Чем измерить постоянный ток. Как измерить напряжение мультиметром. Как устроены токовые измерительные клещи

Чем измерить постоянный ток. Как измерить напряжение мультиметром. Как устроены токовые измерительные клещи

14.05.2019

Для измерения силы тока применяется измерительный прибор, который называется . Силу тока приходится измерять гораздо реже, чем напряжение или сопротивление , но, тем не менее, если нужно определить потребляемую мощность электроприбором, то без зная величины потребляемого ним тока, мощность не определить.

Ток, как и напряжение, бывает постоянным и переменным и для измерения их величины требуются разные измерительные приборы. Обозначается ток буквой I , а к числу, чтобы было ясно, что это величина тока, приписывается буква А . Например, I=5 A обозначает, что сила тока в измеренной цепи составляет 5 Ампер.

На измерительных приборах для измерения переменного тока перед буквой А ставится знак "~ ", а предназначенных для измерения постоянного тока ставится "". Например, –А означает, что прибор предназначен для измеренная силы постоянного тока.

О том, что такое ток и законы его протекания в популярной форме Вы можете прочитать в статье сайта «Закон силы тока» . Перед проведением измерений настоятельно рекомендую ознакомиться с этой небольшой статьей. На фотографии Амперметр, рассчитанный на измерение силы постоянного ток величиной до 3 Ампер.

Схема измерения силы тока Амперметром

Согласно закону, ток по проводам течет в любой точке замкнутой цепи одинаковой величины. Следовательно, чтобы измерять величину тока, нужно прибор подключить, разорвав цепь в любом удобном месте. Надо отметить, что при измерении величины тока не имеет значение, какое напряжение приложено к электрической цепи. Источником тока может быть и батарейка на 1,5 В, автомобильный аккумулятор на 12 В или бытовая электросеть 220 В или 380 В.

На схеме измерения также видно, как обозначается амперметр на электрических схемах. Это прописная буква А обведенная окружностью.

Приступая к измерению силы тока в цепи необходимо, как и при любых других измерениях, подготовить прибор, то есть установить переключатели в положение измерения тока с учетом рода его, постоянного или переменного. Если не известна ожидаемая величина тока, то переключатель устанавливается в положение измерения тока максимальной величины.

Как измерять потребляемый ток электроприбором

Для удобства и безопасности работ по измерению потребляемого тока электроприборами необходимо сделать специальный удлинитель с двумя розетками. По внешнему виду самодельный удлинитель ничем не отличается от обыкновенного удлинителя.

Но если снять крышки с розеток, то не трудно заметить, что их выводы соединены не параллельно, как во всех удлинителях, а последовательно.


Как видно на фотографии сетевое напряжение подается на нижние клеммы розеток, а верхние выводы соединены между собой перемычкой из провода с желтой изоляцией.

Все подготовлено для измерения. Вставляете в любую из розеток вилку электроприбора, а в другую розетку, щупы амперметра. Перед измерениями, необходимо переключатели прибора установить в соответствии с видом тока (переменный или постоянный) и на максимальный предел измерения.

Как видно по показаниям амперметра, потребляемый ток прибора составил 0,25 А. Если шкала прибора не позволяет снимать прямой отсчет, как в моем случае, то необходимо выполнить расчет результатов, что очень неудобно. Так как выбран предел измерения амперметра 0,5 А, то чтобы узнать цену деления, нужно 0,5 А разделить на число делений на шкале. Для данного амперметра получается 0,5/100=0,005 А. Стрелка отклонилась на 50 делений. Значит нужно теперь 0,005×50=0,25 А.

Как видите, со стрелочных приборов снимать показания величины тока неудобно и можно легко допустить ошибку. Гораздо удобнее пользоваться цифровыми приборами, например мультиметром M890G.

На фотографии представлен универсальный мультиметр, включенный в режим измерения переменного тока на предел 10 А. Измеренный ток, потребляемый электроприбором составил 5,1 А при напряжении питания 220 В. Следовательно прибор потребляет мощность 1122 Вт.


У мультиметра предусмотрено два сектора для измерения тока, обозначенные буквами А– для постоянного тока и А~ для измерения переменного. Поэтому перед началом измерений нужно определить вид тока, оценить его величину и установить указатель переключателя в соответствующее положение.

Розетка мультиметра с надписью COM является общей для всех видов измерений. Розетки, обозначенные mA и 10А предназначены только для подключения щупа при измерении силы тока. При измеряемом токе менее 200 мA штекер щупа вставляется в розетку mA, а при токе величиной до 10 А в розетку 10А.

Внимание, если производить измерение тока, многократно превышающего 200 мА при нахождении вилки щупа в розетке mA, то мультиметр можно вывести из строя.

Если величина измеряемого тока не известна, то измерения нужно начинать, установив предел измерения 10 А. Если ток будет менее 200 мА, то тогда уже переключить прибор в соответствующее положение. Переключение режимов измерения мультиметра допустимо делать только обесточив измеряемую цепь .

Рассчет мощности электроприбора по потребляемому току

Зная величину тока, можно определить потребляемую мощность любого потребителя электрической энергии, будь то лампочка в автомобиле или кондиционер в квартире. Достаточно воспользоваться простым законом физики, который установили одновременно два ученых физика, независимо друг от друга. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля – Ленца .

Чем измерить напряжение в розетке или определить значение тока, протекающего через нее? Такой вопрос становился практически перед каждым из нас. Ответ на него достаточно прост – это мультиметр, универсальное устройство для измерения самых различных электрических параметров.

Главной особенностью данного устройства является сочетание в себе самых разнообразных устройств, которые могут потребоваться как профессиональному, так и доморощенному электрику. При этом чтоб пользоваться таким прибором не надо обладать какими-либо специфическими знаниями. Достаточно вспомнить школьные уроки физики.

Перед тем как измерить напряжение в розетке мультиметром давайте разберемся как работает данный прибор. А также разберемся с величинами, которые он способен измерять.

Мультиметры могут быть аналоговыми или цифровыми. Ответ на вопрос какой из них лучше очевиден – цифровой прибор. Ведь цифровые мультиметры всегда указывают точное значение измеряемой величины, лояльно воспринимают неправильное подключение щупов, да и не так требовательны к условиям эксплуатации. В то же время в пользу аналоговым приборов есть только один аргумент – цена.

Именно поэтому в нашей статье мы рассмотрим цифровой мультиметр. И начнем наш обзор с щупов мультиметра. Для их подключения обычный прибор имеет два или три гнезда.

Итак:

  • Черный щуп должен подключаться к гнезду «СОМ» , который является минусовым или заземлением. Это зависит от измеряемой величины.

  • Красный щуп подключается к одному из двух оставшихся гнезд . Аббревиатура «VΩmA» обозначает, что данное гнездо предназначено для измерения напряжения, сопротивления и силы тока, но только при небольших его значениях. Для измерения силы тока в 1А и более следует использовать гнездо 10АDC, которое обладает более мощной контактной частью.

Теперь давайте поговорим о величинах, которые может измерять обычный цифровой мультиметр. У разных производителей обозначение некоторых величин может отличаться, поэтому мы приведем все возможные варианты.

Итак:

  • Для измерения постоянного напряжения следует использовать предел, обозначенный DCV . В данном пределе обычно имеется несколько положений для измерений напряжения от 200mV до 1кV. Для измерения переменного напряжения следует использовать предел с обозначением ACV. Он обычно так же имеет несколько положений для измерений от 100В до 1000В.
  • Для измерения токов предназначен предел DCA . Он так же имеет несколько положений нескольких сотен микроампер, до нескольких сотен миллиампер. Кроме того, обычно имеется положение для измерения силы тока в до 10А. Но для подключения устройства в данное положение инструкция советует переставить красный щуп в соответствующее гнездо. Это необходимо для того, что ток в 10А достаточно большой и слабенькие контакты гнезда «VΩmA» просто перегорят от него.
  • Для измерения сопротивления цепи у нас имеется предел «Ω» . Он имеет несколько положений для измерений величин от 200Ом до 2МОм.

Обратите внимание! Измерять любую величину можно и при помощи большего предела. Например, напряжение в 100В можно измерять в положении не 200В, а в положении 1000В. Но с увеличением предела измерения увеличивается и погрешность прибора. В связи с этим полученные результаты измерений могут быть недостаточно достоверными.

Кроме этих основных величин многие устройства имеют дополнительные пределы для измерения коэффициента усиления транзистора по току, прозвонки на короткое замыкание, измерения параметров диодов и некоторые другие. Данные пределы уже более узконаправленные и более детально мы их рассматривать не будем.

Измерение тока и напряжения мультиметром

Умея пользоваться мультиметром можно рассмотреть вопрос как им производить измерение в зависимости от измеряемых величин. Ведь измерение токa в розетке сильно отличается от измерения напряжения. Кроме того, мы рассмотрим другие возможные варианты измерения этих величин в бытовых условиях.

Измерение напряжения мультиметром

Начнем с рассмотрения вопроса как измерить напряжение мультиметром в розетке? Данная процедура поможет ответить вам на вопрос соответствуют ли параметры сети нормативам и возможно ли подключение определенной электроустановки к ней.

  • Для этого прежде всего устанавливаем щупы в соответствующие гнезда. В нашем случае это гнездо «СОМ» для черного щупа и гнездо «VΩmA» для красного щупа.
  • Теперь производим необходимые переключения на самом мультиметре. Так как ток в розетке у нас имеет переменное значение, то необходимо выставить предел ACV.

  • Положение переключателя должно быть выше предполагаемого напряжения. То есть для розетки в которой должно быть 220В вы должны выбрать ближайшее большее значение. Если брать наш мультиметр, то мы выбираем значение в 750В. Для двух или трехфазных розеток номинальное значение напряжения составляет 380В, то есть мы так же выбираем положение в 750В.

Пусть далеко не каждому из нас уготована судьба электрика, но знание того, как измеряется сила тока, может быть таким же базовыми, как и навыки работы с компьютером для рядового пользователя ПК. Вы же не зовете компьютерного специалиста для того, чтобы отправить e-mail или скачать программу? Точно также и правильное подключение электроприборов, замена пробок в квартире, автоматических выключателей, подбор проводки и многое другое скоро для вас станет не менее элементарным делом, удели вы не более 10 минут на прочтение статьи.

Определение силы тока теоретическим способом

Для того, чтобы измерить силу тока, совсем не обязательно лезть в электрическую схему прибора. Если мы говорим о бытовых вещах – абсолютно все они имеют необходимую техническую характеристику на бирках или наклейках на своем корпусе.

Возьмем, к примеру, электрический чайник. Скорее всего там будет написана следующая информация: 220-240V; 50-60Hz; 1500W. Последняя запись как раз и означает, что мощность чайника – 1500 Ватт (Вт), а величина мощности напрямую зависит от силы тока.

Теперь нам остается только поделить мощность (для нашего конкретного чайника это 1500 Вт) на напряжение в бытовых сетях (220 В). В данном конкретном примере мы получим 6,8 Ампер (А). Это и есть сила тока. Проверьте сами, это крайне простая арифметика!

И что нам это дает:

  • Не стоит подключать много электрических приборов в одну розетку, рекомендуемая длительная нагрузка для обычной домашней розетки не более 10 А.
  • Если в вашей квартире часто “выбивают пробки”, возможно, проблема в том, что вы включаете слишком много приборов. Попробуйте посчитать их суммарный ток и сравнить с цифрой на защитной пробке или автомате.
  • Сила тока напрямую влияет на выбор сечения проводника, определяется элементарным способом по таблицам.


Измерение силы тока специальным прибором

Сила тока измеряется таким прибором, как Амперметр, на их табло гордо красуется большая буква “А”. Важно понимать, что ток может быть переменным, обозначается волнистой линией “~” и постоянным, обозначается прямой линией “-”. Род тока, который измеряет прибор, также указан у него на табло. Бытовая электрическая сеть 220 В – сеть переменного тока. Все, что питается от батареек, как правило, постоянный ток.

Самые простые Амперметры, которые вы возможно найдете на барахолках или у дедушки в гараже, мало того, что аналоговые со стрелками, так еще и, зачастую, могут измерить только определенный род тока.

Важно понимать, токи каких величин мы будем определять, измеряемые токи не должны выходить за пределы возможных значений для прибора, иначе мы рискуем его спалить!

Правильное подключение Амперметра – последовательно с измеряемой нагрузкой и никак по другому, иначе мы провоцируем Короткое Замыкание (К.З.). Для постоянного тока также может быть важной полярность включения (плюс-минус).


Впрочем, использовать сегодня Амперметр – нечто сродни архаизму, ведь есть такие замечательные приборы, как Мультиметры. Приставка “мульти” говорит сама за себя – многометр, если говорить простым языком. Он может мерить буквально все, когда дело касается электрических величин, просто переключите его на силу тока и “вуаля”.

Важно помнить! Бытовое напряжение 220 В опасно для жизни, не стоит лезть с прибором к оголенным проводам, которые находятся под напряжением, или напрямую в розетку. Если вы профан в этом деле – лучше лишний раз перестраховаться. Безопасным считается напряжение 42 Вольта (В) и ниже.

Ошибись вы с подключением – можно спровоцировать К.З., которое может красиво вспыхнуть и сжечь прибор или выбить пробки в квартире. И хорошо, если отделаетесь легким испугом, а ведь вполне можно получить и ожог. Никогда не забывайте, что электрический ток опасен.


Самый безопасный способ измерения электрического тока

Практически в любом магазине электротехники можно купить такой прибор, как Токоизмерительные Клещи. Принцип измерения до невероятного прост и безопасен: ток, протекающий через проводник, излучает вокруг себя электромагнитное поле, а это поле тем сильнее, чем сильнее сам ток. Так почему бы не мерить это поле, а не лезть в электрическую схему с прибором. Просто замечательный вариант, не так ли?

Конечно, не везде можно подлезть именно клещами. Тем более, что работает этот способ только для переменного тока. Не говоря уже о том, мерить необходимо каждый проводок по отдельности, ведь “соседи” со своим электрическим полем вокруг себя будут сильно мешать вычислять правильную токовую нагрузку.

.

Измерение силы тока – дело нехитрое. Главное помнить про технику безопасности и правильно подключить прибор в схему. Современные цифровые приборы позволяют не только очень точно определить величину тока, но и вычислять ее бесконтактным способом при помощи Токоизмерительных Клещей. Зная силу тока можно не только более грамотно подключать в сеть электрические приборы, но и заменять автоматику и вычислять допустимое сечение проводника.

. Ток или силу тока определяют количеством электронов, проходящих через точку или элемент схемы в течение одной секунды. Так, например, через нить накала горящей лампы накаливания карманного фонаря ежесекундно проходит около 2 000 000 000 000 000 000 (два триллиона) электронов. Однако на практике измеряется не количество электронов, а их движение, выраженное в амперах (А).

Ампер – это единица электрического тока, которую так назвали в честь французского физика и математика А. Ампера изучавшего взаимодействие проводников с током. Экспериментально установлено, что при токе в 1А через точку или элемент схемы проходит около 6 250 000 000 000 000 000 электронов.

Помимо ампера применяют и более мелкие единицы силы тока: миллиампер (мA), равный 0,001 А, и микроампер (мкA), равный 0,000001 А или 0,001 мА. Следовательно: 1 А = 1000 мА = 1 000 000 мкА .

1. Прибор для измерения силы тока.

Как и напряжение, ток бывает постоянный и переменный . Приборы, служащие для измерения тока, называют амперметрами , миллиамперметрами и микроамперметрами . Так же, как и вольтметры, амперметры бывают стрелочными и цифровыми .

На электрических схемах приборы обозначаются кружком и буквой внутри: А (амперметр), мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением амперметра указывается его буквенное обозначение «» и порядковый номер в схеме. Например. Если амперметров в схеме будет два, то около первого пишут «PА1 », а около второго «PА2 ».

Для измерения тока амперметр включается непосредственно в цепь последовательно с нагрузкой , то есть в разрыв цепи питания нагрузки. Таким образом, на время измерения амперметр становится как бы еще одним элементом электрической цепи, через который протекает ток, но при этом в схему амперметр никаких изменений не вносит. На рисунке ниже изображена схема включения миллиамперметра в цепь питания лампы накаливания.

Также надо помнить, что амперметры выпускаются на разные диапазоны (шкалы), и если при измерении использовать прибор с меньшим диапазоном по отношению к измеряемой величине, то прибор можно повредить. Например. Диапазон измерения миллиамперметра составляет 0…300 мА, значит, силу тока измеряют только в этих пределах, так как при измерении тока свыше 300 мА прибор выйдет из строя.

2. Измерение силы тока мультиметром.

Измерение силы тока мультиметром практически ни чем не отличается от измерения обыкновенным амперметром или миллиамперметром. Разница состоит лишь в том, что у обычного прибора всего один диапазон измерения, рассчитанный на определенную максимальную величину тока, тогда как у мультиметра диапазонов несколько, и перед измерением приходится определять каким из диапазон пользоваться в данный момент.

Обычные мультиметры, не профессиональные, рассчитаны на измерение постоянного тока и имеют четыре поддиапазона, что на бытовом уровне вполне достаточно. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 2m , 20m , 200m , 10А . Например. На пределе «20m » можно измерять постоянный ток в диапазоне 0…20 мА.

Для примера измерим ток, потребляемый обычным светодиодом. Для этого соберем схему, состоящую из источника напряжения (пальчиковой батарейки) GB1 и светодиода VD1 , а в разрыв цепи включим мультиметр РА1 . Но перед включением мультиметра в схему подготовим его к проведению измерений.

Измерительные щупы вставляем в гнезда мультиметра, как показано на рисунке:

красный щуп называют плюсовым , и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA »;
черный щуп является минусовым или общим и вставляется он в гнездо, напротив которого написано «СОМ ». Относительно этого щупа производятся все измерения.

В секторе измерения постоянного тока выбираем предел «2m », диапазон измерения которого составляет 0…2 мА. Подключаем щупы мультиметра согласно схеме и затем подаем питание. Светодиод загорелся, и его потребление тока составило 1,74 мА. Вот, в принципе, и весь процесс измерения.

Однако этот вариант измерения подходит тогда, когда величина потребления тока известна. На практике же часто возникает ситуация, когда необходимо измерить ток на каком-либо участке цепи, величина которого неизвестна или известна приблизительно. В таком случае измерение начинают с самого высокого предела.

Предположим, что потребление тока светодиодом неизвестно. Тогда переключатель переводим на предел «200m », который соответствует диапазону 0…200 мА, и после этого щупы мультиметра включаем в цепь.

Затем подаем напряжение и смотрим на показания мультиметра. В данном случае показания тока составили «01,8 », что означает 1,8 мА. Однако нолик впереди указывает на то, что можно снизиться на предел «20m ».

Отключаем питание. Переводим переключатель на предел «20m ». Включаем питание и опять производим измерение. Показания составили 1,89 мА.

Часто бывает ситуация, когда при измерении тока или напряжения на индикаторе появляется единица . Единица говорит о том, что выбран низкий предел измерения и он меньше величины измеряемого параметра. В этом случае необходимо перейти на предел выше.

Также может возникнуть момент, когда измеряемый ток выше 200 мА и необходимо перейти на предел измерения «10А ». Однако здесь есть нюанс, который надо запомнить. Помимо того, что переключатель переводится на предел «10А », еще также необходимо переставить плюсовой (красный) щуп в крайнее левое гнездо, напротив которого стоит цифро-буквенное значение «10А», указывающее, что это гнездо предназначено для измерения больших токов.

И еще совет. Возьмите за правило: когда закончите все измерения на пределе «10А » сразу же переставляйте плюсовой (красный) щуп на свое штатное место . Этим Вы сбережете себе нервы, щупы и мультиметр.

Ну вот, в принципе и все, что хотел сказать об измерении тока мультиметром. Главное понимать, что при вольтметр подключается параллельно нагрузке или источнику напряжения, тогда как при измерении силы тока амперметр включается непосредственно в цепь и через него протекает ток, которым питаются элементы схемы.

Ну и в качестве закрепления прочитанного предлагаю посмотреть видеоролик, в котором на примере схем рассказывается об измерениях напряжения и силы тока мультиметром.

Приборы для измерения переменного тока могут быть различными.

Для измерения тока промышленной частоты (50 – 100 Гц) используют в основном приборы непосредственной оценки на основе электромагнитной и электродинамической систем, а также термоэлектрической систем.

В маломощных цепях высоких частот ток измеряется выпрямительными, термоэлектрическими, электронными цифровыми и аналоговыми вольтметрами на резисторе с известным сопротивлением. Амперметр должен иметь минимальные значения входного сопротивления, индуктивностей и емкостей.

Приборы электромагнитной системы. Принцип действия этих приборов основан на явлении втягивания стальной пластины, соединенной со стрелкой, магнитным полем катушки. Отклонение подвижной части измерительного механизма зависит от квадрата измеряемого тока и может быть использовано для измерения как постоянного, так и переменного тока с частотой не выше 5 кГц. Подбором формы сердечника удается получить практически равномерную шкалу. Амперметры магнитоэлектрической системы выпускаются в качестве щитовых приборов классов точности 0,5, 1,0, 2,5 на частотах до 1500 Гц, и 0,5, 1,0 – до 2400 Гц. Для расширения пределов измерения тока электромагнитным амперметром применяются не шунты, а секционные катушки или трансформаторы. Достоинства – простота конструкции, дешевизна и надежность. Недостатки – малая точность и чувствительность. Электромагнитные амперметры применяют для непосредственного измерения токов до 200 А, катушка измерительного механизма включается последовательно в цепь измеряемого тока. Предел измерения определяется числом витков катушки. Чем выше предел, тем меньше витков из более толстого провода.

Электродинамические приборы. Принцип действия основан на взаимодействии двух магнитных потоков, создаваемых токами, протекающими по двум катушкам, одна из которых подвижна. В результате взаимодействия магнитных полей катушек и противодействующих пружин, подвижная катушка поворачивается на некоторый угол, пропорциональный токам в катушках. Измеряется этими приборами действующее (среднеквадратическое) значение тока. Схемы включения обмоток катушек различны. При последовательном включении измеряются малые токи (менее 0,5 А), шкала прибора квадратична. При параллельном включении обмоток измеряются большие токи, шкала тоже квадратичная. Электродинамические амперметры выпускаются различных классов точности до 0,1. Применяются в основном на промышленных частотах. Для расширения пределов применяют переключение катушек измерительного механизма с последовательного на параллельное и трансформаторы тока.

Выпрямительные приборы.

Они широко применяются для измерения тока в звуковом диапазоне частот. Принцип действия основан на выпрямительных свойствах диода. Постоянная составляющая выпрямленного диодом тока измеряется прибором магнитоэлектрической системы. Обычно используются выпрямители однополупериодные и двухполупериодные. Выпрямительные приборы измеряют среднее значение переменного тока, а не среднеквадратическое. Шкалу прибора градуируют в среднеквадратических значениях, поэтому показания пересчитывают через коэффициент формы. Выпрямительные приборы для измерения токов широко применяют как составные элементы комбинированных приборов:тестеров, авометров, используемых для измерения токов, напряжений, сопротивлений. При использовании соответствующих диодов выпрямительные приборы могут применяться в диапазоне СВЧ. Германиевые и кремниевые диоды обеспечивают частотный диапазон до 100 МГц. Основные достоинства выпрямительных приборов – высокая чувствительность, малое собственное потребление и возможность измерения в широком диапазоне частот. Недостаток – невысокая точность. Основные источники погрешностей – изменение параметров диодов со временем. Класс точности выпрямительных приборов 1,5 и 2,5, пределы измерений по току от 2 мА до 600 А, по напряжению от 0,3 до 600 В.

Термоэлектрические приборы.

Они используются для измерения токов высокой частоты. Прибор состоит из термопреобразователя, термоэлемента и измерительного прибора.

Измерительный прибор И выполнен по магнитоэлектрической системе. Простейший термопреобразователь имеет подогреватель 2 и термопару 1 из двух разнородных проводников, спаянных между собой. Если через подогреватель термоэлемента пропускать измеряемый ток, то вследствие нагрева спая в цепи термопары и прибора И будет протекать термоток постоянного напряжения. Прибор измеряет действующее значение переменного тока. Шкала термоэлектрических приборов близка к квадратичной. Чувствительность зависит от материала термопары. Достоинства термоэлектрических приборов – высокая чувствительность, большой диапазон измерения токов, широкий диапазон частот, возможность измерения токов произвольной формы. Недостатки – неравномерность шкалы, которая в начальной части получается сжатой. Кроме того показания зависят от температуры. Общий частотный диапазон термоэлектрических приборов лежит в пределах от 45 Гц до 300 МГц, номинальные токи – от 1 мА до 50 А, классы точности – от 1,0 до 2,5.

Измерение напряжения

Измерение постоянного напряжения

При использовании метода непосредственной оценки вольтметр подключается параллельно тому участку цепи, на котором надо измерить напряжение. Относительная погрешность измерения напряжения равна
, т.е. чем больше внутреннее сопротивление вольтметра, тем меньше погрешность измерения.

Измерение постоянного напряжения может быть выполнено любыми измерителями напряжений постоянного тока (магнитоэлектрическими, электродинамическими, электромагнитными, электростатическими, аналоговыми и цифровыми вольтметрами.) Выбор вольтметра обусловлен мощностью объекта измерений и необходимой точностью. Диапазон измеряемых напряжений лежит в пределах от долей микровольт до десятков киловольт.

Если необходимая точность может быть обеспечена приборами электромеханической группы, то следует предпочесть этот простой метод непосредственной оценки. При измерении напряжений с более высокой точностью следует использовать приборы, основанные на методе сравнения. При любом методе измерения могут быть использованы аналоговый и цифровой отсчеты.

Приборы непосредственной оценки.

Магнитоэлектрические приборы используются при проверке режимов радиосхем и используются при измерении напряжений в приборах других систем. Кроме того они используются в качестве индикаторов. Вольтметры магнитоэлектрической системы имеют равномерную шкалу, высокую точность, большую чувствительность, но низкое входное сопротивление.

Электростатические вольтметры имеют достоинство малое потребление, независимость от температуры окружающей среды, высокое входное сопротивление, а недостатки – неравномерная шкала и опасность пробоя между пластинами.

Наиболее широко для измерения постоянного напряжения применяют электронные вольтметры. Они могут быть аналоговыми и цифровыми.

Аналоговые электронные вольтметры постоянного тока.

В отличие от вольтметров электромеханической группы электронные вольтметры постоянного тока имеют высокое входное сопротивление и малое потребление тока от измерительной цепи. На рисунке М2-6 представлена структурная схема аналогового электронного вольтметра.

Рисунок М2-6. Структурная схема аналогового электронного вольтметра постоянного напряжения.

Основными элементами являются входное устройство, усилитель постоянного тока и измерительный прибор магнитоэлектрической системы. Входное устройство содержит входные зажимы, делитель напряжения, предварительный усилитель. Высокоомный делитель на резисторах служит для расширения пределов измерения. Усилитель постоянного тока служит для повышения чувствительности вольтметра и является усилителем мощности измеряемого напряжения до значения, необходимого для создания достаточного вращающего момента у измерительного прибора.

К усилителям постоянного напряжения предъявляются такие требования, как высокая линейность характеристики, постоянство коэффициента усиления. Основные технические характеристики вольтметров постоянного тока приведены в таблице М2-3.

Таблица М2-3. Основные технические характеристики вольтметров постоянного тока.

Тип, наименование прибора

Диапазон измеряемых напряжений, В

Основная погрешность измерения, %

В2–34, вольтметр постоянного тока, дифференциальный, цифровой

0,01 мВ – 1000В,

поддиапазоны:

В2 – 36, вольтметр постоянного тока, цифровой

В2-38, нановольтметр цифровой постоянного тока

Измерение постоянного напряжения цифровыми приборами.

Цифровые вольтметры все шире применяются для измерения напряжений и токов. Упрощенная структурная схема цифрового вольтметра представлена на рис.М2-7.

Рисунок М2-7. Структурная схема цифрового вольтметра

Входное устройство содержит делитель напряжения. Аналого-цифровой преобразователь (АЦП) преобразует аналоговый сигнал в цифровую форму и представляет его цифровым кодом. Цифровое отсчетное устройство регистрирует измеряемую величину.

По типу АЦП цифровые вольтметры делятся на кодоимпульсные и времяимпульсные. Поскольку АЦП преобразует сигнал постоянного тока в цифровой код, цифровые вольтметры считают приборами постоянного напряжения. Для измерения переменного напряжения на выходе вольтметра ставится преобразователь.

По виду измеряемой величины цифровые приборы делятся на приборы:

    для измерения постоянного напряжения;

    для измерения переменного напряжения;

    мультиметры (универсальные вольтметры для измерения напряжения, сопротивления, тока)

Цифровые вольтметры обычно имеют высокое входное сопротивление более 100 Мом, диапазоны измерений 100мВ, 1 В, 10В, 100 В, 1000В. Порог чувствительности на диапазоне 1 00 мВ может быть 10 мкВ.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows