Дифференцирующие и интегрирующие RC – цепочки. Интегрирующая и дифференцирующая цепи RC Дифференцирующая rc

Дифференцирующие и интегрирующие RC – цепочки. Интегрирующая и дифференцирующая цепи RC Дифференцирующая rc

02.07.2020

Сложные радиоэлектронные устройства состоят из простых цепей. Рассмотрим цепь, состоящую из резистора и конденсатора, включенных последовательно с идеальным генератором напряжения, показанную на рис. 3.3.

Рис.3.3. Дифференцирующая цепь

Если выходное напряжение снимается с резистора, то цепь называется дифференцирующей, если с конденсатора – интегрирующей. Эти линейные цепи характеризуются стационарными и переходными характеристиками. Это связано с тем, что изменение величины действующего в цепи напряжения приводит к тому, что токи и напряжения в различных участках цепи приобретают новые значения. Изменение состояния цепи происходит не мгновенно, а в течение некоторого интервала времени. Поэтому различают установившееся и переходное состояние электрической цепи.

Электрические процессы считаются установившимися (стационарными), если закон изменения всех напряжений и токов совпадает с точностью до постоянных величин с законом изменения действующего в цепи напряжения от внешнего источника. В противном случае считают, что цепь находится в переходном (нестационарном) состоянии.

К стационарным характеристикам относятся амплитудно-частотная и фазовая характеристики линейной цепи.

Нестационарное состояние линейной цепи описывается переходной характеристикой.

Будем считать, что к входу цепи подключен идеальный генератор напряжения . На основании второго закона Кирхгофа для дифференцирующей цепи можно записать дифференциальное уравнение, связывающее напряжения и ток в ветвях цепи:

(3.2)

Так как напряжение на выходе цепи , то:

(3.3)

Подставляя в интеграл значение тока, получим:

(3.4)

Продифференцируем левую и правую части последнего уравнения по времени:

(3.5)

Перепишем это уравнение, в следующем виде:

, (3.6)

Где =— параметр цепи называемый постоянной времени цепи.

В зависимости от величины постоянной времени возможны два различных соотношения между первым и вторым слагаемыми правой части уравнения.

Если постоянная времени большая по сравнению с периодом гармонических сигналов >>Или с длительностью импульсов >>, которые можно подавать на вход этой цепи, то

И напряжение на выходе цепи с небольшими искажениями повторяет входное напряжение:

Если же постоянная времени мала по сравнению с периодом гармонических сигналов <<Или с длительностью импульсов <<, то

Отсюда напряжение на выходе равно:

Таким образом, в зависимости от величины постоянной времени такая -цепь может либо с определенными искажениями передавать входной сигнал на выход, либо с определенной степенью точности его дифференцировать. При этом форма выходного сигнала будет разной. Ниже на рис. 3.4 представлены входное напряжение, напряжения на резисторе и конденсаторе для случаев, когда постоянная времени велика и постоянная времени мала .

А Б

Рис. 3.4. Напряжения на элементах дифференцирующей цепи при (А ) и (Б )

В начальный момент времени на резисторе появляется скачок напряжения, равный амплитуде входного сигнала, а затем начинается заряд конденсатора, во время которого напряжение на резисторе будет уменьшаться.

Когда постоянная времени , конденсатор не успевает зарядиться до амплитуды входного импульса и -цепь с небольшими искажениями передает входной сигнал на выход. При << конденсатор успеет полностью зарядиться до амплитуды входного напряжения за время действия первого импульса, а за время паузы между импульсами – полностью разрядиться. При этом на выходе цепи появляются укороченные импульсы, приблизительно соответствующие производной от входного сигнала. Считается, что когда Цепочка дифференцирует входной сигнал.

Теперь определим коэффициент передачи дифференцирующей цепи. Комплексный коэффициент передачи дифференцирующей цепи при подаче на вход гармонического сигнала равен:

. (3.11)

Обозначим отношение , где — граничная частота полосы пропускания дифференцирующей цепи.

Выражение для коэффициента передачи примет вид:

Модуль коэффициента передачи равен:

. (3.13)

— граничная частота полосы пропускания, на которой модуль реактивного сопротивления становится равным величине активного сопротивления, а коэффициент передачи цепи равен . Зависимость модуля коэффициента передачи от частоты называется амплитудно–частотной характеристикой (АЧХ).

Зависимость угла сдвига фаз между выходным и входным напряжениями от частоты называется фазовой характеристикой (ФЧХ). Фазовая характеристика:

Ниже на рис. 3.5 представлены АЧХ и ФЧХ дифференцирующей цепи:

Рис. 3.5. Амплитудно–частотная и фазовая характеристики

Дифференцирующей цепи

Из амплитудно-частотной характеристики видно, что прохождение сигналов через дифференцирующую цепь сопровождается уменьшением амплитуд низкочастотных составляющих его спектра. Дифференцирующая цепь является фильтром высоких частот.

Из фазовой характеристики видно, что фазы низкочастотных составляющих сдвигаются на больший угол, чем фазы высокочастотных составляющих.

Переходную характеристику дифференцирующей цепи можно получить, если на вход подать напряжение в виде единичного скачка. Комплексный коэффициент передачи равен

Дифференцирующей цепью называется цепь, напряжение на выходе которой пропорционально первой производной по времени от входного напряжения:


Рис. 3.7.1. Схема дифференцирующей цепи

Дифференцирующая цепь (рис. 3.7.1) состоит из резистора R и конденсатора С , параметры которых выбираются таким образом, чтобы активное сопротивление было во много раз меньше емкостного сопротивления.

Напряжения на входе и выходе цепи связаны соотношением:

u вх = u вых + u C ;

u вых = i · R


u C = u вх – u вых = u вх – iR ;

Если величина i R значительно меньше, чем u вх, то u вх ≈ u C .


Величина τ = RC называется постоянной времени дифференцирующей цепи .

Чем меньше постоянная времени по сравнению с длительностью импульса на входе, тем выше точность дифференцирования.

Если ко входу дифференцирующей цепи подвести напряжение синусоидальной формы, то выходное напряжение будет тоже синусоидальным, однако, оно будет сдвинуто по фазе относительно входного напряжения, и его амплитуда будет меньше, чем у входного. Таким образом, дифференцирующая цепь, являющаяся линейной системой, не меняет спектрального состава подводимого к ней напряжения.

Подача на вход дифференцирующей цепи прямоугольного импульса, состоящего, как известно, из бесчисленного множества синусоидальных составляющих, изменяет амплитуду и фазу этих составляющих, что приводит к изменению формы выходного напряжения по сравнению с формой входного.

При подаче прямоугольного импульса на вход дифференцирующей цепи начинается заряд конденсатора С через сопротивление R .

В начальный момент времени напряжение на конденсаторе равно нулю, поэтому выходное напряжение равно входному. По мере заряда конденсатора напряжение на нем начинает увеличиваться по экспоненциальному закону:

u c = u вх · (1 – e – t/τ) ;

где τ = RC – постоянная времени цепи.

Напряжение на выходе дифференцирующей цепи:

u вых = u вх – u c = u вх – u вх · (1 – e – t / τ) = u вх · e – t / τ) ;

Таким образом, по мере заряда конденсатора напряжение на выходе схемы убывает по экспоненциальному закону. Когда конденсатор полностью зарядится, напряжение на выходе дифференцирующей цепи станет равным нулю.

В момент окончания прямоугольного импульса напряжение на входе схемы скачком уменьшится до нуля. Поскольку конденсатор в это время остается полностью заряженным, то с этого момента начнется его разряд через сопротивление R . В начале разряда конденсатора напряжение на выходе схемы по величине приблизительно равно напряжению на конденсаторе, но с противоположным знаком, т. к. направление тока разряда противоположно току заряда. По мере разряда конденсатора напряжение на выходе цепи уменьшается по экспоненциальному закону.



Рассмотрим электрическую цепь из резистора сопротивлением R и конденсатора ёмкостью C , представленную на рисунке.

Элементы R и C соединены последовательно, значит, ток в их цепи можно выразить, исходя из производной напряжения заряда конденсатора dQ/dt = C(dU/dt) и закона Ома U/R . Напряжение на выводах резистора обозначим U R .
Тогда будет иметь место равенство:

Проинтегрируем последнее выражение . Интеграл левой части уравнения будет равен U out + Const . Перенесём постоянную составляющую Const в правую часть с тем же знаком.
В правой части постоянную времени RC вынесем за знак интеграла:

В итоге получилось, что выходное напряжение U out прямо-пропорционально интегралу напряжения на выводах резистора, следовательно, и входному току I in .
Постоянная составляющая Const не зависит от номиналов элементов цепи.

Чтобы обеспечить прямую пропорциональную зависимость выходного напряжения U out от интеграла входного U in , необходима пропорциональность входного напряжения от входного тока.

Нелинейное соотношение U in /I in во входной цепи вызвано тем, что заряд и разряд конденсатора происходит по экспоненте e -t/τ , которая наиболее нелинейна при t/τ ≥ 1, то есть, когда значение t соизмеримо или больше τ .
Здесь t - время заряда или разряда конденсатора в пределах периода.
τ = RC - постоянная времени - произведение величин R и C .
Если взять номиналы RC цепи, когда τ будет значительно больше t , тогда начальный участок экспоненты для короткого периода (относительно τ ) может быть достаточно линейным, что обеспечит необходимую пропорциональность между входным напряжением и током.

Для простой цепи RC постоянную времени обычно берут на 1-2 порядка больше периода переменного входного сигнала, тогда основная и значительная часть входного напряжения будет падать на выводах резистора, обеспечивая в достаточной степени линейную зависимость U in /I in ≈ R .
В таком случае выходное напряжение U out будет с допустимой погрешностью пропорционально интегралу входного U in .
Чем больше величины номиналов RC , тем меньше переменная составляющая на выходе, тем более точной будет кривая функции.

В большинстве случаев, переменная составляющая интеграла не требуется при использовании таких цепей, нужна только постоянная Const , тогда номиналы RC можно выбирать по возможности большими, но с учётом входного сопротивления следующего каскада.

В качестве примера, сигнал с генератора - положительный меандр 1V периодом 2 mS подадим на вход простой интегрирующей цепи RC с номиналами:
R = 10 kOhm, С = 1 uF. Тогда τ = RC = 10 mS.

В данном случае постоянная времени лишь в пять раз больше времени периода, но визуально интегрирование прослеживается в достаточной степени точно.
График показывает, что выходное напряжение на уровне постоянной составляющей 0.5в будет треугольной формы, потому как участки, не меняющиеся во времени, для интеграла будут константой (обозначим её a ), а интеграл константы будет линейной функцией. ∫adx = ax + Const . Величина константы a определит тангенса угла наклона линейной функции.

Проинтегрируем синусоиду, получим косинус с обратным знаком ∫sinxdx = -cosx + Const .
В данном случае постоянная составляющая Const = 0.

Если подать на вход сигнал треугольной формы, на выходе будет синусоидальное напряжение.
Интеграл линейного участка функции - парабола. В простейшем варианте ∫xdx = x 2 /2 + Const .
Знак множителя определит направление параболы.

Недостаток простейшей цепочки в том, что переменная составляющая на выходе получается очень маленькой относительно входного напряжения.

Рассмотрим в качестве интегратора Операционный Усилитель (ОУ) по схеме, показанной на рисунке.

С учётом бесконечно большого сопротивления ОУ и правила Кирхгофа здесь будет справедливо равенство:

I in = I R = U in /R = - I C .

Напряжение на входах идеального ОУ здесь равно нулю, тогда на выводах конденсатора U C = U out = - U in .
Следовательно, U out определится, исходя из тока общей цепи.

При номиналах элементов RC , когда τ = 1 Sec, выходное переменное напряжение будет равно по значению интегралу входного. Но, противоположно по знаку. Идеальный интегратор-инвертор при идеальных элементах схемы.

Дифференцирующая цепь RC

Рассмотрим дифференциатор с применением Операционного Усилителя.

Идеальный ОУ здесь обеспечит равенство токов I R = - I C по правилу Кирхгофа.
Напряжение на входах ОУ равно нулю, следовательно, выходное напряжение U out = U R = - U in = - U C .
Исходя из производной заряда конденсатора, закона Ома и равенства значений токов в конденсаторе и резисторе, запишем выражение:

U out = RI R = - RI C = - RC(dU C /dt) = - RC(dU in /dt)

Отсюда видим, что выходное напряжение U out пропорционально производной заряда конденсатора dU in /dt , как скорости изменения входного напряжения.

При величине постоянной времени RC , равной единице, выходное напряжение будет равно по значению производной входного напряжения, но противоположно по знаку. Следовательно, рассмотренная схема дифференцирует и инвертирует входной сигнал.

Производная константы равна нулю, поэтому постоянная составляющая при дифференцировании на выходе будет отсутствовать.

В качестве примера, подадим на вход дифференциатора сигнал треугольной формы. На выходе получим прямоугольный сигнал.
Производная линейного участка функции будет константой, знак и величина которой определится наклоном линейной функции.

Для простейшей дифференцирующей цепочки RC из двух элементов используем пропорциональную зависимость выходного напряжения от производной напряжения на выводах конденсатора.

U out = RI R = RI C = RC(dU C /dt)

Если взять номиналы элементов RC, чтобы постоянная времени была на 1-2 порядка меньше длины периода, тогда отношение приращения входного напряжения к приращению времени в пределах периода может определять скорость изменения входного напряжения в определённой степени точно. В идеале это приращение должно стремиться к нулю. В таком случае основная часть входного напряжения будет падать на выводах конденсатора, а выходное будет составлять незначительную часть от входного, поэтому для вычислений производной такие схемы практически не используются.

Наиболее часто дифференцирующие и интегрирующие цепи RC применяют для изменения длины импульса в логических и цифровых устройствах.
В таких случаях номиналы RC рассчитывают по экспоненте e -t/ RC исходя из длины импульса в периоде и требуемых изменений.
Например, ниже на рисунке показано, что длина импульса T i на выходе интегрирующей цепочки увеличится на время 3τ . Это время разряда конденсатора до 5% амплитудного значения.

На выходе дифференцирующей цепи амплитудное напряжение после подачи импульса появляется мгновенно, так как на выводах разряженного конденсатора оно равно нулю.
Далее следует процесс заряда и напряжение на выводах резистора убывает. За время 3τ оно уменьшится до 5% амплитудного значения.

Здесь 5% - величина показательная. В практических расчётах этот порог определится входными параметрами применяемых логических элементов.

Замечания и предложения принимаются и приветствуются!


RC-цепь - электрическая цепь, состоящая из конденсатора и резистора. Её можно рассматривать как делитель напряжения с одним из плеч, обладающих ёмкостным сопротивлением переменному току.

Коэффициент передачи

Интегрирующая RC-цепочка (рис 2) Диффер-ая рис 1

Анализируем RC-цепочку. Применяется как:

1. фильтр частот

Пассивный фильтр

Пассивным электрическим фильтром называется электрическая цепь, предназначенная для выделения определенной полосы частот из сигнала, поступающего на его вход.

Фильтр верхних частот (затухание сигнала)

RC-цепь + ОУ(не даёт затух.сигн,стабильн,коэф пропускания ,усил сигнал

Активный фильтр-менять избирательность фильтра.

Фильтр нижних частот

Коэф передачи


Дифференцирующей цепью называют линейный четырехполюсник, у которого выходное напряжение пропорционально производной входного напряжения. Принципиальная схема дифференцирующей rC -цепи приведена на рис. 5.13, а. Выходное напряжение u вых снимается с резистора r . По второму закону Кирхгофа

а следовательно,

Основные свойства и характеристики п/п. Собственная и примесная проводимость. Зонная энергетическая диаграмма. Уровень Ферми. Генерация и рекомбинация носителей. Время жизни и диффузионная длина. Диффузия и дрейф.

По электрическому сопротивлению полупроводники занимают промежуточное место между проводниками и изоляторами. Полупроводниковые диоды и триоды имеют ряд преимуществ: малый вес и размеры, значительно больший срок службы, большую механическую прочность.

Рассмотрим основные свойства и характеристики полупровод­ников. В отношении их электрической проводимости полупровод­ники разделяются на два типа: с электронной проводимостью и с дырочной проводимостью.

Полупроводники с электронной проводимостью имеют так на­зываемые «свободные» электроны, которые слабо связаны с ядрами атомов. Если к этому полупроводнику приложить разность потенциалов, то «свободные» электроны будут двигаться поступательно – в определенном направлении, создавая, таким образом, электри­ческий ток. Поскольку в этих типах полупроводников электрический ток представляет собой перемещение отрицательно заря­женных частиц, они получили название проводников типа п (от слова negative - отрицательный).

Полупроводники с дырочной проводимостью называются полу­проводниками типа р (от слова positive - положительный). Прохождение электрического тока в этих типах полупроводников можно рассматривать как перемещение положительных зарядов. В полупроводниках с р -проводимостью нет свободных электронов; если атом полупроводника под влиянием каких-либо причин по­теряет один электрон, то он будет заряжен положительно.

Отсутствие одного электрона в атоме, вызывающее положи­тельный заряд атома полупроводника, назвали дыркой (это зна­чит, что образовалось свободное место в атоме). Теория и опыт показывают, что дырки ведут себя как элементарные положитель­ные заряды.

Дырочная проводимость состоит в том, что под влиянием при­ложенной разности потенциалов перемещаются дырки, что равно­сильно перемещению положительных зарядов. В действительности, при дырочной проводимости происходит следующее. Предположим, что имеются два атома, один из которых снабжен дыркой (отсут­ствует один электрон на внешней орбите), а другой находящий­ся справа, имеет все электроны на своих местах (назовем его ней­тральным атомом). Если к полупроводнику приложена разность потенциалов, то под влиянием электрического поля электрон из нейтрального атома, у которого все электроны на своих местах, переместится влево на атом, снабженный дыркой. Благодаря этому атом, имевший дырку, становится нейтральным, а дырка пере­местилась вправо на атом, с которого ушел электрон. В полупровод­никовых приборах процесс «заполнения » дырки свободным электро­ном называется рекомбинацией . В результате рекомбинации исчезает и свободный электрон, и дырка, а создается нейтральный атом. И так, перемещение дырок происходит в направлении, противоположном движению электронов.

В абсолютно чистом (собственном) полупроводнике под действием тепла или света электроны и дырки рождаются парами, поэтому число электронов и дырок в собственном полупроводнике одинаково.

Для создания полупроводников с резко выраженными концентрациями электронов или дырок чистые полупроводники снабжают примесями, образуяпримесные полупроводники . Примеси бывают донорные, дающие электроны, и акцепторные , образующие дырки (т. е. отрывающие электроны от атомов). Следовательно, в полупроводнике с донорной примесью проводимость будет преимущественно электронной, или n – проводимостью. В этих полупроводниках основными носителями зарядов являются электроны, а неосновными – дырки. В полупроводнике с акцепторной примесью, наоборот, основными носителями зарядов являются дырки, а неосновными – электроны; это – полупроводники; с р -проводимостью.

Основными материалами для изготовления полупроводниковых диодов и триодов служат германий и кремний; по отношению к ним донорами являются сурьма, фосфор, мышьяк; акцепторами – индий, галлий, алюминий, бор.

Примеси, которые обычно добавляются в кристаллический полупроводник, резко изменяют физическую картину прохождения электрического тока.

При образовании полупроводника с n -проводимостью в полу­проводник добавляется донорная примесь: например, в полупро­водник германий добавляется примесь сурьмы. Атомы сурьмы, являющиеся донорными, сообщают германию много «свободных» электронов, заряжаясь при этом положительно.


Таким образом, в полупроводнике n-проводимости, образован­ного примесью, имеются следующие виды электрических заря­дов:

1 -подвижные отрицательные заряды (электроны), являющиеся основными носителями (как от донорной примеси, так и от соб­ственной проводимости);

2 -подвижные положительные заряды (дырки) – неосновные носители, возникшие от собственной проводимости;

3 -неподвижные положительные заряды – ионы донорной при­меси.

При образовании полупроводника с р-проводимостью в полупроводник добавляется акцепторная примесь: например, в полупроводник германий добавляется примесь индия. Атомы индия являющиеся акцепторными, отрывают от атомов германия элек­троны, образуя дырки. Сами атомы индия при этом заряжаются отрицательно.

Следовательно, в полупроводнике р-проводимости имеются сле­дующие виды электрических зарядов:

1 -подвижные положительные заряды (дырки) – основные но­сители, возникшие от акцепторной примеси и от собственной про­водимости;

2 -подвижные отрицательные заряды (электроны) – неоснов­ные носители, возникшие от собственной проводимости;

3 -неподвижные отрицательные заряды – ионы акцепторной примеси.

На рис. 1 показаны пластинки р -германия (а) и n -германия (б) с расположением электрических зарядов.

Собственная проводимость полупроводников . Собственным полупроводником,или же полупроводником i-типа называется идеально химически чистый полупроводник с однородной кристаллической решёткой. Ge Si

Кристаллическая структура полупроводника на плоскости может быть определена следующим образом.

Если электрон получил энергию, большую ширины запрещённой зоны, он разрывает ковалентную связь и становится свободным. На его месте образуется вакансия, которая имеет 4-хвалентный

положительный заряд, равный по величине заряду электрона и называется дыркой. В полупроводнике i-типа концентрация электронов ni равна концентрации дырок pi. То есть ni=pi.

Процесс образования пары зарядов электрон и дырка называется генерацией заряда.

Свободный электрон может занимать место дырки, восстанавливая ковалентную связь и при этом излучая избыток энергии. Такой процесс называется рекомбинацией зарядов. В процессе рекомбинации и генерации зарядов дырка как бы движется в обратную сторону от направления движения электронов, поэтому дырку принято считать подвижным положительным носителем заряда. Дырки и свободные электроны, образующиеся в результате генерации носителей заряда, называются собственными носителями заряда, а проводимость полупроводника за счёт собственных носителей заряда называется собственной проводимостью проводника.

2) Примесная проводимость проводников.

Так как у полупроводников i-типа проводимость существенно зависит от внешних условий, в

Полупроводниковых приборах применяются примесные полупроводники.

Если в полупроводник ввести пятивалентную примесь, то 4 валентных электрона восстанавливают ковалентные связи с атомами полупроводника, а пятый электрон остаётся свободным. За счёт этого концентрация свободных электронов будет превышать концентрацию дырок. Примесь, за счёт которой ni>pi, называется донорной примесью.

Полупроводник, у которого ni>pi, называется полупроводником с электронным типом

проводимости, или полупроводником n-типа.

В полупроводнике n-типа электроны называются основными носителями заряда, а дырки– неосновными носителями заряда.

При введении трёхвалентной примеси три её валентных электрона восстанавливают ковалентную связь с атомами полупроводника, а четвёртая ковалентная связь оказывается не восстановленной, т. е. имеет место дырка.

В результатеэтогоконцентрациядырокбудетбольшекон-центрацииэлектронов.

Примесь, при которой pi>ni, называется акцепторной примесью.

Полупроводник, у которого pi>ni, называется полупроводником с дырочным типом

проводимости, или полупроводником p-типа.

В полупроводнике p-типа дырки называются основными носителями заряда, а электроны– неосновными носителями заряда.

RC цепь может изменять форму сложных сигналов так, что выходная форма будет совсем не похожа на входную. Величина искажения определяется постоянной времени RC цепи. Тип искажения определяется выходной компонентой, включенной параллельно выходу. Если параллельно выходу включен резистор, то цепь называется дифференцирующей. используется в цепях синхронизации, для получения узких импульсов из прямоугольных , а также для получения переключающих импульсов и меток. Если параллельно выходу включен конденсатор, то цепь называется интегрирующей. используется в цепях формирования сигналов в радио, телевидении, радиолокаторах и в компьютерах .

На рисунке изображена дифференцирующая цепь .

Напомним, что сложные сигналы состоят из основной частоты и большого числа гармоник. Когда сложный сигнал поступает на дифференцирующую цепь, она влияет на каждую частоту по разному. Отношение емкостного сопротивления (Х с) к R для каждой гармоники различно. Это приводит к тому, что каждая гармоника сдвигается по фазе и уменьшается по амплитуде в разной степени. В результате исходная форма сигнала искажается. На рисунке показано, что происходит с сигналом прямоугольной формы, прошедшим дифференцирующую цепь.

Подобна дифференцирующей, за исключением того, что параллельно выходу включен конденсатор.

На рисунке показано, как изменяется форма прямоугольного сигнала, прошедшего интегрирующую цепь.

Другим типом цепи, изменяющим форму сигнала, является ограничитель сигнала . На рисунке показана форма сигнала на входе ограничителя: отрицательная часть входного сигнала обрезана.

Цепь ограничения может быть использована для обрезания пиков приложенного сигнала, для получения прямоугольного сигнала из синусоидального, для удаления положительных или отрицательных частей сигнала или для поддержания амплитуды входного сигнала на постоянном уровне. Диод смещен в прямом направлении и проводит ток в течение положительного полупериода входного сигнала. В течение отрицательного полупериода входного сигнала диод смещен в обратном направлении и ток не проводит. Цепь является, по существу, однополупериодным выпрямителем .

Используя напряжение смещения можно регулировать величину обрезаемого сигнала. Параллельный ограничитель может быть смещен для изменения уровня ограничения сигнала. Если необходимо ограничить сигнал и с положительной, и с отрицательной сторон, используются два смещенных диода, включенных параллельно выходу. Это позволяет получить выходной сигнал с амплитудой, не превышающей заранее определенный положительный и отрицательный уровень. При таком преобразовании выходной сигнал приобретает форму, близкую к прямоугольной. Следовательно, эта цепь называется генератором прямоугольных колебаний. На рисунке изображена другая схема ограничителя, ограничивающего сигнал как с положительной стороны, так и с отрицательной с помощью двух стабилитронов.

Выходной сигнал ограничен с двух сторон напряжениями стабилизации стабилитронов. Между этими пределами ни один стабилитрон не проводит и входной сигнал проходит на выход.

Иногда желательно изменить уровень отсчета постоянного тока для сигнала переменного тока. Уровень отсчета постоянного тока — это уровень, относительно которого измеряется сигнал переменного тока. Фиксатор может использоваться для фиксации верхнего или нижнего значения сигнала при заданном постоянном напряжении. В отличие от ограничителя сигнала, фиксатор не изменяет форму сигнала. Диодный фиксатор называют восстановителем постоянной составляющей.

Эта цепь обычно используется в радиолокаторах, телевидении, телекоммуникациях и в компьютерах. В изображенной цепи на вход подан сигнал прямоугольной формы. Назначение цепи — ограничить максимальное значение сигнала напряжением 0 вольт без изменения формы сигнала.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows