SSD обычный и серверный

SSD обычный и серверный

Жестким дискам HDD 10-15K rpm осталось недолго. Их механическая природа не оставляет им шансов противостоять возможностям SSD в корпоративных приложениях.

Твердотельные накопители SSD на флеш-памяти NAND оккупировали вершины пирамид хранения корпоративных данных и продолжают отвоевывать у HDD подступы к ним. Понятно, что скорой тотальной замены HDD на SSD не будет:

  • многие сегменты хранения безразличны к основному козырю SSD - производительности, но чувствительны к объему/цене;
  • у HDD 7200 rpm большая емкость и низкая удельная стоимость $/GB;
  • серверный рынок консервативен.

Пока что место в корпоративном хранении есть для разных носителей, но «процесс пошел». На вершинах пирамид идет борьба за производительность - туда карабкаются NVMe SSD, приближаясь к DRAM по уровню задержек (см и ). Совсем скоро энергонезависимое (постоянное) хранение сблизится с хранением в оперативной памяти - как . Но эти продукты никак нельзя назвать тиражными.

SATA SSD - вот предмет общего интереса. Именно они массово заезжают в новостройки и планомерно отвоевывают жилплощадь у соседей снизу - SAS 10-15K rpm HDD. Оценим их позиции в «квартирном вопросе», в трехмерном пространстве параметров: “Производительность - Надежность - Цена“.

Тут только денежная шкала проста для понимания. При обсуждении производительности приходится учитывать целевые приложения, типы операций I/O, характер обращений к носителям, размер блока данных, особенности чтения/записи, итд. Да и сравнивать надо не носители, а программно-аппаратные реализации I/O. С надежностью хранения (доступностью данных) еще сложнее. Помимо учета формальных параметров (как MTBF и Endurance), важно, как в заданном физическом окружении обеспечивается непрерывность исполнения приложений, как реализованы процедуры восстановления данных, с минимальными риском их потери и уроном для общей производительности I/O. Целое дело.

Проектирование подсистем хранения данных - задача интересная, но штучная. Начнем с простого: лобового сравнения SATA SSD и SAS 10-15K rpm HDD, с анализом показателей, разбором технологий, существующих рисков и мнимых страхов.

Слабости HDD

Что и говорить, SSD быстрее. Задержки подвода головок чтения/записи к данным на вращающихся магнитных поверхностях HDD (seek / latency) непреодолимы. В приложениях с обращениями произвольного доступа головки бабочкой порхают над поверхностью, умножая ожидание отклика (и раздражение пользователей). Для достижения пристойной производительности работы с данными на HDD прибегают к распараллеливанию обращений в многодисковых группах, кэшируют запросы I/O средствами контроллеров и ОС - и все равно помогает слабо.

HDD хороши для записи больших файлов последовательными блоками. При минимуме перемещения головок между дорожками снижаются задержки обращения к данным. Но как только диск заполняется данными, большие файлы пишутся кусками - где есть свободные сектора. Как ни улучшай алгоритмы чтения/записи, фрагментированные данные остаются бичом HDD.

В SSD не имеет значения, в каких именно ячейках размещаются данные, для контроллера диска они все «рядом». Там нет физических дорожек и секторов, NAND - память прямого доступа. Есть задержки, связанные с особенностями перезаписи ячеек, но они несравнимо меньше, чем в HDD.

Надо сказать, виртуализация вычислительных ресурсов добавила остроты проблеме скоростного доступа к данным. Эффект I/O-блендера, или «рандомизация» нагрузки ввода-вывода - прямое следствие абстрагирования среды формирования запросов от носителей и передачи гипервизору обслуживания дисковых операций. С какими бы типами запросов не работали приложения в виртуальных машинах, очереди к физическим дискам заполнены крошевом из фрагментов данных, разбросанным по дискам.

Роли быстрых дисков и их сравнение

Где высоки требования к производительности, а объем данных относительно невелик, там SSD и вытесняют cкоростные SAS HDD: в серверах баз данных, под размещение файлов подкачки и размещение временных таблиц, в качестве кэш-пула многоуровневых систем хранения, управляемых хоть ОС, хоть RAID-контроллерами.

Такие задачи, как правило, не требуют больших объемов хранения - достаточно нескольких сотен GB. Сравним типичных представителей SAS 10-15K rpm HDD и SSD в диапазоне емкостей до 600GB.

За HDD ответит Seagate. Уже не выпускаются диски SAS 10-15K rpm в форм-факторе LFF (3.5”), но остались модели SFF (2.5”) SAS 10-15K rpm. Для 15К rpm максимальная емкость 600GB, выше уже не будет. На двигателях 10K rpm выпускаются диски до 1.8TB. Ограничимся дисками SAS HDD 300-600GB:

  • SAS 10K rpm Seagate Savvio 10K,6 300GB {ST300MM0006} и 600GB {ST600MM0006}
  • SAS 15K rpm Seagate Savvio 15K.3 300GB {ST300MP0005} и 600GB {ST600MP0005}.

За SSD постоит Intel - активный игрок на всех рынках, тем более на серверном.

  • SATA SSD Intel DC S3510 series: 240GB и 480GB
  • SATA SSD Intel DC S3610 series: 200GB и 400GB
  • SATA SSD Intel DC S3710 series: 200GB и 400GB

Цены накопителей взяты из агрегатора предложений Hotline.ua, они отражают состояние рынка в сбытовой сети Seagate и Intel. Не секрет, что те же продукты используют производители серверов А-бренд - только продают их в разы дороже.
Для начала сведем все наши диски в координатной плоскости емкости/цены. В скобках указана цена $/GB.

HDD кажутся выгодным приобретением, пока мы пользуемся однобокой метрикой - удельной стоимостью хранения ($/GB). Продукты-заменители из разных товарных категорий так не сравнивают. Разберем противостояние SSD / SAS HDD по всем параметрам - подобно тому как это сделано в статье Debunking SSD Myths .

Производительность

Сравним показатели производительности SSD и SAS HDD, в IOPS и по скорости потоковых операций в MBps. Для полноты картины приведем данные и по PCIe NVMe SSD.

Разница в абсолютных показателях IOPS огромна.

В целевых приложениях SSD/SAS HDD наибольший интерес представляет способность накопителя быстро обслуживать обращения записи произвольного доступа. Пересчитаем, во что обходится обслуживание предельной нагрузки (цена, которую надо “заплатить” за каждый Write IOPS), силами SAS HDD и с помощью SSD.

Как только метрика сравнения меняется с “емкостной” на “скоростную”, SAS HDD безнадежно проигрывают SSD.

По задержкам доступа к данным (latency) жесткие диски и близко не приближаются к SSD - механику не обманешь.

Получается, все метрики, которые привязаны тем или иным образом к целевому назначению SSD / SAS HDD, показывают огромный отрыв SSD.

Надежность

В современных системах хранения данных риски потерь данных минимизированы, выход из строя отдельного диска, как правило, чреват только временной деградацией производительности при реконструкции массива после замены диска на новый. Тем не менее, с угрозами данным надо считаться.

Официальной статистики отказов HDD и SSD производители не публикуют. Как это обычно бывает с молодыми технологиями, хранение в памяти NAND окружено мифами и опасениями. Поводы для них создают, как правило, неосведомленность и нецелевое использование SSD.

HDD и SSD, имеющие разную природу записи, и сбоят по-разному. Отказы механики или электроники HDD редки, обычно к потере данных приводит эрозия магнитной поверхности. Это постепенный процесс, на который пользователь может своевременно реагировать. Диски массива HDD не уходят из жизни групповой смертью, только поодиночке. Для пользователей, привыкших к неспешности проявления ошибок HDD, отказы SSD кажутся фатальными, а практически синхронный износ ячеек дисков массива - прямой угрозой неотвратимой потери данных.

Особенности и риски SSD

Отсутствие механических частей, устойчивость к тряске и перегрузкам, куда более широкий рабочий диапазон температур, малое энергопотребление - все это повышает шансы выживания SSD в агрессивном окружении, в сравнении с HDD.

Но состоят они все равно из физических компонентов, в них есть статическая и динамическая память, транзисторы, конденсаторы, они управляются прошивками, и на них тоже влияют отказы питания. Основная проблема SSD - износ ячеек памяти NAND. Жизненный срок SSD отмеряется не временем, а количеством записей на диск. Процесс записи в ячейки состоит из нескольких действий: read-modify-erase-write. На пределы возможного влияет разрядность ячеек (SLC-MLC-TLC), размер служебной области (резерв ячеек), контроллер SSD с его алгоритмами усиления записи (количеством операций переноса данных между ячейками на одну команду записи ОС), токами записи, процедурами уборки мусора (прополкой неиспользуемых блоков данных для освобождения места под новые записи).

При выборе SSD под серверы с большой нагрузкой перезаписи и высокими требованиями к сохранности данных надо внимательно читать спецификации и анализировать паспортные показатели. Как минимум, обращать внимание на позиционирование продуктов самими производителями. Например, в массовые SSD не ставят конденсаторную защиту динамической памяти контроллера диска от обесточивания - прямой угрозы целостности данных. Не пишут в спецификациях размер служебной области - резервного запаса ячеек (overprovisioning) - хотя он впрямую влияет на скоростные показатели и срок жизни. Со временем производительность любых SSD деградирует - из-за износа ячеек контроллеру приходится проделывать все большую работу по освобождению места под запись. В массовых SSD резервный запас ячеек (overprovisioning) минимален, в серверных он может превышать 30%.

На прогноз продолжительности жизни SSD прямо указывает паспортный параметр Endurance - объем данных, которые SSD может гарантированно перезаписать на протяжении всего жизненного цикла (например, в петабайтах, PB) или количество допустимых перезаписей объема диска в течение суток (drive writes per day, DWPD). К примеру, если для диска емкостью 100GB заявлен Endurance 10DWPD, то на него можно записать 1TB данных, и так каждый день, в течении пяти лет. Такую нагрузку еще поискать надо. Подобные диски стоят в 2-3 раза дороже массовых SSD.

Все в руках пользователя

От впадания в крайности: покупки дисков-однодневок или дорогого страхового полиса за спокойствие, спасает здравая оценка нагрузок приложений. К примеру, для интеловских SSD семейств S3510 / S3610 / S3710 объем перезаписи не должен превышать 0.3 / 3 / 10 DWPD cоответственно. Диски различных семейств и вендоров отличаются, в первую очередь, производительностью, но, с позиций надежности, параметр Endurance - основной индикатор для застройщиков серверов.

Состояние SSD мониторится SMART-утилитами - как в примере .

Любому SSD можно продлить ресурс, если форматировать его не на полную емкость. «Ручной» overprovisioning играет ту же роль, что и «фабричный» от производителя - снижает урон от износа ячеек. Но лучше сразу ставить отвечающие приложениям SSD с гармоничным сочетанием параметров.

Побочные эффекты

SATA SSD потребляют меньшую мощность, чем SAS HDD: примерно 3-4 ватта против 7-8 ватт под нагрузкой и 0.6 ватта против 3-5 ватт на холостом ходу. Но дело в другом: для достижения равной с HDD производительности нужно намного меньшее количество SSD. Суммарная потребляемая мощность all-flash сервера намного ниже, чем у сервера, нашпигованного HDD. Сравним энергозатраты на достижение сопоставимой производительности в IOPS, с помощью SAS HDD и SATA SSD.

Чем меньше накопителей надо для достижения требуемой производительности - тем проще конструктив серверов. Нужно меньше каналов RAID-контроллеров и HBA-адаптеров, меньше места для размещения дисков, проще устройство дисковых корзин и систем охлаждения.

Для дата-центров, оперирующих сотнями HDD, замена большей части из них на десяток-другой SSD экономит место, радикально снижает капитальные затраты на оборудование и операционные расходы на питание/охлаждение. И даже на уровне проектирования одного сервера, более простой его крой оптимизирует расходы владельца по достижению поставленных целей. Когда цели следуют из запросов приложений, разговоры о «дороговизне» SSD теряют под собой почву.

В последние месяцы и даже, пожалуй, годы весь прогресс на рынке потребительских твердотельных накопителей крутится вокруг таких характеристик, как производительность и цена за гигабайт. Новые модели по сравнению со своими предшественниками постоянно улучшают соотношение между этими параметрами, и именно это делает SSD всё более желанной и распространённой технологией. Тем не менее у твердотельных накопителей существует и ещё одна важная характеристика - надёжность. Особенности NAND-памяти таковы, что она допускает лишь конечное число циклов перепрограммирования, и потому жизненный цикл любого современного SSD рано или поздно заканчивается. Однако это мало кого настораживает, так как ресурс, заложенный в любые современные потребительские накопители, вполне достаточен для того, чтобы при их обычной работе в составе персонального компьютера проблемы не возникали бы как минимум в течение нескольких лет. Поэтому фактор заложенного запаса надёжности для потребительских моделей флеш-накопителей отошёл на второй план и не принимается большинством покупателей так же близко к сердцу, как быстродействие и стоимость.

Но на самом деле так думают далеко не все. И дело тут даже не в том, что при опредёленных условиях ресурс SSD расходуется значительно быстрее. Даже если не брать в рассмотрение нужды серверного рынка, нельзя не считаться с существованием достаточно заметной группы обладателей обычных персональных компьютеров, которые относятся к сохранности собственных данных слишком ревностно, чтобы беззаветно доверять обычным моделям SSD. Ну действительно, разве может внушать какое-то доверие твердотельный накопитель, построенный на базе 16- или 19-нм MLC или TLC NAND с выносливостью на уровне тысячи-другой циклов перезаписи? И совершенно закономерно, что пользователи, рассуждающие таким образом, отдают предпочтение более надёжным моделям SSD, а производительность и цена для них отходят на второй план. В частности, раньше они предпочитали флеш-накопители на базе SLC-памяти, которая имеет на порядки более высокую износостойкость, но сегодня подобных решений на рынке уже не осталось. Какие же есть актуальные альтернативы?

Казалось бы, неплохой вариант для параноиков недавно придумала компания Samsung, которая начала поставки накопителей, основывающихся на трёхмерной V-NAND — эта память производится по сравнительно крупному техпроцессу с 40-нм нормами, что позволяло надеяться на её хорошую износостойкость. Однако ожидания оказались сильно завышенными. В конечном итоге для таких SSD производитель стал гарантировать выносливость лишь на уровне полутора сотен терабайт записей, а практические эксперименты показали, что даже флагманский V-NAND-накопитель Samsung 850 Pro , для которого изначально подразумевался почти бесконечный ресурс, на деле выдерживает всего лишь от одного до нескольких петабайтов перезаписи данных, что по сути мало отличается от того, какой объём информации можно записать на другие SSD потребительского класса. И это, к сожалению, означает, что среди привычных твердотельных накопителей искать высоконадёжные модели бессмысленно.

Тем не менее задача поиска подобных SSD совсем не тупиковая. Просто фокус следует сместить с обычных потребительских решений на специализированные серверные. Дело в том, что серверные SSD изначально предназначены для работы в средах, которым свойственны высокие нагрузки, и поэтому в них зачастую устанавливается не ординарная MLC NAND, а специализированная eMLC-память с увеличенной стойкостью к износу. Ресурс такой памяти в несколько раз выше, и основанные на ней модели накопителей обещают как минимум на порядок более высокую выносливость, чем привычные потребительские SSD. Дополнительным бонусом серверных SSD выступает наличие в них комплекса технологий, повышающих отказоустойчивость, например при сбоях питания. А если к этому прибавить тот факт, что многие серверные накопители имеют стандартный SATA-интерфейс и выпускаются в привычном 2,5-дюймовом форм-факторе, то получается, что они могут прекрасно подойти и тем пользователям персональных компьютеров, которые предъявляют к ресурсу SSD и надёжности хранения на них данных самые высокие требования.

Конечно, при этом нельзя не учитывать, что продукты на базе eMLC NAND обычно существенно дороже потребительских моделей. Однако не так давно компания Intel предложила базирующийся на такой памяти серверный накопитель Intel DC S3610, который обладает достаточно демократичной стоимостью на уровне чуть меньше $1 за гигабайт. Конечно, это всё равно где-то вдвое больше, чем обычно просят за SSD потребительского уровня, тем не менее для многих это может оказаться вполне приемлемой платой за принципиально более высокий уровень надёжности. Учитывая сказанное, мы решили протестировать Intel DC S3610 по нашей «десктопной» методике и установить, насколько этот SSD, на самом деле ориентированный на использование в дата-центрах, может подойти для обычных персональных систем.

⇡ Технические характеристики

До недавних пор в ассортименте у Intel имелся один-единственный SATA-накопитель, основанный на износостойкой eMLC-памяти, - ориентированный на использование в дата-центрах Intel DC S3700. Однако с внедрением для производства такой памяти более современного техпроцесса с 20-нм нормами Intel изыскала возможности для расширения ассортимента серверных SSD с увеличенным ресурсом, и вместо этой модели появилось две новых - DC S3710 и DC S3610. Первая модель является прямой наследницей DC S3700, вторая же претендует на то, чтобы занять промежуточное положение между дорогим DC S3710 и бюджетным (по меркам рынка серверных SSD) DC S3510, в основе которого лежит обычная MLC NAND, выпускаемая по 16-нм технологии. Тем не менее в DC S3610, как и в старшем собрате, используется производимая самой Intel полноценная eMLC-память, в результате чего эта модель получила очень привлекательное сочетание выносливости и цены.

Впрочем, не стоит излишне возвеличивать достоинства eMLC и считать её решением всех проблем с ограниченностью ресурса SSD. Современные кристаллы eMLC могут переносить порядка 10-20 тысяч перезаписей, что, конечно, значительно больше возможностей обычной MLC (и уж тем более TLC), но до ресурса SLC-ячеек серьёзно не дотягивает. Объясняется это просто - eMLC представляет собой разновидность MLC-памяти, а её повышенная надёжность обеспечивается более тщательным подходом к производству и применением специальных методов программирования.

Если говорить конкретно о той eMLC-памяти, которая устанавливается в интеловские SSD и у которой есть собственное маркетинговое название HET (High Endurance Technology) MLC NAND, то следует подчеркнуть, что она имеет точно такую же архитектуру и производится по тому же самому технологическому процессу, что и обычная MLC NAND. Высокий же ресурс достигается банальным отбором наиболее удачных кристаллов. Причём тест на качество устройства NAND в процессе производства проходят дважды - как при сходе с конвейера цельных полупроводниковых пластин, так и после их резки и упаковки в микросхемы. Однако износостойкость HET MLC-памяти обеспечивается не только этим. Интеловские контроллеры при программировании таких чипов используют и несколько видоизменённый алгоритм, основная идея которого заключается в более точной дифференциации уровней заряда на плавающих затворах ячеек.

Такое упреждающее исключение граничных состояний, которые при чтении могут неверно трактоваться контроллером, вносит немалый вклад в увеличение отказоустойчивости HET MLC. Однако оно имеет и обратную сторону - время программирования ячеек увеличивается. К сожалению, запись в HET MLC требует примерно вдвое больше времени, чем у обычной MLC-памяти, поэтому высоконадёжные накопители в общем случае не могут иметь столь же высокую производительность, как и их потребительские собратья. В результате заявляемые для Intel DC S3610 спецификации в части быстродействия производят не самое радужное впечатление.

Производитель Intel
Серия DC S3610
Модельный номер SSDSC2BX200G4 SSDSC2BX400G4 SSDSC2BX480G4 SSDSC2BX800G4 SSDSC2BX012T4 SSDSC2BX016T4
Форм-фактор 2,5 дюйма
Интерфейс SATA 6 Гбит/с
Ёмкость 200 Гбайт 400 Гбайт 480 Гбайт 800 Гбайт 1,2 Тбайт 1,6 Тбайт
Конфигурация
Микросхемы памяти: тип, интерфейс, техпроцесс, производитель Intel 128-Гбит 20-нм High Endurance Technology (HET) MLC
Микросхемы памяти: число / количество NAND-устройств в чипе Н/д Н/д 14/2 + 2/4 Н/д Н/д Н/д
Контроллер Intel PC29AS21CB0
Буфер: тип, объем Н/д Н/д DDR3-1600, 1024 Мбайт Н/д Н/д Н/д
Производительность
Макс. устойчивая скорость последовательного чтения 550 Мбайт/с 550 Мбайт/с 550 Мбайт/с 550 Мбайт/с 550 Мбайт/с 550 Мбайт/с
Макс. устойчивая скорость последовательной записи 230 Мбайт/с 400 Мбайт/с 450 Мбайт/с 520 Мбайт/с 500 Мбайт/с 500 Мбайт/с
Макс. скорость произвольного чтения (блоки по 4 Кбайт) 84000 IOPS 84000 IOPS 84000 IOPS 84000 IOPS 84000 IOPS 84000 IOPS
Макс. скорость произвольной записи (блоки по 4 Кбайт) 12000 IOPS 25000 IOPS 28000 IOPS 28000 IOPS 28000 IOPS 27000 IOPS
Физические характеристики
Потребляемая мощность: бездействие/чтение-запись 0,54 Вт/3,3 Вт 0,57 Вт/4 ,7Вт 0,57 Вт/5,3 Вт 0,61 Вт/6,3 Вт 0,63 Вт/6,4 Вт 0,62 Вт/6,8 Вт
MTBF (среднее время наработки на отказ) 2,0 млн ч
Ресурс записи 1,1 Пбайт 3,0 Пбайт 3,7 Пбайт 5,3 Пбайт 8,6 Пбайт 10,7 Пбайт
Габаритные размеры: Д×В×Г 100,45 × 69,85 × 7 мм
Масса 94 г
Гарантийный срок 5 лет
Рекомендованная цена $189 $384 $459 $764 $1144 $1524

Тем не менее Intel DC S3610 остаётся достаточно производительным накопителем и по меркам настольных систем. Фактически, невысокая скорость заявлена лишь для операций случайной записи, а во всех остальных случаях этот SSD должен на равных конкурировать с обычными потребительскими накопителями. Немалый вклад в это вносит новый фирменный контроллер SATA 6 Гбит/с, который отличается от контроллера, применявшегося в прошлых SSD этого производителя (Intel DC S3700, DC S3500 и 730). К сожалению, Intel не раскрывает технических подробностей относительно изменений в обновлённой версии процессора, но как минимум известно, что он получил более высокую рабочую частоту и возросшие размеры внутренних буферов, что позволило довести максимальную ёмкость основанных на нём модификаций накопителей до 1,6 Тбайт.

Новизна Intel DC S3610 кроется не только в новом контроллере. В нём применяется и наиболее современная версия HET MLC NAND. Ранее такая память производилась по 25-нм техпроцессу и имела ядра объёмом 64 Гбит. Теперь же Intel перевела производство на 20-нм технологию и удвоила ёмкость кристаллов, что стало причиной её удешевления и в конечном итоге дало жизнь линейке DC S3610. При этом производитель обещает, что надёжность памяти не снизилась, а производительность - и вовсе возросла благодаря неким внутренним оптимизациям.

Однако заявленный ресурс у накопителей серии DC S3610 стал несколько ниже, чем у их предшественников семейства DC S3700. Для рассматриваемой новинки предусматривается возможность ежедневной трёхкратной перезаписи полной ёмкости SSD в течение пятилетнего срока, в то время как DC S3700 и его более новый последователь DC S3710 позволяют ежедневную десятикратную перезапись. Впрочем, и тот и другой уровень выносливости достаточен даже для самых мнительных пользователей ПК, тем более что разница связана не с какими-то принципиальными отличиями в архитектуре накопителей, а с объёмом резервной области в массиве флеш-памяти.

Таким образом, Intel DC S3610 - это полноценный серверный SSD, который изначально рассчитан на использование в средах с высокой смешанной нагрузкой. Но, благодаря своему уровню надёжности, в тех случаях, когда к этому параметру применяются повышенные требования, он может быть интересен и для десктопного или ноутбучного применения. Тем более что, помимо износостойкой памяти, он может похвастать и полной защитой целостности данных при внезапных отключениях питания, а также поддержкой шифрования по алгоритму AES-256. Иными словами, для тех, кто зациклен на надёжности, это настоящая находка.

Остаётся лишь добавить, что, несмотря на серверное предназначение Intel DC S3610, с данным накопителем прекрасно работает интеловская сервисная утилита Solid-State Drive Toolbox, которая не только обладает развёрнутыми диагностическими возможностями, но и позволяет оптимизировать связанные с дисковой подсистемой настройки Windows.

⇡ Внешний вид и внутреннее устройство

Для тестирования нам удалось раздобыть вариант Intel DC S3610 объёмом 480 Гбайт. Согласно спецификациям, это модель, производительность которой не является искусственно заниженной из-за недостаточного уровня параллелизма внутреннего массива флеш-памяти. В результате мы получили возможность достоверно оценить мощность текущей версии интеловской платформы, при условии что она не сдерживается никакими внутренними рамками.

По своему внешнему виду Intel DC S3610 480 Гбайт практически не отличается от потребительских накопителей этого производителя. Для всех своих 2,5-дюймовых SSD компания Intel давно использует одинаковые алюминиевые корпуса 7-миллиметровой высоты, различающиеся лишь наклейками. Менять привычное исполнение нужды не было, поэтому главная отличительная особенность DC S3610 - это этикетка на лицевой стороне накопителя. На потребительских SSD на ней обычно располагается какая-то красивая картинка, но у серверного DC S3610 её поверхность полностью отдана под техническую информацию.

Скучный внешний вид рассматриваемого накопителя с лихвой компенсируется его оригинальной и самобытной начинкой. Имея дело с SSD для обычных персональных компьютеров, с таким разнообразием и плотностью размещения компонентов на печатной плате мы встречаемся очень редко. Кроме того, Intel DC S3610 480 Гбайт удивил и номенклатурой использованных чипов флеш-памяти.

Дело в том, что на плате можно обнаружить интеловские микросхемы флеш-памяти двух видов: четырнадцать чипов 29F32B08MCMFP, каждый из которых содержит по два кристалла HET MLC NAND ёмкостью по 128 Гбит, и два чипа 29F32B08NCMFP, содержащие по четыре таких же кристалла. Это значит, что массив флеш-памяти в 480-гигабайтной версии DC S3610 в общей сложности набран из 34 128-гигабитных ядер, то есть имеет полный объём 544 Гбайт. Таким образом, резервная область флеш-памяти, которая используется накопителем для хранения контрольных сумм данных, для подмены сбойных ячеек и для выравнивания износа, у 480-гигабайтной версии DC S3610 отъедает целых 97 Гбайт, что составляет порядка 18 процентов от общей ёмкости. Это примерно в 2-2,5 раза больше, чем бывает у потребительских SSD, что делает DC S3610 ещё долговечнее. В частности, наличие такого резерва даёт возможность сохранить работоспособность накопителя и избежать потерь информации даже в том случае, если из строя выходит один из кристаллов NAND полностью, не говоря уже о единичных сбоях.

Рядом с флеш-памятью на плате Intel DC S3610 480 Гбайт располагаются и две микросхемы обычной DDR3-памяти. Эти произведённые компанией Micron чипы имеют объём по 512 Мбайт и работают в режиме DDR3-1600. Как и в потребительских SSD, быстрая DRAM используется контроллером для хранения активной копии трансляции адресов и для буферизации операций. Однако отличие серверных накопителей от обычных потребительских моделей заключается в том, что в них предусмотрены специальные аппаратные решения для переноса содержимого этой памяти в энергонезависимый флеш не только при штатном отключении системы и по расписанию, но и в случае каких-либо непредвиденных обстоятельств. Реализовано такое решение и в DC S3610. На плате накопителя сгруппировано большое количество конденсаторов, способных поддерживать работоспособность SSD в течение нескольких миллисекунд, чего вполне достаточно для корректного завершения всех процессов и без внешнего питания.

Основной же чип в Intel DC S3610 имеет маркировку Intel PC29AS21CB0. Этот контроллер представляет собой улучшенную версию контроллера PC29AS21CA0, применявшегося в интеловских серверных SSD ранее, и не отличается от него по архитектуре. Таким образом, работа с флеш-памятью производится через традиционные восемь каналов, и в рассматриваемом нами 480-гигабайтном накопителе доступ контроллера к флеш-памяти происходит в оптимальном с точки зрения производительности режиме - с четырёхкратным чередованием устройств.

Итак, перед нами весьма интересный SATA-накопитель, по ресурсу и долговечности значительно превосходящий любые SSD, которые тестировались в нашей лаборатории до сих пор. По своему функциональному устройству он похож на Intel 730 , но в Intel DC S3610 применена, с одной стороны, более надёжная, но с другой - и более медленная HET MLC NAND. Не поставит ли это целесообразность использования Intel DC S3610 в персональных компьютерах под вопрос? Давайте проверим.

Наиболее медленная подсистема любого компьютера - дисковая. Процессор и оперативная память гораздо быстрее справляются с возложенными на них обязанностями. А вот дисковый ввод/вывод всегда является эдаким «тормозом». Также все мы знаем, что виртуальный компьютер работает медленнее обычного с теми же характеристиками. В этой статье будет показана реальная производительность дисковой подсистемы на базе SSD и SAS для сервера. Вы не только увидите, какую скорость ввода/ вывода можно получить на виртуальной машине, но и узнаете, диск какого компьютера быстрее - виртуального или физического.

Конфигурация виртуального сервера

Первым делом нужно создать виртуальный сервер нужной нам конфигурации. Платформа xelent.cloud позволяет создать сервер, выбрав производительность оборудования - базовая или высокая.

Сначала создадим сервер на основе базового оборудования - 4 ядра, 8 Гб оперативной памяти и два диска - SAS и SSD. Операционная система - Windows Server 2012 R2.

Рис. 1. Начальная конфигурация


Рис. 2. Добавлен дополнительный твердотельный накопитель

Затем конфигурация сервера будет изменена - будет использоваться высокопроизводительное оборудование. Наш сервер будет перенесен в высокопроизводительный пул (кстати, на все про все уйдет не более 20 минут). Заодно мы проверим влияние производительности оборудования на скорость дисковой подсистемы.

Тестирование

Что лучше: SAS или SSD-накопитель, поможет нам выяснить небезызвестная программа CrystalDiskMark. Именно ее мы будем использовать при тестировании. Параметры теста оставим по умолчанию - 5 проходов по 1 Гб каждый. На рис. 3 показаны результаты SAS-диска (базовая производительность оборудования).


Рис. 3. SAS-диск , базовая производительность

Если облака для вас
не просто теория

Широкий спектр услуг
по выделенным северам
и мультиклауд-решениям

После добавления дополнительного диска нужно произвести его разметку. Этот процесс в данной статье рассматривать не будем. Затем будет произведено измерение его производительности.

Рисунок 4 демонстрирует производительность SSD-диска при базовой производительности оборудования. Как видите, разница небольшая, поскольку в базовом пуле есть определенные ограничения на системные ресурсы, накладываемые самой платформой. Но даже при этих ограничениях SAS против SSD немного проигрывает.


Рис. 4. Твердотельный накопитель, базовая производительность

Совсем другое дело - пул с высокой производительностью. Во-первых, здесь значительно выше скорость обычного SAS-диска (рис. 5). Во-вторых, в высокопроизводительном пуле вопрос о том, что быстрее SAS или SSD, даже не стоит, т. к. без ограничений на операции ввода/вывода раскрываются все преимущества твердотельных накопителей (рис. 6).


Рис. 5. SAS-диск


Рис. 6. SSD-диск , высокая производительность оборудования

А теперь самое интересное - на рис. 7 изображена производительность SSD-диска, установленного в физический компьютер, работающий под управлением Windows 7. Производительность дисковой подсистемы виртуального сервера платформы xelent.cloud оказалась выше, чем производительность среднестатистического компьютера с SSD-диском.


Рис. 7. SSD-диск , физический компьютера

В таблице 1 собраны полученные результаты. В таблицу попали только максимальные значения.

Таблица 1. Результаты тестирования

Конфигурация Скорость чтения, Мб/с Скорость записи, Мб/с
SAS, базовая 122.7 122.7
SSD, базовая 112.5 122.5
SAS, высокая 394.4 431.3
SSD, высокая 572.3 624.4
SSD, физический компьютер 496.4 282.6

Выводы

При выборе высокой производительности существенно выше скорость работы дисковой подсистемы даже при использовании стандартных жестких дисков, не говоря уже о твердотельном накопителе, который «дышит полной грудью». Именно поэтому, если планируется использование виртуального сервера в качестве сервера баз данных (например, для 1С), мы настоятельно рекомендуем выбирать высокую производительность оборудования. В соревновании SAS vs SSD при любой конфигурации серверного компьютера побеждают твердотельные накопители.

Что же касается производительности физического и виртуального компьютера, то, как было показано, «виртуализация» никак не испортила картину - виртуальный компьютер оказался даже быстрее физического, если сравнивать дисковый ввод/вывод.

Решил понять насколько велико реальное отличие "обычного" и "серверного" SSD. SSD - это твердотельный накопитель (вместо магнитных пластин HDD в нём микросхемы флэш-памяти), который при всех его плюсах так же имеет и массу минусов, из которых главный для меня - время работы ячейки, а с ней и общее время работы SSD. Есть несколько видов ячеек: SLC - применяется в серверах, самая выносливая; MLC применяется в ширпотребе, eMLC применяют в серверах; TLC - дальнейшее развитие MLC в сторону удешевления.

Ремарка: Кстати, современные HDD большого объёма (от 2 ТБ) живут не так долго, как обычно люди ожидают, в среднем от 3 до 5 лет. Потому, если вам дороги ваши данные, занимайтесь резервированием оных, хотя бы копированием на внешний носитель (желательно два), иначе потеряете их в миг, а восстановление таких объёмов дорогая штука. :))) Современные "корзинки" на USB 3.0 обеспечивают хорошую скорость копирования в районе от 50 до 100 МБ/сек.


Больших плюсов у SSD три: скорость, она на пределе интерфейса SATA-3, многопоточность и ударопрочность, т.е. если вы его уроните товероятность потерять данные минимальна, в отличие от HDD, где вероятность потери ~ 98%, ну и потребление энергии минимально, это нужно для портативки (ноуты, планшеты и т.д. и т.п.). Вот такие вводные. Думаю многие об них знают и многие пользуются.
И так в своё время я взял для эксперимента OCZ Vertex-2 объёмом в 120 гиг, я хотел понять насколько технология эффективна и сколько будет работать. Я обычным образом поставил систему, т.е. без всяких оптимизаций, и посмотрел сколько он проработает, сдох примерно за полтора года работы. Забит он был на 90%, что, как оказалось, не слишком хорошо. Полтора года работы SSD меня очень огорчили и я взял HDD WD Raptor на 150 гиг. По прошествию времени народ писал что детские болезни более - менее излечили и сейчас это хороший продукт и сравнив всякие модели я взял SSD Intel 520 на 180 гиг, было это ~1,5 года назад. За это время здоровье его осталось на 100% при том, что я спихнул на него все временные файлы и файл подкачки, т.е. нагрузил его максимально, правда оперативки у меня аж 64 ГБ, что не даёт системе (Windows7 x64) сильно много писать на диск. :)
SMART его на данный момент выглядит вот так:


По неофициальным данным ресурс одной ячейки составляет ~5000 перезаписей, что в среднем больше чем по рынку, где это число составляет ~3000, плюс хорошо оптимизированная прошивка.
Что значит две строчки с одним названием "Всего записанных" я не знаю, если кто просветит я буду сильно рад.
Но время его работы всё равно составит от силы 5 лет и это при хороших раскладах.
И подумал я, есть ли вариант с более длительным сроком жизни по приемлемой цене, ну и начал искать. В сторону ячеек SLC я не смотрел вообще, мы рассматриваем только MLC, кому хоца понять что это идём сюда . Оказалось что вышел в свет подвид MLC - eMLC, что расшифровывется как EnterpriseMLC - типа MLC для серверов. Различие между ними отсутствует! Просто eMLC - это придирчиво отобранные MLC.
Я нашёл серию Deneva 2R у фирмы OCZ. Вот и купил для работы модель OCZ Deneva 2 R D2RSTK251E19 -0200 на 200 гиг. Заявленное число циклов перезаписи у этой модели близко к SLC и по данным НИКС"а составляет ~ 200.000. При том у другой модели с индексом Е11 уже составляет 30.000, но и стоит дешевле.
SMART на сегодня:

Сколько он проработает мне неведомо, надеюсь долго. Если у кого-то есть опыт общения с корпоративными SSD или знакомые с таким опытом, узнайте сколько живёт SSD в сервере и на какой нагрузке.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows