструкцию и схемотехнику. Материал, изложенный в статье, поможет начинающим радиомеханикам разобраться в устройстве любого автоусилителя.

В этой статье рассказывается об устройстве и ремонте акустической системы SVEN IHOO MT5.1R. Информация будет интересна всем тем, кто интересуется самостоятельным ремонтом звукоусилительной аппаратуры. Пример реальной неисправности и методики ремонта. Прилагается архив с принципиальной схемой аппарата.

Несмотря на всю сложность схемотехники современных музыкальных центров неисправности их довольно типичны. Показана практика ремонта на примере устранения неисправности музыкального центра Samsung MAX-VS720 - хриплый и тихий звук. Узнай сейчас!

Простой ремонт плеера Xcube. Наиболее распространённые неисправности миниатюрных MP-3 плееров, это механические поломки, связанные с интенсивной эксплуатацией этих популярных устройств.

Как-то раз мне на ремонт принесли Bluetooth-колонку JBL Charge 3, но это оказалось не она... Пример ремонта дешёвой копии одной из популярных беспроводных акустических систем.

В последнее время широкое распространение получили переносные акустические системы, по английской терминологии - Portable Speakers (Портативные громкоговорители). Особенно востребованы портативные акустические системы в молодёжной среде. Переносные акустические системы имеют малые габариты, хорошее качество звуковоспроизведения, автономное питание. Какова "электронная начинка" этих устройств?

В практике ремонта нередки случаи, когда ремонт прибора невозможен по причине невозможности замены какого-либо электронного компонента. В таких случаях приходится искать наиболее подходящую замену неисправной детали. В статье рассмотрен ремонт портативной акустической системы. Вместо неисправной микросхемы PAM8403 была довольно успешно встроена микросхема TDA2822.

По статистике неисправностей автомагнитол на первом месте идут поломки связаные с цепями питания этих приборов. Рассмотрен простой ремонт автомагнитолы Mystery MCD-795MPU - выгорел защитный предохранитель, магнитола не включается. Данная методика ремонта пригодится при ремонте любых автомагнитол: кассетных, дисковых, бездисковых (с USB).

Ремонт различной бытовой радиоэлектроники

В этой статье рассказывается об устройстве и ремонте электрического чайника-термоса. Подробно рассмотрена конструкция и назначение конкретных деталей и электронных узлов.

В данной статье рассматривается принципиальная схема термопота. Подробно рассмотрены основные электрические узлы, а также электронные компоненты, которые применяются в термопотах разных фирм. Информация будет непременно полезна всем тем, кто хочет самостоятельно починить неисправный чайник-термос.

Взамен обычных бытовых ламп накаливания приходят компактные энергосберегающие лампы, которые можно установить в стандартный цоколь Е27(Е14). Несмотря на то, что энергосберегающие лампы долговечнее обычных ламп накаливания, они также выходят из строя. Стоимость энергосберегающих ламп довольно высока и их ремонт оправдан хотя бы в личных целях. Особенно, если учесть тот факт, что в большинстве случаев сама лампа исправна, а из строя выходит высокочастотный преобразователь, который несложно починить.

SMD монтаж - один из самых сложных в плане ремонта, особенно при отсутствии спецоборудования и необходимых запчастей. Проблему замены SMD компонентов каждый радиомеханик решает для себя сам. Вот один из примеров...

Электробезопасность при обслуживании и ремонте радиоэлектронной аппаратуры

При ремонте электроустановок, электронных приборов и электропроводки необходимо соблюдать простые правила электробезопасности. В статье кратко описаны некоторые приёмы и правила, которые используют радиолюбители и электрики в повседневной практике.

Электрооборудование транспортных средств

Данная статья посвящена электрике и электрооборудованию рядового китайского скутера. Рассказывается практически обо всех элементах электрической схемы скутера, их назначении и особенностях. Информация будет интересна всем владельцам китайских скутеров, которые не знакомы с электрооборудованием скутера, но желают узнать об этом больше.

Неисправность реле-регулятора скутера приводит к нежелательным последствиям: выгорают лампы освещения, выходит из строя аккумуляторная батарея, со временем заряд аккумулятора снижается и приходится заводить скутер кикстартером. Проверить реле-регулятор на скутере можно с помощью мультиметра. О том, как это сделать читайте здесь.

Ремонт источников питания

Вторая часть является продолжением первой части и в ней разбирается состав и работа схемы управления и контроля сварочного инвертора.

Схемотехнике блоков питания ПК посвящены 5 частей. В каждой из них рассказывается об одном из электронных узлов импульсного блока питания (ИБП). Приводятся принципиальные схемы, а также рассказывается о схемотехнических решениях, применяемых в конкретной схеме и возможных неисправностях.

Цикл статей поможет тем начинающим радиолюбителям, которые хотят научиться ремонтировать, модернизировать и самостоятельно анализировать схемотехнику реальных блоков питания. И хотя в качестве примеров приводятся схемы электронных узлов ИБП форм-фактора AT, предоставленная информация поможет понять принцип работы компьютерного ИБП и в дальнейшем разобраться в устройстве более сложных ИБП формата ATX.

Данная статья посвящена проверке радиодеталей (транзисторов, диодов, конденсаторов и т.д.) и опубликована в связи со многими обращениями ко мне по этому поводу.
Как проверить радиодетали
Для проверки исправности радиодеталей потребуется измерительный прибор – мультиметр. Приобретать лучше не дешевый китайский ширпотреб, который не только быстро выходит из строя, но и существенно ограничен в возможностях за счет слабого тока. В идеале мультиметр должен питаться от батарейки типа «крона».
Резистор
Невооруженным взглядом можно определить сгоревший резистор – он почернеет. Даже если на нем остается нужное сопротивление, его следует заменить.

Для проверки мультиметр ставится в режим омметра. Затем подсоединяем щупы (полярность не имеет значения) к выводам резистора и сравниваем замеренное сопротивление с номинальным. Номинал указывается либо на плате, либо на самом резисторе. Некоторые резисторы маркируются не цифрами, а разноцветными полосками, расшифровываемыми по нехитрой схеме. Отклонения в пределах 5% от номинала считаются нормой.

Конденсатор
Так же, как и резистор, может визуально сигнализировать о неисправности. Конденсатор может вздуться или вообще взорваться и вытечь. Заметить это легко. В таком случае измерения не требуются – деталь подлежит безоговорочной замене.
Еще один нехитрый тест конденсатора – проверка целостности контактов. Для этого «ножки» конденсатора нужно слегка согнуть, после чего попытаться повернуть их или вытащить. Если наблюдается хотя бы минимальный люфт – конденсатор неисправен.
В других случаях конденсатор проверяют омметром. Значение сопротивления должно равняться бесконечности. Если нет – замена.
Диод
Диод проводит ток в одном направлении и не проводит в обратном. Стрелочным мультиметром это легко проверить в режиме омметра. Положительный щуп – к аноду, отрицательный – к катоду. В таком положении ток должен проходить. Если поменять щупы местами, то результат замера будет равноценен обрыву цепи.
Цифровой мультиметр ставится в специальный режим проверки диодов. Фиксируемое напряжение на германиевом диоде должно быть в районе 200-300мВ, на кремниевом – 550 – 700. Если напряжение зашкаливает за 2000мВ – диод неисправен.
Транзистор
Биполярный
Проще всего представить транзистор в виде двух «встречных» диодов. Проверка должна быть соответствующей: база-эмиттер и база-коллектор. Ток должен идти в одном направлении, а в другом – нет.
Переход эмиттер-коллектор не должен прозваниваться вообще! Если ток проходит при отсутствии напряжения на базе, транзистор необходимо выбросить.
Полевой
Перед проверкой необходимо замкнуть между собой все контакты, чтобы разрядилась емкость затвора. После этого омметр должен фиксировать сопротивление, равное бесконечности на всех выводах. В противном случае деталь подлежит замене.
Стабилитрон
Проверка стабилитрона – процесс более деликатный. Цифровым мультиметром здесь пользоваться не рекомендуется – он запросто может «пробить» исправную деталь в обоих направлениях. Если есть аналоговый тестер, то проверить можно так же, как диод. Если нет – есть различные способы проверки. Опишем простейший.

Понадобится блок питания с регулировкой подаваемого напряжения. Подключаем к аноду резистор сопротивлением 300-500 Ом, затем подключаем блок питания. Замеряем напряжение на стабилитроне, поднимая его значение на блоке питания. Достигнув определенного значения (лучше, если оно известно заранее – напряжение стабилизации), напряжение должно перестать расти. Если продолжает – меняем стабилитрон.

Тиристор

Положительный щуп омметра – к аноду, отрицательный – к катоду. Сопротивление должно равняться бесконечности. Если коснуться управляющим электродом анода, то должно зафиксироваться сопротивление порядка 100 Ом. При отсоединении УЭ это значение должно остаться фиксированным. Если результат на любом из этих этапов отличается от описанного, тиристор необходимо заменить.

Катушка индуктивности
Простейшую поломку – обрыв – легко определить омметром. Сопротивление должно быть. Как правило – несколько сотен Ом. Если значение уходит в бесконечность – значит, произошел обрыв.
Сложнее обстоит дело с замыканием витков. Как правило, определить его почти невозможно – все способы небезупречны. Поэтому лучше оставить катушку напоследок, когда все остальные детали точно исправны, и попросту заменить ее, согласно методу исключения.

После того как вы закончили собирать ваше устройство, запаяли последний элемент в плату, не торопитесь сразу же его включать. Приготовьте мультиметр, откройте принципиальную схему и описание схемы.

Сначала нужно проверить правильность монтажа, проверить на КЗ (короткое замыкание). Если вы считаете что все элементы запаяны верно, и КЗ после прозвонки вы не обнаружили, то можно очистить дорожки от остатков канифоли, и подавать питание, но сначала стоит проверить сопротивление цепи питания, если оно подозрительно большое, и если это не оговорено в собираемой вами схеме, то не торопитесь включать схему, перепроверьте еще раз. Правильно ли собрали диодный мост, соблюдена ли полярность при запаивании конденсаторов в цепи питания и т.д.. Если собираемое вами устройство потребляет большой ток, от 1 ампера и выше это говорит о КЗ или неправильно запаянных элементах, бывают и исключения, например преобразователи напряжения кушают 2-3 ампера на холостом ходу. Можно последовательно цепи питания включить маломощный постоянный резистор на несколько ОМ, это может спасти устройство от выхода из строя. Если в схеме стоят мощные транзисторы или микросхемы, которые крепятся на радиатор, не забудьте их изолировать друг от друга. При первоначальном включении устройств соблюдайте осторожность, так как диоды и электролитические конденсаторы при неправильном включении или превышении напряжения могут взорваться. Причем конденсаторы обычно взрываются не сразу, а сначала некоторое время греются. Не оставляйте без присмотра включенные и еще не настроенные устройства.

Поиск неисправностей

Прежде чем приступить к поиску неисправностей, если прибор который ремонтируете вам не знаком, нужно в первую очередь получить как можно больше информации об этом устройстве, что за устройство, или что за узел (БП, усилитель, или иное устройство), и нужно достать описание и схему этого устройства. Прежде чем доставать и начинать откручивать плату, приглядитесь, нету ли ничего лишнего внутри корпуса, оторвавшегося куска, осколка и пр. Не забывайте проверять даже такие элементы схемы как выключатель или разъем питания.

Прежде чем начать ковырять плату, разрядите все конденсаторы в том числе и высоковольтные керамические, разряжать нужно резистором примерно в 100 Ом. Если вы забудете это сделать, то при случайном КЗ, или даже во время прозвонки, отпаивания радиодеталей, последствия могут быть ужасными, могут полететь еще элементы, да и сами можете пострадать. Это очень важно!

Проверку всегда начинают с питания и проверки напряжений, проверьте напряжение в сети, предохранитель, далее блок питания. Проверьте напряжения на выходе блока питания и по возможности ток на выходе. Бывает что напряжение в норме, а если подключить лампочку или резистор, напряжение резко проседает или вовсе, БП уходит в защиту. Если окажется что напряжение ниже чем нужно или его нет вовсе, то проверяем диодные мосты, далее стабилизатор напряжения – если такой стоит, транзисторы, если они в схеме имеются. Иногда даже самым простым мультиметром удается найти неисправность в схеме. Проверку и поиск неисправностей нужно всегда проводить с отключенным от устройства питанием! Обратите внимание на провода, не оторваны, не оголены ли они. Если платы между собой соединяются разъёмами или проводами, которые закрепляются в винтовых зажимах, попробуйте переподключить их. Винтовые зажимы не надежны, со временем может пропадать контакт. Попробуйте снова включить плату, внимательно следите, пощупайте транзисторы, резисторы, на нагрев.

Итак, лежит перед нами голая плата с запаянными радиодеталями, берем лупу и начинаем внешний осмотр радиоэлементов, попутно можно даже принюхиваться, и это не шутка, сгоревший радиоэлемент можно вычислить сразу. Бывает что внешним осмотром такой элемент не обнаружить. При осмотре обратите внимание на потемнение резисторов и транзисторов, если заметили такой элемент то немедленно отпаиваем его с платы и прозваниваем, если даже элемент рабочий, лучше его заменить. Бывает что транзисторы даже после того как выйдут из строя прозваниваются тестером. Прозванивать резисторы и другие радиодетали нужно выпаивая с платы.

После осмотра радиодеталей переворачиваем плату, и начинаем осмотр со стороны дорожек, нет ли перегоревших или короткого замыкания (например если вывода радиоэлементов длинные, они могут замкнуть, так что при обратной сборке аппаратуры будьте аккуратнее). Потрогайте элементы, если чувствуете что резистор пошатывается на плате, вполне возможно что пропал электрический контакт, перепаяйте его. Если на плате имеются тонкие дорожки, их следует проверить на обрыв и микротрещины.

Если устройство собрано вами, то проверьте, все ли радиодетали запаяны правильно? У разных транзисторов разная цоколевка, у диодов обозначения тоже могут различаться. Откройте справочник к каждому запаянному элементу (если на память не помните цоколевки) и начинайте проверять. К сожалению, часто бывает так, что при выходе радиоэлемента из строя, сам элемент внешне может ничем не отличаться от исправного. Если вам так и не удалось найти неисправность схемы, придется отпаивать и прозванивать все транзисторы и элементы. Вообще говоря, можно проверять цепи и не отпаивая элементы, но нужен для этого как минимум осциллограф и хороший мультиметр. Углубляться в методику и технику работы с осциллографом в этой статье я не буду. Если схема простая, неисправные элементы как правило обнаруживаются очень быстро.

Микросхемы на неисправность проверяют обычно путем замены на другую, при сборке схем советую ставить специальные панельки под микросхемы, это очень удобно, в случае если вдруг понадобится снять ее. Но если микросхема стоит без панельки, и она запаяна в плату, то советую проверить напряжение на выводах питания микросхемы, прежде чем начинать отпаивать ее.

В схемах где применен микроконтроллер, если после включении схема не подает признаков жизни, а монтаж правильный и радиодетали запаяны правильно, в первую очередь нужно попробовать перепрошить его. Если при программировании вышла ошибка или залита "левая" прошивка, такой МК работать в схеме не будет.

Если вам не хочется выпаивать с платы к примеру резистор, диод, или конденсатор, (чтобы дорожки лишний раз не греть, иначе могут отвалиться) а вы грешите как раз на него, можно параллельно ему попробовать припаять аналогичный элемент. Так можно поступить с конденсаторами, резисторами, и диодами, только помните, что если вы запараллелите два резистора, у вас общее сопротивление уменьшится в два раза, так что один вывод резистора с платы все таки придется отпаять, а с конденсаторами наоборот, при параллеливании емкость увеличиться, например если в схеме стоит конденсатор на 220мкФ, припаяйте параллельно ему 100мкФ, от этого ничего не будет, если вы включите устройство на короткое время. Как правило конденсаторы с резисторами очень редко выходят из строя. Что касается транзисторов, их обязательно нужно выпаивать, параллельно условно неработающему транзистору ставить такой же ни в коем случае нельзя.

В схемах где используются катушки или миниатюрные трансформаторы с большим количеством выводов, пусть даже с отводом от середины, нужно соблюдать начало и конец витков, если после запуска такой схемы устройство не хочет работать, поменяйте местами вывода.

Если вы считаете что нашли причину, из-за которой ваше устройство не хотело работать, и заменили этот элемент на плате, перед подачей питания проверьте плату в местах пайки на предмет КЗ. Уберите в сторону все металлические предметы, отвертки, резисторы, куски проводов и т.п. не дай бог во время подачи питания и проверки устройства под плату закатится резистор, и коротнет.

Задача

Теперь предлагаю вам решить небольшую задачку, ниже дана схема достаточно простого блока питания, я специально в этой схеме допустил ошибки и некоторые элементы нарисовал неправильно, попробуйте найти все ошибки. Представьте, что это ваше устройство, которые вы сами собрали, но после включения оно не заработало, или некоторые элементы вышли из строя.

Будьте очень внимательны, ошибок здесь много, представьте, что это реальное устройство, если вы не найдете всех ошибок, при очередном включении прибора, что то может снова выйти из строя.

Электроника сопровождает современного человека повсеместно: на работе, дома, в автомобиле. Работая на производстве, и неважно, в какой конкретно сфере, часто приходится ремонтировать что-то электронное. Условимся это «что-то» называть «прибор». Это такой абстрактный собирательный образ. Сегодня поговорим о всевозможных премудростях ремонта, освоив которые, вы сможете починить практически любой электронный «прибор», вне зависимости от его конструкции, принципа работы и области применения.

С чего начать

Невелика премудрость перепаять детальку, а вот найти дефектный элемент и есть главная задача в ремонте. Начинать следует с определения типа неисправности, так как от этого зависит, с чего начинать ремонт.

Типов таких три:
1. прибор не работает вообще - не светятся индикаторы, ничто не движется, ничто не гудит, нет никаких откликов на управление;
2. не работает какая-либо часть прибора, то есть не выполняется часть его функций, но хотя проблески жизни в нём всё же видны;
3. прибор в основном работает исправно, но иногда делает так называемые сбои. Назвать такой прибор сломанным пока нельзя, но всё же что-то ему мешает работать нормально. Ремонт в этом случае как раз и заключается в поиске этой помехи. Считается, что это самый сложный ремонт.
Разберём примеры ремонта каждого из трёх типов неисправностей.

Ремонт первой категории
Начнём с самой простой - поломка первого типа, это когда прибор совсем мёртвый. Любой догадается, что начинать нужно с питания. Все приборы, живущие в своём мире машин, обязательно потребляют энергию в том или ином виде. И если прибор наш совсем не шевелится, то вероятность отсутствия этой самой энергии весьма высока. Небольшое отступление. При поиске неисправности в нашем приборе речь часто будет идти именно о «вероятности». Ремонт всегда начинается с процесса определения возможных точек влияния на неисправность прибора и оценки величины вероятности причастности каждой такой точки к данному конкретному дефекту, с последующим превращением этой вероятности в факт. При этом сделать правильную, то есть с самой высокой степенью вероятности оценку влияния какого-либо блока или узла на проблемы прибора поможет самое полное знание устройства прибора, алгоритма его работы, физических законов, на которых основана работа прибора, умение логически мыслить и, конечно же, его величество опыт. Одним из самых эффективных методов ведения ремонта является так называемый метод исключения. Из всего списка всех подозреваемых в причастности к дефекту прибора блоков и узлов, с той или иной степенью вероятности, необходимо последовательно исключать невиновных.

Начинать поиск надо соответственно с тех блоков, вероятность которых может быть виновниками этой неисправности самая высокая. Отсюда и выходит, что чем точнее определена эта самая степень вероятности, тем меньше времени будет затрачено на ремонт. В современных «приборах» внутренние узлы сильно интегрированы между собой, и связей очень много. Поэтому количество точек влияния зачастую бывает чрезвычайно велико. Но и ваш опыт растёт, и со временем вы будете выявлять «вредителя» максимум с двух-трёх попыток.

Например, есть предположение, что с высокой вероятностью виноват в болезни прибора блок «X». Тогда нужно провести ряд проверок, замеров, экспериментов, которые бы подтвердили либо опровергли это предположение. Если после таких экспериментов останутся хоть самые малые сомнения в непричастности блока к «преступному» влиянию на прибор, то исключать полностью этот блок из числа подозреваемых нельзя. Нужно искать такой способ проверки алиби подозреваемого, чтобы на все 100% быть уверенным в его невиновности. Это очень важно в методе исключения. А самый надёжный способ такой проверки подозреваемого - это замена блока на заведомо исправный.

Вернёмся всё же к нашему «больному», у которого мы предположили неисправность питания. С чего начать в этом случае? А как и во всех других случаях - с полного внешнего и внутреннего осмотра «больного». Никогда не пренебрегайте этой процедурой, даже когда уверены в том, что знаете точное местоположение поломки. Осматривайте прибор всегда полностью и очень внимательно, не торопясь. Нередко во время осмотра можно найти дефекты, не влияющие напрямую на искомую неисправность, но которые могут вызвать поломку в будущем. Ищите подгоревшие электроэлементы, вздувшиеся конденсаторы и прочие подозрительно выглядящие элементы.

Если внешний и внутренний осмотр не принёс никаких результатов, тогда берите в руки мультиметр и приступайте к работе. Надеюсь, про проверку наличия напряжения сети и про предохранители напоминать не надо. А вот о блоках питания немного поговорим. В первую очередь, проверяйте высокоэнергетические элементы блока питания (БП): выходные транзисторы, тиристоры, диоды, силовые микросхемы. Потом можно начать грешить на оставшиеся полупроводники, электролитические конденсаторы и, в последнюю очередь, на остальные пассивные электроэлементы. Вообще величина вероятности выхода из строя элемента зависит от его энергетической насыщенности. Чем большую энергию использует электроэлемент для своего функционирования, тем больше вероятность его поломки.

Если механические узлы изнашивает трение, то электрические - ток. Чем больше ток, тем больше нагрев элемента, а нагревание/остывание изнашивает любые материалы не хуже трения. Колебания температуры приводят к деформации материала электроэлементов на микроуровне из-за температурного расширения. Такие переменные температурные нагрузки и являются основной причиной так называемого эффекта усталости материала при эксплуатации электроэлементов. Это необходимо учитывать при определении очерёдности проверки элементов.

Не забывайте проверять БП па предмет пульсаций выходных напряжений, либо каких-то иных помех на шинах питания. Хоть и нечасто, но и такие дефекты бывают причиной неработоспособности прибора. Проверьте, доходит ли реально питание до всех потребителей. Может, из-за проблем в разъёме/кабеле/проводе эта «пища» не доходит до них? БП будет исправен, а энергии-то в блоках прибора всё одно нет.

Ещё бывает, что неисправность таится в самой нагрузке - короткое замыкание (КЗ) там штука нередкая. При этом в некоторых «экономных» БП нет защиты по току и, соответственно, нет такой индикации. Поэтому версию короткого замыкания в нагрузке тоже следует проверить.

Теперь поломка второго типа. Хотя здесь также всё следует начинать всё с того же внешне-внутреннего осмотра, тут таится гораздо большее разнообразие аспектов, па которые следует обратить внимание. - Самое главное - успеть запомнить (записать) всю картину состояния звуковой, световой, цифровой индикации прибора, кодов ошибок на мониторе, дисплее, положение аварийных сигнализаторов, флажков, блинкеров на момент аварии. Причём обязательно до того, как произойдёт её сброс, квитирование, отключение питания! Это очень важно! Упустить какую-нибудь важную информацию - значит непременно увеличить время, затраченное на ремонт. Осмотрите всю имеющуюся индикацию - и аварийную, и рабочую, и запомните все показания. Откройте шкафы управления и запомните (запишите) состояние внутренней индикации при её наличии. Пошатайте платы, установленные на материнке, в корпусе прибора шлейфы, блоки. Может, неисправность исчезнет. И обязательно прочистите радиаторы охлаждения.

Иногда имеет смысл проверить напряжение на каком-нибудь подозрительном индикаторе, особенно если им является лампа накаливания. Внимательно прочтите показания монитора (дисплея), при его наличии. Расшифруйте коды ошибок. Посмотрите таблицы входных и выходных сигналов на момент аварии, запишите их состояние. Если прибор обладает функцией записи происходящих с ним процессов, не забудьте прочесть и проанализировать такой журнал событий.

Не стесняйтесь — понюхайте прибор. Нет ли характерного запаха горелой изоляции? Особое внимание уделите изделиям из карболита и других реактивных пластмасс. Нечасто, но бывает, что их пробивает, и пробой этот порою очень плохо видно, особенно если изолятор чёрного цвета. Из-за своих реактивных свойств эти пластмассы не коробит при сильном нагреве, что также затрудняет обнаружение пробитой изоляции.

Посмотрите, нет ли потемневшей изоляции обмоток реле, пускателей, электродвигателей. Нет ли потемневших резисторов и изменивших нормальный цвет и форму других электрорадиоэлементов.

Нет ли вздувшихся или «стрельнувших» конденсаторов.

Проверьте, нет ли в приборе воды, грязи, посторонних предметов.

Посмотрите, нет ли перекоса разъёма, или блок/плата не до конца вставлены в своё место. Попробуйте вынуть и заново вставить их.

Возможно, какой-либо переключатель на приборе стоит в не соответствующем положении. Заела кнопка, либо подвижные контакты у переключателя стали в промежуточном, не зафиксированном положении. Возможно пропал контакт в каком-нибудь тумблере, переключателе, потенциометре. Потрогайте их все (при обесточенном приборе), пошевелите, повключайте. Лишним это не будет.

Проверьте на предмет заклинивания механические части исполнительных органов - проверните роторы электродвигателей, шаговых двигателей. Подвигайте по необходимости другие механизмы. Сравните прилагаемое при этом усилие с другими такими же рабочими устройствами, если конечно есть такая возможность.

Осмотрите внутренности прибора в работающем состоянии - возможно увидите сильное искрение в контактах реле, пускателей, переключателей, что будет свидетельствовать о чрезмерно высокой величине тока в этой цепи. А это уже хорошая зацепка для поиска неисправности. Часто виной такой поломки бывает дефект какого-либо датчика. Эти посредники между внешним миром и прибором, которому они служат, обычно вынесены далеко за порубежье самого корпуса прибора. И при этом работают они обычно в более агрессивной среде, чем внутренне части прибора, которые так или иначе, но защищены от внешнего воздействия. Поэтому все датчики требуют повышенного внимания к себе. Проверьте их работоспособность и не поленитесь почистить от загрязнения. Концевые выключатели, различные блокирующие контакты и прочие датчики с гальваническими контактами - являются подозреваемыми с высоким приоритетом. Да и вообще любой «сухой контакт» т.е. не пропаянный, должен стать элементом пристального внимания.

И ещё момент - если прибор прослужил уже немало времени, то следует обратить внимание на элементы, наиболее подверженные какому-либо износу или изменению своих параметров с течением времени. Например: механические узлы и детали; элементы, подвергающиеся во время работы повышенному нагреву или иному агрессивному воздействию; электролитические конденсаторы, некоторые виды которых склонны терять ёмкость со временем из-за высыхания электролита; все контактные соединения; органы управления прибором.

Практически все виды «сухих» контактов с течением времени теряют свою надёжность. Особое внимание следует уделить контактам с серебряным покрытием. Если прибор долгое время проработал без технического обслуживания, рекомендую перед тем, как приступать к углублённому поиску неисправности, сделать профилактику контактам - осветлить их обычным ластиком и протереть спиртом. Внимание! Никогда не пользуйся абразивными шкурками для чистки посеребрённых и позолоченных контактов. Это верная смерть разъёму. Покрытие серебром или золотом делается всегда очень тонким слоем, и стереть абразивом его до меди очень легко. Полезно провести процедуру самоочистки контактов розеточной части разъёма, на профессиональном сленге «мамы»: соедините-разъедините разъём несколько раз, от трения пружинящие контакты немного очищаются. Ещё советую, работая с любыми контактными соединениями, не трогать их руками - масляные пятна от пальцев негативно влияют на надёжность электрического контакта. Чистота залог надёжной работы контакта.

Первейшее дело - проверить срабатывание какой-либо блокировки, защиты в начале ремонта. (В любой нормальной технической документации на прибор есть глава с подробным описанием применяемых в нём блокировок.)

После осмотра и проверки питания прикиньте навскидку - что наиболее вероятно сломалось в приборе, и проверьте эти версии. Сразу в дебри прибора не стоит лезть. Сначала проверьте всю периферию, особенно исправность исполнительных органов - возможно сломался не сам прибор, а какой-либо механизм, управляемый им. Вообще рекомендуется изучить, пусть и не до тонкостей, весь производственный процесс, участником которого является подопечный прибор. Когда очевидные версии исчерпаны - вот тогда садитесь за свой рабочий стол, заваривайте чайку, раскладывайте схемы и прочую документацию на прибор и «рожайте» новые идеи. Думайте, что ещё могло вызвать эту болезнь прибора.

Через некоторое время у вас должно «родиться» определённое количество новых версий. Тут рекомендую не спешить бежать проверять их. Сядьте где-нибудь в спокойной обстановке и подумайте над этими версиями па предмет величины вероятности каждой из них. Тренируйте себя в деле оценки таких вероятностей, а когда накопится опыт в подобной селекции - станете делать ремонт гораздо быстрее.

Самый результативный и надёжный способ проверки подозреваемого блока, узла прибора на работоспособность, как уже говорилось, это замена его на заведомо исправный. Не забывайте при этом внимательно проверять блоки на предмет их полной идентичности. Если будете подключать тестируемый блок к работающему исправно прибору, то по возможности подстрахуйтесь - проверьте блок на предмет завышенных выходных напряжений, короткое замыкание по питанию и в силовой части, и прочие возможные неисправности, которые могут вывести из строя рабочий прибор. Бывает и обратное: подключаешь донорскую рабочую плату в сломанный прибор, проверяешь, что хотел, а когда её возвращаешь назад - она оказывается уже неработоспособной. Такое бывает нечасто, но всё же имейте в виду этот момент.

Если таким образом удалось найти неисправный блок, то дальше локализовать поиск неисправности до конкретного электроэлемента поможет так называемый «сигнатурный анализ». Так называют метод, при котором ремонтник проводит интеллектуальный анализ всех сигналов, коими «живёт» испытуемый узел. Подключите исследуемый блок, узел, плату к прибору с помощью специальных удлинителей-переходников (такие обычно поставляются в комплекте с прибором), чтобы был свободный доступ ко всем электроэлементам. Разложите рядом схему, измерительные приборы и включите питание. Теперь сверьте сигналы в контрольных точках на плате с напряжениями, осциллограммами на схеме (в документации). Если схема и документация не блещут такими подробностями, тут уж напрягайте мозги. Хорошие знания по схемотехнике здесь будут весьма кстати.

Если появились какие-то сомнения, то можно «повесить» на переходник исправную образцовую плату с рабочего прибора и сравнить сигналы. Сверьте со схемой (с документацией) все возможные сигналы, напряжения, осциллограммы. Если найдено отклонение какого-либо сигнала от нормы, не спешите делать вывод о неисправности именно этого электроэлемента. Он может быть не причиной, а всего лишь следствием другого нештатного сигнала, который вынудил этот элемент выдать ложный сигнал. Во время ремонта старайтесь сужать круг поиска, максимально локализовать неисправность. Работая с подозреваемым узлом/блоком, придумывайте такие испытания и измерения для него, которые бы исключили (или подтвердили) причастность этого узла/блока к данной неисправности наверняка! Семь раз подумайте, когда исключаете блок из числа неблагонадёжных. Все сомнения в этом деле должны быть развеяны явными уликами.

Эксперименты делайте всегда осмысленно, метод «научного тыка» не наш метод. Дескать, дай-ка я вот этот провод сюда ткну и посмотрю, что будет. Никогда не уподобляйтесь таким «ремонтёрам». Последствия всякого эксперимента обязательно должны быть продуманы и нести полезную информацию. Бессмысленные же эксперименты - пустая трата времени, и к тому же ещё поломать можно что- нибудь. Развивайте в себе способность логически мыслить, стремитесь видеть чёткие причинно-следственные связи в работе устройства. Даже в работе сломанного прибора есть своя логика, всему есть объяснение. Сможете понять и объяснить нестандартное поведение прибора - найдёте его дефект. В деле ремонта очень важно самым чётким образом представлять себе алгоритм работы прибора. Если у вас есть пробелы в этой области, читайте документацию, спрашивайте всех, кто хоть что-то знает об интересующем вопросе. И не бойтесь спрашивать, вопреки распространённому мнению, это не убавляет авторитет в глазах коллег, а наоборот, умные люди всегда это оценят положительно. Помнить наизусть схему прибора абсолютно ненужно, для этого бумагу придумали. А вот алгоритм его работы надо знать «назубок». И вот вы «трясёте» прибор уже который день. Изучили его так, что кажется дальше некуда. И уже неоднократно пытали все подозреваемые блоки/узлы. Испробованы даже казалось бы самые фантастические варианты, а неисправность так и не найдена. Вы уже начинаете понемногу нервничать, может даже паниковать. Поздравляю! Вы достигли апогея в данном ремонте. И тут поможет только… отдых! Вы просто устали, нужно отвлечься от работы. У вас, как говорят опытные люди, «глаз замылился». Так что бросайте работу и полностью отключите своё внимание от подопечного прибора. Можно заняться другой работой, или вовсе ничем не заниматься. Но о приборе нужно забыть. А вот когда отдохнёте, то сами почувствуете желание продолжить битву. И как часто бывает, после такого перерыва вы вдруг увидите такое простое решение проблемы, что удивитесь несказанно!

А вот с неисправностью третьего типа всё гораздо сложнее. Так как сбои в работе прибора носят обычно случайный характер, то для того чтобы поймать момент проявления сбоя, времени часто требуется очень много. Особенности внешнего осмотра в этом случае заключаются совмещении поиска возможной причины сбоя с проведением профилактических работ. Вот для ориентира перечень некоторых возможных причин появления сбоев.

Плохой контакт (в первую очередь!). Почистите разъёмы все сразу во всём приборе и внимательно осматривайте при этом контакты.

Перегрев (как и переохлаждение) всего прибора, вызванный повышенной (пониженной) температурой окружающей среды, либо вызванный длительной работой с высокой нагрузкой.

Пыль на платах, узлах, блоках.

Загрязнение радиаторов охлаждения. Перегрев полупроводниковых элементов, которые они охлаждают, тоже может быть причиной сбоев.

Помехи в сети питания. Если фильтр питания отсутствует или вышел из строя, либо его фильтрующих свойств недостаточно для данных условий эксплуатации прибора, то сбои в его работе будут нередкими гостями. Попробуйте связать сбои с включением какой-либо нагрузки в той же электросети, от которой питается прибор, и тем самым найти виновника помехи. Возможно именно в соседнем приборе неисправен сетевой фильтр, либо ещё какая другая неисправность в нём, а не в ремонтируемом приборе. По возможности запитайте прибор на некоторое время от бесперебойника с хорошим встроенным сетевым фильтром. Сбои пропадут - ищите проблему в сети.

И здесь, как и в предыдущем случае, самым эффективным способом ремонта является метод замены блоков на заведомо исправные. Меняя блоки и узлы между одинаковыми приборами, внимательно следите за их полной идентичностью. Обратите внимание на наличие персональных настроек в них - различные потенциометры, настроенные контуры индуктивности, переключатели, джемперы, перемычки, программные вставки, ПЗУ с различными версиями прошивок. Если они имеются, то решение о замене принимайте, обдумав все возможные проблемы, которые могут возникнуть в связи с опасностью нарушения работы блока/узла и прибора в целом, из-за разницы в таких настройках. Если всё же имеется острая необходимость в такой замене, то делайте перенастройку блоков с обязательной записью предыдущего состояния - пригодится при возврате.

Бывает так, что заменены все составляющие прибор платы, блоки, узлы, а дефект остался. Значит, логично предположить, что неисправность засела в оставшейся периферии в жгутах проводов, внутри какого-либо разъёма проводок оторвался, может быть дефект кросс-платы. Иногда виноват бывает замятый контакт разъёма, например в боксе для плат. При работе с микропроцессорными системами иногда помогает многократный прогон тестовых программ. Их можно закольцевать или настроить на большое количество циклов. Причём лучше, если они будут именно специализированные тестовые, а не рабочие. Эти программы умеют фиксировать сбой и всю сопутствующую ему информацию. Если умеете, сами напишите такую тестовую программу, с ориентацией на конкретный сбой.

Бывает, что периодичность проявления сбоя имеет некую закономерность. Если сбой можно связать по времени с исполнением какого-либо конкретного процесса в приборе, тогда вам повезло. Это очень хорошая зацепка для анализа. Поэтому всегда внимательно наблюдайте за сбоями прибора, замечайте все обстоятельства, при которых они проявляются, и старайтесь связать их с исполнением какой-либо функции прибора. Длительное наблюдение за сбоящим прибором в этом случае может дать ключ к разгадке тайны сбоя. Если найти зависимость появления сбоя от, например, перегрева, повышения/ понижения напряжения питания, от вибрационного воздействия, это даст некоторое представление о характере неисправности. А дальше - «ищущий да обрящет».

Способ контрольной замены почти всегда приносит положительные результаты. Но в найденном таким образом блоке может быть множество микросхем и других элементов. А значит, есть возможность восстановить работу блока заменой лишь одной, недорогой детальки. Как в этом случае локализовать поиск дальше? Тут тоже не всё потеряно, существуют несколько интересных приёмов. Сигнатурным анализом поймать сбой практически нереально. Поэтому попробуем использовать некоторые нестандартные методы. Нужно спровоцировать блок на сбой при определённом локальном воздействии на пего и при этом надо, чтобы момент проявления сбоя можно было привязать к конкретной детали блока. Вешайте блок на переходник/удлинитель и начинайте его мучить. Если подозреваете в плате микротрещину, можно попробовать закрепить плату на каком-нибудь жёстком основании и деформировать только малые части её площади (углы, края) и гнуть их в разных плоскостях. И наблюдайте при этом за работой прибора - ловите сбой. Можно попробовать постучать ручкой отвёртки по частям платы. Определились с участком платы - берите линзу и внимательно высматривайте трещинку. Нечасто, но иногда всё-таки удаётся обнаружить дефект, и, кстати, при этом далеко не всегда виновной оказывается микротрещина. Гораздо чаще находятся дефекты пайки. Поэтому рекомендуется не только гнуть саму плату, но и шевелить все её электроэлементы, внимательно наблюдая за их паяным соединением. Если подозрительных элементов немного, можно просто сразу все пропаять, чтобы в будущем больше не было проблем с этим блоком.

А вот если в причине сбоя подозревается какой-либо полупроводниковый элемент платы, найти его будет непросто. Но и тут тоже можно словчить, есть такой несколько радикальный способ спровоцировать сбой: в рабочем состоянии нагревайте паяльником по очереди каждый электроэлемент и следите за поведением прибора. К металлическим частям электроэлементов паяльник нужно прикладывать через тонкую пластинку слюды. Греть примерно градусов до 100-120, хотя иногда и больше требуется. При этом, конечно, есть определённая доля вероятности дополнительно испортить какой-ни- будь «невинный» элемент на плате, но стоит ли рисковать в этом случае, это уже решать вам. Можно попробовать наоборот, охлаждать льдинкой. Тоже не часто, но всё же можно и таким способом попробовать, как у нас говорят, - «выковырять клопа». Если уж сильно припекло, и при наличии возможности, конечно, то меняйте все подряд полупроводники на плате. Очерёдность замены - по нисходящей эиергоиасыщеипости. Меняйте блоками по нескольку штук, периодически проверяя работоспособность блока на отсутствие сбоев. Попробуйте хорошенько пропаять все подряд электроэлементы на плате, иногда только уже одна эта процедура возвращает прибор к здоровой жизни. Вообще с неисправностью такого типа никогда нельзя гарантировать полное выздоровление прибора. Часто бывает так, что вы во время поиска неисправности шевельнули случайно какой-то элемент, у которого был слабый контакт. При этом неисправность исчезла, но скорее всего этот контакт опять себя проявит со временем. Ремонт редко проявляющегося сбоя - занятие неблагодарное, времени и усилий требует много, а гарантии, что прибор будет обязательно отремонтирован, нет никакой. Поэтому многие мастера часто отказываются браться за ремонт таких капризных приборов, и, честно говоря, я их за это не виню.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows