Развитие технологии записи на магнитный диск. Носители на магнитных дисках

Развитие технологии записи на магнитный диск. Носители на магнитных дисках

Для записи на ЖМД используются методы ЧМ, модифицированной частотной модуляции (МЧМ) и RLL-метод, при котором каждый байт данных преобразуется в 16-битовый код.

При методе МЧМ плотность записи данных возрастает вдвое по сравнению с методом ЧМ. Для этого метода (рис. 14.2), если записываемый бит данных является единицей, то стоящий перед ним бит тактового импульса не записывается. Если записывается «0 », а предыдущий бит был «1 », то синхросигнал также не записывается, как и бит данных. Но если перед «0 » стоит бит «0 », то синхросигнал записывается.

В настоящее время существуют 3 вида записи:

Метод параллельной записи

На данный момент это самая распространённая технология записи информации на НЖМД. Биты информации записываются с помощью маленькой головки, которая проходя над поверхностью вращающегося диска намагничивает миллиарды горизонтальных дискретных областей - доменов. Каждая из этих областей является логическим нулём или единицей, в зависимости от намагниченности. На сегодняшний день, домены становятся настолько малы, что остро встаёт вопрос о их стабильности. Дальнейшее развитие этой технологии под вопросом, многие считают этот метод исчерпавшим себя. Плотность записи, при использовании этого метода, на данный момент равна 150 Гбит/дюйм² (23Гбит/см²).

Метод перпендикулярной записи

Для того чтобы решить проблему с дальнейшим увеличением плотности, многие производители рассматривают технологию, при которой биты информации сохранялись бы в вертикальных доменах. Это позволит использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Плотность записи у экспериментального прототипа - 200 Гбит/дюйм² (31 Гбит/см²), в дальнейшем планируется довести плотность до 400-500 Гбит/дюйм² (60-75 Гбит/см²).

Метод тепловой магнитной записи

Метод тепловой магнитной записи (англ. Heat assisted magnetic recording - HAMR) на данный момент активно разрабатывается. При использовании этого метода используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». Именно этот метод собираются использовать компании Seagate и IBM для достижения плотности в 4 Тбит на кв. дюйм (620 Гбит на кв. см). Это позволит изготовить 3,5-дюймовый винчестер объемом 25 Тб. В качестве максимальной отметки плотности пока названо значение 100 Тбит на кв. дюйм (около 15 Тб на кв. см), что соответствует 0,65-Пб (петабайт) объема в форм-факторе 3,5 дюйма.

Формат записи информации на жестком магнитном диске

В НЖМД обычно используются форматы данных с фиксированным числом секторов на дорожке (17, 34 или 52) и с объемом данных в одном секторе 512 или 1024 байта. Секторы маркируются магнитным маркером.

Конкретный формат данных определяется внутренней программной конфигурацией ПЭВМ и техническими характеристиками адаптера накопителя. Структура формата (рис. 14.3) подобна структуре, применяемой в НГМД.

Начало каждого сектора обозначается адресным маркером. В начале идентификатора и поля данных записываются байты синхронизации, служащие для синхронизации схемы выделения данных адаптера НЖМД. Идентификатор сектора содержит адрес диска в пакете, представленный кодами номеров цилиндра, головки и сектора. В отличие от НГМД в НЖМД в идентификатор дополнительно вводят байты сравнения и флага. Байт сравнения представляет одинаковое для каждого сектора число, с помощью которого осуществляется правильность считывания идентификатора. Байт флага содержит флаг - указатель состояния дорожки (основная или запасная, исправная или дефектная).

Контрольные байты записываются в поле идентификатора один раз при записи идентификатора сектора, а в поле данных - каждый раз при каждой новой записи данных. Контрольные байты в НЖМД предназначены не только для определения, но и для коррекции ошибок считывания. Наиболее часто используются полиномные корректирующие коды; использование конкретных кодов зависит от схемной реализации адаптера.

Перед использованием НЖМД производится его начальное форматирование - процедура, выполняемая под управлением специальной программы, при работе которой на дисковый пакет записывается служебная информация и проверяется пригодность полей данных.

В последнее время компании используют адаптивное форматирование . Его суть заключается в том, что каждый экземпляр накопителя индивидуально настраивается на заводе таким образом, чтобы обеспечить лучшую производительность и надежность. Для этого каждая пара «головка-поверхность пластины» собранного диска тестируется на определение характеристик быстродействия, и затем каждая сторона магнитной пластины индивидуально форматируется (размечается на дорожки и сектора) так, чтобы обеспечить наилучшие характеристики при работе именно с данной головкой. В результате, линейная плотность записи на каждой стороне каждой пластины может не совпадать с соседними

Пять различных интервалов в НЖМД используются для синхронизации электронных процессов чтения-записи и управления работы электромеханических узлов накопителя.

В результате начального форматирования определяется расположение секторов, и устанавливаются их логические номера. Поскольку скорость вращения диска очень большая, для обеспечения минимального числа оборотов диска при обращении к последовательным секторам, секторы с последовательными номерами размещаются через N физических секторов друг от друга (рис. 14.4).

Кратность расположения секторов задается при форматировании диска. Коэффициенты чередования бывают 6:1, 3:1, и 1:1. Новейшие модели НЖМД используют коэффициенты 1:1, а их контроллеры считывают с диска за одно его обращение информацию с целой дорожки и затем хранят ее в буферной памяти. При запросе из буферной памяти передается информация уже из требуемых секторов.

Каждая дорожка диска разделяется на одинаковое число секторов, поэтому сектора на дорожках, которые находятся ближе к нулевой дорожке, имеют меньший размер. Для записи таких секторов

используются магнитные поля большей интенсивности (компенсация записи ). Число поверхностей диска (головок), число цилиндров (дорожек) и точка, с которой начинается компенсация записи, являются параметрами для настройки контроллера НЖМД.

Среднее время доступа к информации на НЖМД составляет

t ср =t n +0,5/F+t обм, (14.1)

где t n - среднее время позиционирования; F - скорость вращения диска; t обм - время обмена. Время обмена зависит от технических средств контроллера и типа его интерфейса, наличия встроенное буферной кэш-памяти, алгоритма кодирования дисковых данных и коэффициента чередования.

Накопители на жестких дисках объединяют в одном корпусе носитель (носители), устройство чтения/записи и интерфейсную часть, называемую контроллером жесткого диска. Типичной конструкцией жесткого диска является исполнение в виде одного устройства - камеры, внутри которой находится один или более дисковых носителей насажанных на один шпиндель и блок головок чтения/записи с их общим приводящим механизмом(рисунок 1). Рядом с камерой носителей и головок располагаются схемы управления головками, дисками и интерфейсная часть. На интерфейсной карте устройства располагается интерфейс дискового устройства, а контроллер с его интерфейсом располагается на самом устройстве. С интерфейсным адаптером схемы накопителя соединяются при помощи комплекта шлейфов.

Рисунок 1. Устройство жесткого диска

Информация заносится на концентрические дорожки, равномерно распределенные по всему носителю. В случае большего, чем один диск, числа носителей все дорожки, находящиеся одна под другой, называются цилиндром. Операции чтения/записи производятся подряд над всеми дорожками цилиндра, после чего головки перемещаются на новую позицию.

Герметичная камера предохраняет носители не только от проникновения механических частиц пыли, но и от воздействия электромагнитных полей. Камера не является абсолютно герметичной т.к. соединяется с окружающей атмосферой при помощи специального фильтра, уравнивающего давление внутри и снаружи камеры. Воздух внутри камеры максимально очищен от пыли, т.к. малейшие частички могут привести к порче магнитного покрытия дисков и потере данных и работоспособности устройства.

Диски вращаются постоянно со скоростью вращения носителей от 4500 до 10000 об/мин, что обеспечивает высокую скорость чтения/записи. По величине диаметра носителя чаще других производятся 5.25,3.14,2.3 дюймовые диски.

В настоящее время наиболее часто применяются шаговые и линейные двигатели механизмов позиционирования и механизмы перемещения головок в целом.

В системах с шаговым механизмом и двигателем головки перемещаются на определенную величину, соответствующую расстоянию между дорожками. Дискретность шагов зависит либо от характеристик шагового двигателя, либо задается серво-метками на диске, которые могут иметь магнитную или оптическую природу.

В системах с линейным приводом головки перемещаются электромагнитом, а для определения необходимого положения служат специальные сервисные сигналы, записанные на носитель при его производстве и считываемые при позиционировании головок. Во многих устройствах для серво-сигналов используется целая поверхность и специальная головка или оптический датчик.

Линейные приводы перемещают головки значительно быстрее, чем шаговые, кроме того они позволяют производить небольшие радиальные перемещения "внутри" дорожки, давая возможность отследить центр окружности серво-дорожки. Этим достигается положение головки, наилучшее для считывания с каждой дорожки, что значительно повышает достоверность считываемых данных и исключает необходимость временных затрат на процедуры коррекции. Как правило, все устройства с линейным приводом имеют автоматический механизм парковки головок чтения/записи при отключении питания устройства.

Принципы магнитной записи на жесткий диск

Принцип магнитной записи электрических сигналов на движущийся магнитный носитель основан на явлении остаточного намагничивания магнитных материалов. Запись и хранение информации на магнитном носителе производится путем преобразования электрических сигналов в соответствующие им изменения магнитного поля, воздействия его на магнитный носитель и сохранения следов этих воздействий в магнитном материале длительное время, благодаря явлению остаточного магнетизма. Воспроизведение электрических сигналов производится путем обратного преобразования. Система магнитной записи состоит из носителя записи и взаимодействующих с ним магнитных головок (рисунок 2).


Рисунок 2. Принцип записи и считывания информации с магнитного носителя

При цифровой магнитной записи в магнитную головку поступает ток, при котором поле записи через определенные промежутки времени изменяет свое направление на противоположное. В результате под действием поля рассеяния магнитной головки происходят намагничивание или перемагничивание отдельных участков движущегося магнитного носителя.

При периодическом изменении направления поля записи в рабочем слое носителя возникает цепочка участков с противоположным направлением намагниченности, которые соприкасаются друг с другом одноименными полюсами. Рассмотренный вид записи, когда участки рабочего слоя носителя перемагничиваются вдоль его движения, называется продольной записью (рисунок 3).

Чередующиеся участки с различным направлением намагниченности, возникшие в магнитном покрытии, являются магнитными доменами (битовыми ячейками). Чем меньше размер ячейки, тем выше плотность записи информации. Однако с уменьшением размера ячейки возрастает взаимное влияние их размагничивающих полей, направленных в сторону, противоположную намагниченности в ячейках, что при уменьшении битовой ячейки ниже критического значения приводит к самопроизвольному размагничиванию.


Рисунок 3. Последовательность участков с противоположным направлением намагниченности

Для магнитной записи используются носители в виде магнитных пластин (дисков). Пластины изготавливаются процессом напыления множественных металлических пленок и защитного слоя покрытия на очень плоскую, бездефектную стеклянную или алюминиевую подложку. Информация размещается в виде концентрических окружностей, называемых дорожками (рисунок 4). В современных НЖМД плотность дорожек достигает значений 4,3*104 дорожек на один сантиметр радиуса пластины.


Рисунок 4. Размещение дорожек на поверхности диска

Жесткие диски, или, как их еще называют, винчестеры, являются одной из самых главных составляющих компьютерной системы. Об это знают все. Но вот далеко не каждый современный пользователь даже в принципе догадывается о том, как функционирует жесткий диск. Принцип работы, в общем-то, для базового понимания достаточно несложен, однако тут есть свои нюансы, о которых далее и пойдет речь.

Вопросы предназначения и классификации жестких дисков?

Вопрос предназначения, конечно, риторический. Любой пользователь, пусть даже самого начального уровня, сразу же ответит, что винчестер (он же жесткий диск, он же Hard Drive или HDD) сразу же ответит, что он служит для хранения информации.

В общем и целом верно. Не стоит забывать, что на жестком диске, кроме операционной системы и пользовательских файлов, имеются созданные ОС загрузочные секторы, благодаря которым она и стартует, а также некие метки, по которым на диске можно быстро найти нужную информацию.

Современные модели достаточно разнообразны: обычные HDD, внешние жесткие диски, высокоскоростные твердотельные накопители SSD, хотя их именно к жестким дискам относить и не принято. Далее предлагается рассмотреть устройство и принцип работы жесткого диска, если не в полном объеме, то, по крайней мере, в таком, чтобы хватило для понимания основных терминов и процессов.

Обратите внимание, что существует и специальная классификация современных HDD по некоторым основным критериям, среди которых можно выделить следующие:

  • способ хранения информации;
  • тип носителя;
  • способ организации доступа к информации.

Почему жесткий диск называют винчестером?

Сегодня многие пользователи задумываются над тем, почему называют винчестерами, относящимися к стрелковому оружию. Казалось бы, что может быть общего между этими двумя устройствами?

Сам термин появился еще в далеком 1973 году, когда на рынке появился первый в мире HDD, конструкция которого состояла из двух отдельных отсеков в одном герметичном контейнере. Емкость каждого отсека составляла 30 Мб, из-за чего инженеры дали диску кодовое название «30-30», что было в полной мере созвучно с маркой популярного в то время ружья «30-30 Winchester». Правда, в начале 90-х в Америке и Европе это название практически вышло из употребления, однако до сих пор остается популярным на постсоветском пространстве.

Устройство и принцип работы жесткого диска

Но мы отвлеклись. Принцип работы жесткого диска кратко можно описать как процессы считывания или записи информации. Но как это происходит? Для того чтобы понять принцип работы магнитного жесткого диска, в первую очередь необходимо изучить, как он устроен.

Сам жесткий диск представляет собой набор пластин, количество которых может колебаться от четырех до девяти, соединенных между собой валом (осью), называемым шпинделем. Пластины располагаются одна над другой. Чаще всего материалом для их изготовления служат алюминий, латунь, керамика, стекло и т. д. Сами же пластины имеют специальное магнитное покрытие в виде материала, называемого платтером, на основе гамма-феррит-оксида, окиси хрома, феррита бария и т. д. Каждая такая пластина по толщине составляет около 2 мм.

За запись и чтение информации отвечают радиальные головки (по одной на каждую пластину), а в пластинах используются обе поверхности. За которого может составлять от 3600 до 7200 об./мин, и перемещение головок отвечают два электрических двигателя.

При этом основной принцип работы жесткого диска компьютера состоит в том, что информация записывается не куда попало, а в строго определенные локации, называемые секторами, которые расположены на концентрических дорожках или треках. Чтобы не было путаницы, применяются единые правила. Имеется ввиду, что принципы работы накопителей на жестких дисках, с точки зрения их логической структуры, универсальны. Так, например, размер одного сектора, принятый за единый стандарт во всем мире, составляет 512 байт. В свою очередь секторы делятся на кластеры, представляющие собой последовательности рядом находящихся секторов. И особенности принципа работы жесткого диска в этом отношении состоят в том, что обмен информацией как раз и производится целыми кластерами (целым числом цепочек секторов).

Но как же происходит считывание информации? Принципы работы накопителя на жестких магнитных дисках выглядят следующим образом: с помощью специального кронштейна считывающая головка в радиальном (спиралевидном) направлении перемещается на нужную дорожку и при повороте позиционируется над заданным сектором, причем все головки могут перемещаться одновременно, считывая одинаковую информацию не только с разных дорожек, но и с разных дисков (пластин). Все дорожки с одинаковыми порядковыми номерами принято называть цилиндрами.

При этом можно выделить еще один принцип работы жесткого диска: чем ближе считывающая головка к магнитной поверхности (но не касается ее), тем выше плотность записи.

Как осуществляется запись и чтение информации?

Жесткие диски, или винчестеры, потому и были названы магнитными, что в них используются законы физики магнетизма, сформулированные еще Фарадеем и Максвеллом.

Как уже говорилось, на пластины из немагниточувствительного материала наносится магнитное покрытие, толщина которого составляет всего лишь несколько микрометров. В процессе работы возникает магнитное поле, имеющее так называемую доменную структуру.

Магнитный домен представляет собой строго ограниченную границами намагниченную область ферросплава. Далее принцип работы жесткого диска кратко можно описать так: при возникновении воздействия внешнего магнитного поля, собственное поле диска начинает ориентироваться строго вдоль магнитных линий, а при прекращении воздействия на дисках появляются зоны остаточной намагниченности, в которой и сохраняется информация, которая ранее содержалась в основном поле.

За создание внешнего поля при записи отвечает считывающая головка, а при чтении зона остаточной намагниченности, оказавшись напротив головки, создает электродвижущую силу или ЭДС. Далее все просто: изменение ЭДС соответствует единице в двоичном коде, а его отсутствие или прекращение - нулю. Время изменения ЭДС принято называть битовым элементом.

Кроме того, магнитную поверхность чисто из соображений информатики можно ассоциировать, как некую точечную последовательность битов информации. Но, поскольку местоположение таких точек абсолютно точно вычислить невозможно, на диске нужно установить какие-то заранее предусмотренные метки, которые помогли определить нужную локацию. Создание таких меток называется форматированием (грубо говоря, разбивка диска на дорожки и секторы, объединенные в кластеры).

Логическая структура и принцип работы жесткого диска с точки зрения форматирования

Что касается логической организации HDD, здесь на первое место выходит именно форматирование, в котором различают два основных типа: низкоуровневое (физическое) и высокоуровневое (логическое). Без этих этапов ни о каком приведении жесткого диска в рабочее состояние говорить не приходится. О том, как инициализировать новый винчестер, будет сказано отдельно.

Низкоуровневое форматирование предполагает физическое воздействие на поверхность HDD, при котором создаются секторы, расположенные вдоль дорожек. Любопытно, что принцип работы жесткого диска таков, что каждый созданный сектор имеет свой уникальный адрес, включающий в себя номер самого сектора, номер дорожки, на которой он располагается, и номер стороны пластины. Таким образом, при организации прямого доступа та же оперативная память обращается непосредственно по заданному адресу, а не ищет нужную информацию по всей поверхности, за счет чего и достигается быстродействие (хотя это и не самое главное). Обратите внимание, что при выполнении низкоуровневого форматирования стирается абсолютно вся информация, и восстановлению она в большинстве случаев не подлежит.

Другое дело - логическое форматирование (в Windows-системах это быстрое форматирование или Quick format). Кроме того, эти процессы применимы и к созданию логических разделов, представляющих собой некую область основного жесткого диска, работающую по тем же принципам.

Логическое форматирование, прежде всего, затрагивает системную область, которая состоит из загрузочного сектора и таблиц разделов (загрузочная запись Boot record), таблицы размещения файлов (FAT, NTFS и т. д.) и корневого каталога (Root Directory).

Запись информации в секторы производится через кластер несколькими частями, причем в одном кластере не может содержаться два одинаковых объекта (файла). Собственно, создание логического раздела, как бы отделяет его от основного системного раздела, вследствие чего информация, на нем хранимая, при появлении ошибок и сбоев изменению или удалению не подвержена.

Основные характеристики HDD

Думается, в общих чертах принцип работы жесткого диска немного понятен. Теперь перейдем к основным характеристикам, которые и дают полное представление обо всех возможностях (или недостатках) современных винчестеров.

Принцип работы жесткого диска и основные характеристики могут быть совершенно разными. Чтобы понять, о чем идет речь, выделим самые основные параметры, которыми характеризуются все известные на сегодня накопители информации:

  • емкость (объем);
  • быстродействие (скорость доступа к данным, чтение и запись информации);
  • интерфейс (способ подключения, тип контроллера).

Емкость представляет собой общее количество информации, которая может быть записана и сохранена на винчестере. Индустрия по производству HDD развивается так быстро, что сегодня в обиход вошли уже жесткие диски с объемами порядка 2 Тб и выше. И, как считается, это еще не предел.

Интерфейс - самая значимая характеристика. Она определяет, каким именно способом устройство подключается к материнской плате, какой именно контроллер используется, как осуществляется чтение и запись и т. д. Основными и самыми распространенными интерфейсами считаются IDE, SATA и SCSI.

Диски с IDE-интерфейсом отличаются невысокой стоимостью, однако среди главных недостатков можно выделить ограниченное количество одновременно подключаемых устройств (максимум четыре) и невысокую скорость передачи данных (причем даже при условии поддержки прямого доступа к памяти Ultra DMA или протоколов Ultra ATA (Mode 2 и Mode 4). Хотя, как считается, их применение позволяет повысить скорость чтения/записи до уровня 16 Мб/с, но в реальности скорость намного ниже. Кроме того, для использования режима UDMA требуется установка специального драйвера, который, по идее, должен поставляться в комплекте с материнской платой.

Говоря о том, что собой представляет принцип работы жесткого диска и характеристики, нельзя обойти стороной и который является наследником версии IDE ATA. Преимущество данной технологии состоит в том, что скорость чтения/записи можно повысить до 100 Мб/с за счет применения высокоскоростной шины Fireware IEEE-1394.

Наконец, интерфейс SCSI по сравнению с двумя предыдущими является наиболее гибким и самым скоростным (скорость записи/чтения достигает 160 Мб/с и выше). Но и стоят такие винчестеры практически в два раза дороже. Зато количество одновременно подключаемых устройств хранения информации составляет от семи до пятнадцати, подключение можно осуществлять без обесточивания компьютера, а длина кабеля может составлять порядка 15-30 метров. Собственно, этот тип HDD большей частью применяется не в пользовательских ПК, а на серверах.

Быстродействие, характеризующее скорость передачи и пропускную способность ввода/вывода, обычно выражается временем передачи и объемом передаваемых расположенных последовательно данных и выражается в Мб/с.

Некоторые дополнительные параметры

Говоря о том, что представляет собой принцип работы жесткого диска и какие параметры влияют на его функционирование, нельзя обойти стороной и некоторые дополнительные характеристики, от которых может зависеть быстродействие или даже срок эксплуатации устройства.

Здесь на первом месте оказывается скорость вращения, которая напрямую влияет на время поиска и инициализации (распознавания) нужного сектора. Это так называемое скрытое время поиска - интервал, в течение которого необходимый сектор поворачивается к считывающей головке. Сегодня принято несколько стандартов для скорости вращения шпинделя, выраженной в оборотах в минуту со временем задержки в миллисекундах:

  • 3600 - 8,33;
  • 4500 - 6,67;
  • 5400 - 5,56;
  • 7200 - 4,17.

Нетрудно заметить, что чем выше скорость, тем меньшее время затрачивается на поиск секторов, а в физическом плане - на оборот диска до установки для головки нужной точки позиционирования пластины.

Еще один параметр - внутренняя скорость передачи. На внешних дорожках она минимальна, но увеличивается при постепенном переходе на внутренние дорожки. Таким образом, тот же процесс дефрагментации, представляющий собой перемещение часто используемых данных в самые быстрые области диска, - не что иное, как перенос их на внутреннюю дорожку с большей скоростью чтения. Внешняя скорость имеет фиксированные значения и напрямую зависит от используемого интерфейса.

Наконец, один из важных моментов связан с наличием у жесткого диска собственной кэш-памяти или буфера. По сути, принцип работы жесткого диска в плане использования буфера в чем-то похож на оперативную или виртуальную память. Чем больше объем кэш-памяти (128-256 Кб), тем быстрее будет работать жесткий диск.

Главные требования к HDD

Основных требований, которые в большинстве случаев предъявляются жестким дискам, не так уж и много. Главное - длительный срок службы и надежность.

Основным стандартом для большинства HDD считается срок службы порядка 5-7 лет со временем наработки не менее пятисот тысяч часов, но для винчестеров высокого класса этот показатель составляет не менее миллиона часов.

Что касается надежности, за это отвечает функция самотестирования S.M.A.R.T., которая следит за состоянием отдельных элементов жесткого диска, осуществляя постоянный мониторинг. На основе собранных данных может формироваться даже некий прогноз появления возможных неисправностей в дальнейшем.

Само собой разумеется, что и пользователь не должен оставаться в стороне. Так, например, при работе с HDD крайне важно соблюдать оптимальный температурный режим (0 - 50 ± 10 градусов Цельсия), избегать встрясок, ударов и падений винчестера, попадания в него пыли или других мелких частиц и т. д. Кстати сказать, многим будет интересно узнать, что те же частицы табачного дыма примерно в два раза больше расстояния между считывающей головкой и магнитной поверхностью винчестера, а человеческого волоса - в 5-10 раз.

Вопросы инициализации в системе при замене винчестера

Теперь несколько слов о том, какие действия нужно предпринять, если по каким-то причинам пользователь менял жесткий диск или устанавливал дполнительный.

Полностью описывать это процесс не будем, а остановимся только на основных этапах. Сначала винчестер необходимо подключить и посмотреть в настройках BIOS, определилось ли новое оборудование, в разделе администрирования дисков произвести инициализацию и создать загрузочную запись, создать простой том, присвоить ему идентификатор (литеру) и выполнить форматирование с выбором файловой системы. Только после этого новый «винт» будет полностью готов к работе.

Заключение

Вот, собственно, и все, что вкратце касается основ функционирования и характеристик современных винчестеров. Принцип работы внешнего жесткого диска здесь не рассматривался принципиально, поскольку он практически ничем не отличается от того, что используется для стационарных HDD. Единственная разница состоит только в методе подключения дополнительного накопителя к компьютеру или ноутбуку. Наиболее распространенным является соединение через USB-интерфейс, который напрямую соединен с материнской платой. При этом, если хотите обеспечить максимальное быстродействие, лучше использовать стандарт USB 3.0 (порт внутри окрашен в синий цвет), естественно, при условии того, что и сам внешний HDD его поддерживает.

В остальном же, думается, многим хоть немного стало понятно, как функционирует жесткий диск любого типа. Быть может, выше было приведено слишком много тем более даже из школьного курса физики, тем не менее без этого в полной мере понять все основные принципы и методы, заложенные в технологиях производства и применения HDD, понять не получится.

Внешняя память - предназначена для долговременного хранения большого объема информации. Это энергонезависимая память, так как в ней хранится информация независимо от того подключен компьютер или нет к источнику электрического питания. В качестве внешней памяти компьютера используются различные диски, на которых хранится информация. Их и называют носителями информации.

В настоящее время используется три вида носителей информации:

- магнитные диски ,

- оптические диски,

- магнитооптические диски.

Магнитные диски - это диски, покрытые с двух сторон тонкой пленкой из магниточуствительного материала. Поверхности диска, на которые наносится информация, называются рабочими поверхностями.

Конструктивно магнитные диски выполняются двух видов:

- жесткие,

- гибкие.

Жесткие магнитные диски

Жесткие диски выполнены из твердого, но легкого металлического сплава. На жестких дисках выполнена внешняя память компьютера.

Она представлена устройством, называемым винчестер . Винчестер размещается в системном блоке компьютера и представляет собой несколько жестких магнитных дисков, закрепленных на общей оси. Вся эта конструкция помещается в корпус, называемый гермоблоком. Вопреки распространенному мнению этот корпус не является герметичным и сообщается с окружающим воздухом через специальный фильтр.

Это очень важный момент, так как при полной его герметичности любой перепад давления, например перевозка винчестера в грузовом отсеке самолета, привела бы к деформации корпуса винчестера и порче прецизионного механизма. Задача этого фильтра состоит в задерживании твердых частиц, находящихся в воздухе и недопущении их попадания вовнутрь гермоблока. Другой фильтр, располагаемый внутри корпуса, улавливает частицы, отлетающие от поверхности диска.

Информация на магнитных дисках размещается вдоль концентрических окружностей, называемых дорожками. Каждая дорожка делится на определенное количество участков, называемых секторами. Сектор хранит минимально доступное количество информации. Объем информации, размещаемой в секторе, составляет 512 байт. Один или несколько секторов, расположенных подряд, образуют кластер . Кластер - это минимальная единица информации, которая может быть записана или считана с диска.

В заголовках дорожек и секторов записаны их характеристики (номера, размер и др.), а после каждого сектора помещена контрольная сумма всех его данных. Сектора на дорожках не обязательно номеруются по порядку. Широко известен способ, когда сектора чередуются на дорожках не последовательно, а в порядке 1-4-7-2-5-8-3-6-9. Делается это для того, чтобы компьютер успевал получить все данные до подхода следующего по порядковому номеру сектора.


Доступ к информации на магнитном диске определяется четырьмя координатами:

- номер стороны диска,

- номер дорожки,

- номер сектора,

- номер байта.

Такой доступ называют доступом на физическом уровне. На диске информация хранится в виде файлов . Файл - это любая информация, имеющая имя и размещенная на носителе информации. При поиске нужной информации пользователь не указывает ее координаты, а дает ее имя. По имени файла операционная система компьютера ищет его физическое место на диске, которое указывается в специальных служебных таблицах. Следует иметь в виду, что сектора с содержанием какого - либо файла совсем не обязательно располагаются рядом в одном месте диска. При записи система активно использует свободные места. В результате отдельные части файла могут располагаться в различных частях диска. Операцией перемещения головок управляет контроллер накопителя.

В винчестере используются диски одного диаметра и располагаются друг под другом. Дорожки одного диаметра на различных дисках образуют цилиндр. Количество цилиндров, число дорожек на нем, а также количество секторов на дорожке определяет формат диска. Формат винчестера задается при его конструировании и никакому изменению не подлежит. Форматирование (разметка) винчестера всегда выполняется на заводе-изготовителе с использованием высокоточного стенда. Устройство диска и размещение дорожек на нем приведено на рис. 2.1

Магнитные

Рабочие поверхности

Рис.2.1 Схема разметки диска

Перед записью информации на вновь изготовленный магнитный диск его следует отформатировать , то есть разметить на дорожки и секторы. Это делается для того, чтобы сделать дисковую поверхность адресуемой.

При форматировании вся дисковая поверхность разделяется на две области:

- системная область,

- область данных.

В системной области находятся:

- загрузочная запись, в которой размещается системный загрузчик и блок параметров диска, определяющий формат диска;

- таблица размещения файлов (File Allocation Table - FAT), которая представляет собой карту области данных. В этой карте записывается состояние каждого кластера и устанавливается цепочка кластеров, занимаемых одним файлом. Файл занимает целое число кластеров, при этом последний кластер может быть задействован не полностью. Каждый элемент FAT содержит либо номер следующего кластера, принадлежащего одному файлу, либо специальный код:

- 0 - кластер свободен,

65521 - кластер дефектный,

65522 - кластер последний в файле.

В связи с особой важностью FAT хранится на диске в двух экземплярах:

- корневой каталог, в котором хранится информация о каждом файле (время создания, дата создания, размер) и номер кластера, указывающий физическое расположение файла или каталога в области данных. При удалении файла происходит не физическое стирание информации, а удаление только первого символа имени файла, после этого такой файл становится недоступным для стандартных команд операционной системы, и кластеры, которые файл ранее занимал, объявляются свободными. Информация на этих участках диска хранится до тех пор, пока в них не будет помещена новая информация.

В области данных размещается вся информация, из которой состоят файлы.

магнитная

магнитный диск

направление перемещения

Рис. 2.2. Схема записи и чтения информации с магнитных дисков.

На рис.2.2 приведена схема, позволяющая понять принцип записи и чтения информации на магнитные диски. При записи информации над дорожкой устанавливается магнитная головка, на расстоянии над поверхностью диска исчисляемом микронами. Головка представляет собой магнитопровод, на который намотана обмотка. В определенный момент времени в обмотку подается импульс напряжения одной полярности. Этот импульс порождает в обмотке импульс тока, а тот, в свою очередь, импульс магнитного потока.

Магнитный поток замыкается по магнитопроводу головки, проходит через воздушный зазор и через участок магнитной поверхности диска, находящегося в этот момент под магнитной головкой. Этот участок дорожки на магнитном диске намагничивается соответствующей полярностью. При подаче на головку импульса другой полярности, другой участок диска намагничивается противоположной полярностью. Участок, намагниченный одной полярностью, воспринимается как логическая единица , а участок, намагниченный противоположной полярностью, воспринимается как логический нуль . Таким методом записывается информация в закодированном виде.

При чтении информации все действия происходят в обратном порядке. Намагниченный участок диска, перемещаясь под магнитной головкой, наводит в ее обмотке импульс э.д.с. одной или другой полярности, что воспринимается как логическая единица или логический нуль.

Объем современных винчестеров исчисляется десятками Гбайт.

Гибкие магнитные диски

В качестве переносных носителей информации используются гибкие магнитные диски, называемые дискетами . Они выполняются на пластиковой основе и имеют диаметр 89 мм или 3.5 дюйма. Для предохранения рабочих поверхностей магнитного диска от случайных разрушений диск помещают в жесткий пластиковый конверт, который практически полностью закрывает рабочие поверхности диска. В нижнем углу конверта имеется переключатель защиты диска от записи. При положении переключателя в нижнем положении запись новой информации на дискету, а также удаление имеющейся информации становится невозможной.

Предельный объем хранимой информации этих дискет составляет 1.44 Мбайт. Перед нанесением информации на дискету в первый раз ее следует разметить, то есть отформатировать . Форматирование дискет осуществляется с помощью специальных программ. Операционная система Windows , устанавливаемая при продаже компьютера, содержит такую программу. Принцип разметки и нанесения информации на дискеты такой же, как и на жестких дисках, описанный выше.

Для работы с дискетами в компьютере предусмотрено устройство, называемое дисководом . Дисковод размещается в системном блоке, на передней его панели имеется щель, в которую вставляется дискета. При полностью вставленной дискете ее подвижная металлическая шторка отодвигается, открывая щель доступа магнитных головок к рабочим поверхностям для выполнения чтения или записи информации. При выполнении операций чтения или записи информации магнитные головки с помощью специального микродвигателя перемещаются в радиальном направлении от внешней границы дискеты к ее центру и наоборот. При этом сам магнитный диск вращается со скоростью порядка 300 об/мин. Для ориентации правильного расположения диска на его конверте располагается стрелка. Правильное положение вставленной в дисковод дискеты соответствует состоянию, когда эта стрелка находится на верхней поверхности, в левом углу впереди.

Недостатком магнитных дисков следует считать потерю или искажение информации при попадании этих дисков в магнитные поля , что приводит к размагничиванию диска. Такие случаи возможны, если дискета находится рядом с включенным электродвигателем или трансформатором, которые создают магнитные поля рассеивания.

В общем случае под накопителем на магнитных дисках понимают устройство, обеспечивающее запись и считывание данных с вращающихся дисков.

Магнитный диск – носитель информации в форме круглой пластины (диска), поверхность которой покрыта магнитным материалом.

Подложка магнитного диска может быть жесткой (жесткий магнитный диск), изготовленный из алюминиевого сплава, или гибкой (гибкий магнитный диск), изготовленный из полиэфира. В зависимости от вида исползуемого диска накопители на магнитных дисках подразделяются на накопители на гибких дисках (НГМД FloppyDiskDrive - FDD) и накопители на жестких магнитных дисках (НЖМД HardDiskDrivt – HDD).

Принцип записи цифровой информации на магнитный диск заключается в следующем (рис. 5.26).Дисковод вращает диск под магнитной головкой, которая может двигаться по радиусу диска равномерными шагами. При этом каждое ее положение создает на диске кольцевой путь – дорожку, количество дорожек определяется числом различных положений головки. Информация записывается на диске вдоль дорожки путем подачи на головку тока записи, который создает магнитный поток, проходящий через зазор головки и магнитный слой диска. Измнением направления сигнала в обмотке головки изменяют полярность намагничивания. Считывание информации происходит за счет индуцирования тока в обмотке головки при перемещении под головкой намагниченных участков дорожки.

Гибкий магнитный диск, состоящий из круглой полимерной подложки, покрытой с обеих сторон тонким слоем магнитного материала и помещенной в специальную пластиковую упаковку, называется дискетой. Дискеты широко использовались для хранения данных и переноса их между компьютерами, оснащенными НГМД.

Рис. 5.26. Магнитная запись цифровой информации а), НГМД б) и НЖМД в)

Конструктивно современный НГМД состоит из четырех основных элементов:

Рабочий двигатель, обеспечивающий постоянную скорость вращения дискеты (в современных дисководах – 300 об./мин);

Рабочие головки, предназначенные для записи и чтения данных. Дисковод оснащается двумя комбинированными головками (для чтения и записи каждая), которые располагаются над рабочими поверхностями дискеты – одна головка предназначена для верхней, а другая – для нижней поверхности дискеты;

Шаговые двигатели, предназначенные для движения и позиционирования головок;

Управляющая электроника, отвечающая за передачу и преобразование информации, которую считывают или записывают головки.

Дискета устанавливается в дисковод, автоматически в нем фиксируется, после чего механизм накопителя раскручивается до номинальной частоы вращения. В накопителе вращается дискета, магнитные головки остаются неподвижными. При этом дискета вращается только при обращении к ней. Чтобы не нарушалась постоянная скорость вращения привода,дисковод всегда должен работать только в горизонтальном или вертикальном положении. Процессор взаимодействует сНГМД через специальный контроллер гибких дисков.

Необходимое условие использование дискеты для записи и чтения информации – ее форматирование, т.е. разбиение (разметка)на определенные участки, по номерам которых можно определить любую запись на диске.

Для форматирования дисков операционные системы используют специальные команды: для DOS – это командаFormat. Дискета разбивается на дорожки (треки), а дорожки на сектора (рис. 5.26). сектор представляет собой минимальную физическую единицу хранения информации на диске. Его размер для DOS, как правило, равен 512 байт. Дорожки нумеруются начиная от края к центру диска, при этом каждая дорожка имеет одно и то же количествосекторов. Таким образом, на дорожках, расположенных ближе к центру дискаинформация записывается более плотно.

Наибольшее распространение получили 3,5 – дюймовые (89 мм) дискеты высокой плотности DS/HD (double-side/high-density – две стороны, высокая плотность). Для них число дорожек на одной стороне равно 80, количество секторов на дорожках – 18, соответственно, емкость диска 80х18х2х512=1474560 байт или 1474560/1048576=1,4 Мбайт.

В накопителе на жестких магнитных дисках носители информации представляют собой круглые жесткие пластины (называемые также платтерами), обе поверхности которых покрыты слоем магнитного материала. Первая подобная система памяти была создана фирмой IBM в 1956 г. и называлась RAMAS 305 (Random Access Methodof Accounting and Control). Данное запоминающее устройство состояло из 50 алюминиевых дисков (покрытых магнитным слоем) диаметром около 60 см и толщиной2,5 см, которые были насажены на ось мощного электромотора. На поверхности каждого диска располагалось 100 концентрических дорожек, на каждой из которых можно было запомнить 500 алфавитно-цифровых символов, закодированных в исполнявшемся тогда семибитном коде. RAMAC 305 состоял из двух огромных блоков, занимающих площадь 3х3,5 м, и мог хранить 5 млн символов.

Современные НЖМД строятся по винчестерской технологии и называются винчестерами. Данная технология впервые была применена при создании накопителей на жестких дисках (модели IBM3340) на предприятии IBM в английском городе Винчестер в 1973 г. В винчестерах головки считывания-записи вместе с их несущей конструкцией и дисками заключены в герметический закрытый корпус. Головка, используемая в винчестере, имеет небольшие размеры и массу и размещается на держателе специальной аэродинамической формы. При вращении диска над ним образуется тонкий воздушный слой, обеспечивающий «воздушную подушку» для зависания головки над поверхностью диска на расстоянии единиц микрометров. При этом масса головки и прижимающее усилие к поверхности диска настолько малы, что, даже если в процессе работы устойства головка опускается на зону данных, вероятностьь их повреждения очень низкая. Существует также версия происхождения названия «винчестер», основанная на том, что первые массовые модели НЖМД содержали два магнитных диска по 30 Мбайт каждый и маркировались цифрами «30/30», подобно калибру старинного охотничьего ружья винчестер.

Винчестер (рис. 5.27) состоит из нескольких одинаковых дисков, расположенных друг над другом. Для каждого диска в винчестере имеется пара рабочих головок, которые приводятся в движение и позиционируются шаговым двигателем. Все головки расположены «гребнем». Позиционирование одной головки обязательно вызывает аналогичное перемещение и всех остальных, поэтому, когда речь идет о разбиении винчестера, обычно говорят о цилиндрах (cylinder), а не о дорожках. Цилиндр – это совокупность всех совпадающих друг с другом дорожек по вертикали, по всем рабочим поверхностям.

Рис. 5.27. Винчестер

На 2006 год оптимальное соотношение цены и ёмкости обеспечивают винчестеры примерно на 300 ГБ, а максимальная доступная ёмкость - около 750ГБ, в настоящее время несколько Терабайт.

Магнитные диски состоят из основы, сделанной обычно из алюминия, реже из стекла или керамики и магнитного покрытия, в виде тонкой плёнки магнитотвёрдого материала (ферромагнетика), который служит собственно носителем информации. Магнитные диски собраны в пакет, находящийся на оси шпиндельного электродвигателя со стабильной скоростью вращения. Стабилизация вращения производится контроллером по сервометкам. (Ранее использовался отдельный датчик положения дисков). Обычно дисков в пакете не более трёх, запись может производиться как на одну, так и на обе стороны каждого диска, таким образом диск обычно содержит от 1 до 6 головок.

Блок магнитных головок перемещается вдоль поверхности диска от края к центру посредством сервопривода. На первых винчестерах сервопривод производился шаговым двигателем. Впоследствии стала применяться электромагнитная катушка (англ. сoil), подобная катушке магнито-электрического стрелочного прибора. Для управления головками в винчестере хранятся так называемые адаптивы - индивидуальные для каждого винчестера данные о физических характеристиках сервопривода головок - необходимые амплитуды и времена сигналов управления электромагнитом. Адаптивы обеспечивают быстрое и почти безошибочное позиционирование головки и уверенное удержание её на треке.

Сама головка - миниатюрная электромагнитная система, обеспечивающая локальное намагничивание поверхности диска и локальное измерение его намагниченности. Первые электромагнитные головки считывали информацию через наведённую ЭДС на катушке. Позднее появились магниторезистивные головки, использующие для считывания специальный магниточувствительный материал.

В выключенном положении головки лежат на дисках в специальной зоне парковки. Во избежание повреждений при транспортировке, головки в этом положении заблокированы, и не могут перемещаться до тех пор, пока диски не крутятся. При работе головки парят над поверхностью вращающихся дисков на расстоянии порядка от десятых долей до единиц микрометров. Таким образом, поверхность дисков не изнашивается (как это происходит у дискет).

Внутри гермоблока вместе на блоке магнитных головок или рядом с ним расположен коммутатор, обеспечивающий переключение активных головок и предварительное усиление сигнала магнитного датчика. Если у жёсткого диска одна рабочая поверхность, то коммутатор выполняет только функции усилителя.

Немаловажное значение имеют скоростные характеристики жёстких дисков:

  • Скорость вращения шпинделя (англ. rotational speed , spindle speed ) обычно измеряется в оборотах в минуту (об/мин, rpm). Она не даёт прямой информации о реальной скорости обмена, но позволяет различать более скоростные от менее. Стандартные скорости вращения: 4800, 5600, 7200, 9600, 10 000, 15 000 об/мин. Медленные обычно используются на ноутбуках и других мобильных устройствах, самые скоростные - в серверах.
  • Время доступа - количество времени, необходимое винчестеру от момента приёма команды до начала выдачи данных по интерфейсу. Обычно указывается среднее и максимальное время доступа.
  • Время позиционирования головок (англ. seek time ) - время за которое головки перемещаются и устанавливаются на трек с другого трека. Различают время позиционирования на соседний трек (track-to-track), среднее (average), максимальное (maximum).
  • Скорость передачи данных или пропускная способность - определяет производительность диска при передаче последовательно больших объёмов данных. Эта величина показывает установившуюся скорость передачи, когда головки диска уже на нужном треке и секторе.
  • Внутренняя скорость передачи данных - скорость передачи данных между контроллером и магнитными головками.
  • Внешняя скорость передачи данных - скорость передачи данных по внешнему интерфейсу.

Общая емкость пакета дисков определяется произведением количества цилиндров, количества магнитных головок, количества секторов на дорожке и размера сектора в байтах (как правило, 512 байт). Например, винчестер емкостью 1,2 Гбайт содержит 2631 цилиндра с 16 магнитными дорожками на каждом цилиндре и с 63 секторами на дорожке.

Кроме объема, основными характеристиками производительности накопителя являются:

- время доступа – интервал между моментом, когда процессор запрашивает с диска данные, и моментом их выдачи. Время доступа зависит от расположения головок и пластин под ними, поэтому для него даются средние значения, составляющие в настоящее время единицы миллисекунд;

- частота вращения – частота, с которой пластины диска вращаются относительно магнитных головок (измеряется в об./мин).

Информация на магнитных дисках обычно хранится в виде файлов.

Файл (англ.file – папка) – именованная совокупность любых данных, размещенная на внешнем запоминающем устройстве и хранимая, пересылаемая и обрабатываемая как единое целое. Файл может содержать программу, числовые данные, текст, закодированное изображение идр.

Данные на магнитном диске, как указано выше, хранятся на дорожках, разделенных на секторы. При этом операционные системы для сохранения файла выделяют дисковое пространство кластерами, представляющими собой один или несколько смежных секторов.

Минимальная единица размещения информации на диске, состоящая из одного или несколько секторов дорожки, называется кластером .

Если для записи файла требуется несколько кластеров и при этом требуемого количества смежных кластеров (расположенных один за другим) на диске кластеры, и файл будет фрагментированным. Фрагментация снижает скорость считывания файлов, так как в этом случае увеличивается количество перемещений головкой при поиске и считывании требуемых кластеров. Потенциальную возможность фрагментации можно снизить, увеличив размер кластера, однако при этом повышается вероятность нерациональных потерь дисковой памяти, обусловленных тем, что кластеры будут содержать неиспользованное дисковое пространство.

За организацию хранения и доступа к информации на магнитном носителе, как и на любом другом носителе информации, отвечает файловая система, являющаяся важной составной частью любой операционной системы. Понятие «файловая система» включает совокупность всех файлов на диске, наборы служебных структур данных, используемых для управления файлами (каталоги файлов, дескрипторы файлов, таблицы распределения свободного и занятого пространства на диске и т.п.), а также комплекс системных программных средств, предназначенных для реализации операций с файлами: поиска, чтения записи, создания, уничтожения, установки атрибутов и уровней доступа и т.п.

Для того чтобы файловая система могла использовать жесткий диск или дискету, их необходимо отформатировать. Форматирование жесткого диска включает три этапа: низкоуровневое форматирование диска; создание главных (основных) разделов или логических дисков на расширенном разделе; логическое форматирование главных разделов или логических дисков. Процедура форматирования дискет включает два совмещенных этапа – низкоуровневое и логическое форматирование – и осуществляется за один шаг.

Низкоуровневое форматирование диска выполняется, как правило, на заводе изготовителе. При этом определяются размер сектора, количество секторов на дорожку, на диск также записывается информация о коррекции ошибок и идентификации секторов (для каждого сектора).

Жесткий диск IBMсовместимых компьютеров может содержать, как правило, до четырех основных разделов, каждый из которых может быть использован конкретной файловой системой. Кроме того на диске может быть создан один так называемы расширенный (extended) раздел, который в свою очередь может разбиваться на несколько логических дисков, также используемых конкретной файловой системой. Таким образом, на диске может быть до трех главных разделов и один расширенный раздел, содержащий один или несколько логическихдисков. При этом в качестве системного раздела (раздела, содержащего зависимые от аппаратной платформы файлы, необходимые для загрузки и инициализации операционной системы) можно использовать только главный раздел. Главные разделы, а также каждый из логических дисков обозначаются однойиз букв английского алфавита и двоеточием. Буквой С: обозначается первый главный раздел. Следующий раздел получает букву D:, потом Е: и т.д. (Буквой А: принято обозначать дисковод для гибких дисков, буква В: зарезервирована на тот случай, если в компьютере не один, а два дисковода гибких дисков). При создании первого раздела на диске (основного или расширенного) в первом физическом секторе жесткого диска создается главная загрузочная запись (masterbootrecord – MBR) и таблица разделов (partitiontable), содержащая информацию о каждом из имеющихся на диске разделов. Главная загрузочная запись используется программой начальной загрузки BIOS (RomBootstraproutine), которая при загрузке с жесткого диска считывает и загружает в память первый физический сектор на активном разделе диска, называемый загрузочным сектором (BootSector)

В процессе логического форматирования главных разделов или логических дисков на диск записывается информация, необходимая для работы конкретной файловой системы, в том числе и загрузочный сектор раздела(PartitionBootSector).

Современные операционные системы могут работать одновременно с несколькими файловыми системами. Рассмотрим в качестве примера основные особенности наиболее распространенных файловых систем, используемых операционными системами семейства Windows (Windows 98, NT, XP и т.д.)

На рис 5.28. представлена схема раздела файловой системы FAT. (Свое название FAT получила от одноименной таблицы размещения файлов – FileAllocationTable).

Рис. 5.28. Структура раздела FAT

Корневой каталог содержит список имен файлов с указанием даты, времени их создания и размеров. В качестве дополнительной информации каталог включает атрибуты файла: только для чтения, системный, скрытый или архивный. В каталоге содержится также начальная позиция файла, т.е. номер первого кластера на диске, содержащего данные требуемого файла.

Таблица размещения файлов (FAT) – это список, содержащий информацию о расположении данных файла на диске. Для каждого кластера отводится один элемент списка, содержащий, помимо информации о расположении данных файла, информацию о состоянии кластера: занят, свободен, испорчен.

Когда системе нужен какой-то файл, она находит его стартовый кластер по имени файла в каталоге их рамещения и затем просматривает FAT в поисках элемента списка, соответствующего начальному кластеру. Если весь файл помещен в одном кластере, то элемент FAT содержит индикатор конца файла. Если файл занимает несколько кластеров, элемент FAT указывает номер следующего кластера, в котором должно находиться продолжение файла, либо признак его окончания. В сущности, FAT содержит цепочки ссылок, следуя по которым можно найти размещение каждого файла на диске. Для предотвращения возможной потери информации таблица размещения файлов дублируется на случай повреждения первой FAT.

Размер таблицы FAT при фиксированом объеме диска зависит от размера кластера, чем меньше размер кластера, тем больше их количество и, следовательно, больше размер таблицы FAT. Таким образом, использование кластеров, размер которых больше одного сектора, помимо снижения фрагментации, уменьшает объем дискового пространства, необходимого для хранения FAT.

Первоначально для записи в таблице размещения файлов адреса любого файла FAT использовала 12 бит и поддерживала разделы объемом до 16 Мбайт. 12 разрядная FAT и сейчас используется для форматирования дисков, размер которых не превышает 16 Мбайт. Для поддержки дисков размером больше 32 Мбайт разрядность FAT была повышена до 16 бит – FAT 16. С помощью 16 битов можно выразить 2 16 (65536) разных значений. Это значит, что файлам на жестком диске не может быть предоставлено более чем 65 536 кластеров.

Современные жесткие диски имеют очень большие объемы, и при таком количестве адресов размеры кластера будут значительными. Так, если размер диска составляет 2 Гбайт (максимальный размер, поддерживаемый FAT 16), то при использовании FAT 16 на каждый кластер будет приходиться 32 кбайт (2 Гбайт разделить на 65536 получим 32 кбайт). При этом для записи на диск файла размером 35 кбайт будет отведено два кластера – 64 кбайт, т.е. 29 кбайт памяти диска будут просто потеряны. Связь между размером жесткого диска и размером кластера для FAT 16 представлена в таблице 5.2.

Таким образом, чем больше жесткий диск, тем больше места на нем тратится впустую из-за несовершества системы адресации файлов. Один из способов борьбы с нерациональными потерями это разбиение жесткого диска на несколько разделов, или логических дисков, каждый из которых имеетсобственную таблицу размещения файлов. В итоге потери, обусловленные большими размерами кластеров, становятся меньше.

Таблица 5.2

Связь между размером жесткого диска и размером кластера для FAT 16

Объем диска Количество секторов на кластер Размер кластера
Менее 32 Мбайт 512 байт
32 Мбайт…64 Мбайт 1 кбайт
64 Мбайт…128 Мбайт 2 кбайт
128 Мбайт…256 Мбайт 4 кбайт
256 Мбайт…511 Мбайт 8 кбайт
512 Мбайт…1023 Мбайт 16 кбайт
1024 Мбайт…2047 Мбайт 32 кбайт

Начиная с файловой системы Windows 95 OSR2 при записи адреса файла на жестком диске используется не два, а четыре байта, или 32 бита (FAT32). С помощью 32 бит можно выразить 2 32 (4 294 967 296) разных значений, т.е. файлам на жестком диске может быть предоставлено 2 32 кластеров. В этом случае размеры отдельных кластеров могут быть значительно меньше, и нерациональные потери дисковой памяти уменьшаются (табл. 5.3.).

Таблица 5.3

Размеры кластеров для FAT 32

Файловая система NTFS (New Technology File System), специально разработана для Windows NT, как и FAT, использует кластеры в качестве фундаментальной единицы дискового пространства. При этом для записи адреса файла может использоваться 8 байт (64 бита), и соответственно, файлам на жестком диске может быть предоставлено 2 64 кластеров. Однако на практике используются таблицы разделов размерами до 2 32 секторов, т.е. работая с файловой системой NTFS, можно создать файл, максимальный размер которого составляет 2 32 кластеров (как и при использовании FAT 32).

Структура раздела файловой системы NTFS представлена на рис. 5.29.

Рис. 5.29. Структура разделов NTFS

Форматирование раздела для использования файловой системы NTFS приводит к созданию нескольких системных файлов и главной таблицы файлов – файла MFT (MasterFileTable), содержащего информацию о всех файлах и папках, имеющихся в разделе NTFS. Первые 16 записей MFT зарезервированы для служебных файлов, называемых также метафайлами, причем первая запись таблицы описывает непосредственно саму главную файловую таблицу – сам MFT, также являющийся метафайлом. За ней следует запись зеркальной копии MFT, гарантирующая доступ к зеркальному файлу MFT в случае, если первая запись MFT будет разрушена. Местоположение сегментов данных MFT и зеркального файла MFT хранится в загрузочном секторе раздела, который также дублируется. С третьей по шестнадцатую записи MFT содержат описания других метафайлов, каждый из которых отвечаетза какой-либо аспект работы системы. Семнадцатая и последующие записи главной файловой таблицы используются собственно файлами и каталогами на томе.

Отличительной особенностью файловой системы NTFS является значительное расширение возможностей по управлению доступом к отдельным файлам и каталогам, большое число атрибутов файлов (в том числе атрибутов защищенности), позволяющих обеспечить защиту данных от несанкционированного доступа. При использовании FAT возможность установки прав доступа к отдельным каталогам и файлам отсутствует. Единственной мерой защиты служат права доступа к разделяемым ресурсам, которые устанавливаются на весь разделяемый ресурс, действуют по отношению ко всем имеющимся на нем файлам и папкам и имеют силу только при доступе через сеть.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows