История накопителей

История накопителей

28.06.2019

Несмотря на завершение эры флоппи-дисков, дискеты с объемом 3.5 до сих пор используются в повседневной жизни.

Рассмотрим детальнее, где их можно встретить, что в них особенного и почему дискета все еще является одним из самых или передачи секретной информации.

Cодержание:

Основные понятия и история использования

Дискета (floppy disk) – это физический носитель информации, с помощью которого данные можно многократно перемещать, стирать, перезаписывать.

Простыми словами, это упрощенный вариант современных флешек и дисковых накопителей.

Первой появилась именно дискета.

Внешне устройство имеет прямоугольную форму и пластиковый корпус. Сверху нанесен ферримагнитный слой, с помощью которого флоппи-дисковод и считывает информацию. Прочитать дискету не получится с помощью . Для этого понадобится специальный флоппи-дисковод.

Сегодня его можно встретить только в старых образцах десктопных компьютеров. Обычно дисковод размещается в нижней части корпуса и имеет следующий вид:

Первая дискета была создана в 1967 году Аланом Шугартом – на то время одним из ведущих специалистов компании IBM. До 1076 года Шугарт создал и развил собственную компанию, которая начала поставлять накопители разработчикам компьютерных систем. С этого и началась эра использования флоппи-дисков. Самый популярный формат дискеты разработала компания Sony в 1981 году. Накопитель с диаметром 3.5 дюйма можно встретить в магазинах до сих пор. Также, именно такой вид дискеты является узнаваемым. В большинстве программ клавиша со значком 3.5-дюймовой дискеты означает сохранение действий.

Дискеты были распространены среди пользователей в период с 70-х по 90-е годы прошлого века.

С изобретением оптических дисков популярность дискет постепенно начала сводится на нет. Как известно, уже сегодня из обихода убираются оптические диски.

Многие производители ноутбуков и персональных компьютеров полностью отказались от использования дисководов.

Несмотря не это, дискеты все еще выпускаются и продаются.

С наступлением 2010-х годов все мировые ИТ-корпорации начали отказываться от производства дискет.

К примеру, в 2011 Sony заявила о полном прекращении создания и продажи 3.5-дюймовых дискет.

Теперь они могут быть изготовлены только по заказу правительства.

Другие случаи отказа от флоппи-дисков:

  • 2014 год – компания Toshiba заявила о закрытии завода по производству дисков. В этом же году завод был переделан под огромную ферму органических овощей;
  • 2015 год – разработчики из Microsoft решили не создавать поддержку флоппи-дисков в . Данная ОС не работает с дискетами и подключить внешний дисковод будет невозможно. Система просто «не увидит» устройство;
  • 2016 год – в Пентагоне составили план по модернизации, одной из целей которого являлся отказ от использования дискет. Выполнение плана назначено на конец 2018-го года.

Форматы дискет

Виды дискет разделяются в зависимости от диаметра накопителя. За все время распространения флоппи-дисков существовали следующие форматы:

  • 8-дюймов;

Первый вид дискет, который получил распространение среди пользователей ПК – это восьмидюймовый накопитель.

Внешне он имеет прямоугольную форму, изготовлен из полимерных материалов.

Сам магнитный механизм находится внутри пластикового чехла. Внутри есть специальная выемка, с помощью которой дисковод считывает информацию с . После запуска работы дисковода устройство считывает местонахождение первой дорожки. Так начинается процесс «расшифровывания» информации с дискеты.

Восьмидюймовая дискета может иметь объем в 80 КБ, 256 КБ или 800 КБ. Со временем такого объема информации стало не хватать даже , поэтому началась разработка дискет с бОльшим объемом.

  • 5,25 дюймов;

Это поколение дискет внешне практически не отличается от восьмидюймовых накопителей.

Единственное отличие - усовершенствованы индексные отверстия для считывания данных.

Благодаря использованию новой технологии создания материала для футляра, диск сохранялся более длительное время, был устойчив к царапинам и падениям с небольшой высоты.

Флоппи-диски такого типа существовали односторонние или двусторонние. Для начала использования дополнительной стороны достаточно было перевернуть накопитель. В односторонних моделях это действие могло проредить дисковод.

На 5,25-дюйовых дискетах можно было хранить 110 КБ, 360 КБ, 720 КБ или же 1200 КБ информации.

Выпуск таких дискет закончился еще в начале 2000-х.

  • 3,5 дюймов;

3,5-дюймовая дискета – это самый популярный вариант флоппи-накопителей.

Внешне она отличается от предыдущих поколений еще более прочным корпусом, а также полностью цельной поверхностью.

В этом типе дискет появилась возможность установки .

её может настроить пользователь дискеты перед первой записью информации на съемный носитель.

Объем дискеты 3,5 определяется с помощью квадратных отверстий в правом нижнем углу устройства. Один квадрат – вместимость 720 КБ , два – 1,44 МБ и три – 2,88 МБ .

Несмотря на все недостатки в использовании дискет, а именно небольшую вместимость и чувствительность к влиянию магнитного поля, дискета 3,5 была популярна даже после выхода оптических дисков.

Все из-за удобства в передаче данных и дешевой стоимости дискет, дисководов.

Если верить археологам, желание записать информацию у человека появилось примерно сорок тысяч лет назад. Самым первым носителем была скала. У этого стационарного хранилища данных была масса достоинств (надежность, устойчивость к повреждениям, большая емкость, высокая скорость считывания) и один недостаток (трудоемкость и неспешность записи). Поэтому с течением времени стали появляться все более и более продвинутые носители информации.


Перфорированная бумажная лента




В большинстве ранних компьютеров использовалась бумажная лента, намотанная на бобины. Информация хранилась на ней в виде дырочек. Некоторые машины, такие как Colossus Mark 1 (1944), работали с данными, которые вводились при помощи ленты в реальном времени. Более поздние компьютеры, например, Manchester Mark 1 (1949), считывали программы с ленты и для последующего выполнения загружали их в примитивное подобие электронной памяти. Перфорированная лента использовалась для записи и чтения данных на протяжении тридцати лет.

Перфокарты





История перфокарт уходит корнями в самое начало XIX века, когда они использовались для управления ткацкими станками. В 1890 году Герман Холлерит применил перфокарту для обработки данных переписи населения в США. Именно он нашел компанию (будущую IBM), которая использовала такие карты в своих счетных машинах.

В 1950-х годах IBM уже вовсю использовала в своих компьютерах перфокарты для хранения и ввода данных, а вскоре этот носитель стали применять и другие производители. Тогда были распространены 80-столбцовые карты, в которых для одного символа отводился отдельный столбец. Кто-то может удивиться, но в 2002 году IBM все еще продолжала разработки в области технологии перфокарт. Правда, в XXI веке компанию интересовали карточки размером с почтовую марку, способные хранить до 25 миллионов страниц информации.

Магнитная лента






Вместе с выходом первого американского коммерческого компьютера UNIVAC I (1951) в IT-индустрии началась эра магнитной пленки. Первопроходцем, как водится, снова стала IBM, потом «подтянулись» другие. Магнитная лента наматывалась открытым способом на катушки и представляла собой очень тонкую полосу пластика, покрытого магниточувствительным веществом.

Машины записывали и считывали данные при помощи специальных магнитных головок, встроенных в привод бобин. Магнитная лента широко использовалась во многих моделях компьютеров (особенно мейнфреймах и мини-компьютерах) вплоть до 1980-х, пока не изобрели ленточные картриджи.

Первые съемные диски






В 1963 году IBM представила первый винчестер со съемным диском – IBM 1311. Он представлял собой набор взаимозаменяемых дисков. Каждый набор состоял из шести дисков диаметром 14 дюймов, вмещавших до 2 Мб информации. В 1970-х многие винчестеры, к примеру, DEC RK05, поддерживали такие дисковые наборы, особенно часто их использовали производители миникомпьютеров для продажи программного обеспечения

Ленточные картриджи





В 1960-х производители компьютерного железа научились помещать рулоны магнитной ленты в миниатюрные пластиковые картриджи. От своих предшественниц, бобин, они отличались большим сроком жизни, портативностью и удобством. Наибольшее распространение они получили в 1970-е и 1980-е. Как и бобины, картриджи оказались очень гибкими носителями: если нужно было записать очень много информации, в картридж просто помещалось больше ленты.

Сегодня ленточные картриджи типа 800-гигабайтного LTO Ultrium используются для масштабной поддержки серверов, хотя в последние годы их популярность упала ввиду большего удобства переноса данных с винчестера на винчестер.

Печать на бумаге






В 1970-х благодаря относительно низкой стоимости популярность набирают персональные компьютеры. Однако существовавшие способы хранения данных многим оказались не по карману. Один из первых ПК, MITS Altair поставлялся и вовсе без носителей для записи информации. Пользователям предлагалось вводить программы при помощи специальных тумблеров на передней панели. Тогда, на заре развития «персоналок», пользователям нередко приходилось в буквальном смысле вставлять в компьютер листки с
написанными от руки программами. Позднее программы стали распространяться в печатном виде через бумажные журналы.

Дискеты




В 1971 году на свете появилась первая дискета IBM. Она представляла собой покрытый магнитным веществом 8-дюймовый гибкий диск, помещенный в пластиковый корпус. Пользователи быстро поняли, что для загрузки данных в компьютер «флоппи-диски» быстрее, дешевле и компактнее, чем стопки перфокарт. В 1976 году один из создателей первой дискеты, Алан Шугарт, предложил ее новый формат – 5,25-дюймов. В таком размер просуществовала до конца 1980-х, пока не появились 3.5-дюймовые дискеты Sony. Как это начиналось...

В конце 60-х годов американская фирма IBM предложила новое запоминающее устройство, которое использовало гибкий диск (флоппидиск). Гибкий диск работает так же, как и жесткий, но выполнен в виде упругой круглой пластинки с пластиковой основой, покрытой магнитным составом. Диск помещен в специальный гибкий конверт-кассету, предохраняющий его от механических повреждений и пыли.

Диск с конвертом устанавливается пользователем в специальное устройство (дисковод). В этом устройстве он вращается внутри конверта со скоростью около 300 об/мин.

Для уменьшения трения внутренняя часть конверта покрывается особым материалом. Через специально сделанные прорези магнитная головка считывания-записи дисковода контактирует с поверхностью диска и производит считывание или запись соответствующей информации. Накопитель на гибких магнитных дисках (НГМД) - сложное механическое устройство, оно требует подключения к компьютеру специального электронного блока-контроллера, который преобразует команды, поступающие от машины к накопителю, и следит за их выполнением, а также управляет процессом обмена данными.

Фирма IBM предложила использовать гибкие диски диаметром 203 мм (8 англ. дюймов) и разработала соответствующий стандарт на эти дисковые накопители.

Новое устройство внешней памяти начало приобретать большую популярность. В 1976 г. было продано около 200 тыс. устройств, в 1981 г. уже 3-4 млн, на общую сумму 2,3 млрд. долл., а в 1984 г. было поставлено 8,2 млн. НГМД на сумму 4,2 млрд. долл. Только в США в 1984 г. для НГМД было изготовлено 285 млн. гибких дисков.

Вместе с бурным развитием вычислительной техники усовершенствовались и НГМД . В начале 70-х годов американский изобретатель Ален Шугарт предложил уменьшить диаметр дисков до 133 мм (5,25 дюйма). В 1976 г. образованная им фирма "Шугарт Ассошиэйтс" выпустила первые накопители с гибкими дисками такого размера, получившие название минидисков (минифлоппи). Несмотря на первоначально меньший объем внешней памяти, эти накопители были вдвое дешевле стандартных с 203-мм дисками. Последнее обстоятельство сразу привлекло к ним внимание широкой группы пользователей ПК.

Улучшение качества записи и качества магнитных головок позволило перейти к гибким дискам с двойной плотностью записи.

Первые 203-мм и 133-мм гибкие диски использовали в работе только одну сторону диска. С целью увеличения объема внешнего накопителя были разработаны и начали поставляться устройства, в которых информация записывалась и считывалась с обеих сторон диска. Это увеличило объем памяти в 2 раза, а с учетом двойной плотности записи - в 4 раза.

Разработкой и производством НГМД занималось несколько десятков фирм в США, Японии, ФРГ и других странах. Эти устройства быстро вытеснили накопители на магнитной ленте во многих случаях применения ПК. Использование НГМД на порядок увеличивало быстродействие системы.

В настоящее время внешняя память на гибких магнитных дисках стала неотъемлемой частью типовой конфигурации большинства учебных и всех профессиональных ПК.

В каких направлениях шло дальнейшее техническое развитие НГМД ?

Во-первых, продолжалось уменьшение физических размеров накопителей, в частности, по высоте. Многие фирмы выпускали накопители половинной высоты, т. е. в прежнем корпусе можно было разместить уже два устройства.

Во-вторых, были реализованы успешные попытки уменьшить диаметр дисков, а следовательно, и габариты накопителя.Так, японская фирма "Сони" разработала НГМД с дисками диаметром 89 мм (3,5 дюйма). Диск помещен в жесткий конверт размером 90x94 мм (3,54x3,7 дюйма) и толщиной 1,3 мм., оборудованный специальной металлической "шторкой". Когда диск вставляется в дисковод, "шторка" автоматически сдвигается и открывает прорезь в конверте, через которую магнитная головка взаимодействует с гибким диском. При двойной плотности записи подобный диск с односторонней записью вмещает 360 Кбайт, а при двусторонней записи - 720 Кбайт.

Стандартный накопитель фирмы "Сони" стоил примерно 10% дороже, чем накопитель на 133-мм дисках, а сами 89-мм диски были дороже аналогичных 133-мм дисков в 2-2,5 раза. Однако малый размер дисков и самого накопителя жесткая конструкция конверта с диском и защита поверхности диска с помощью "шторки" привлекли к этому типу НГМД значительное количество пользователей. Накопители с 89-мм дисками объемом 720 Кбайт нашли применение во многих портативных ПК, например в моделях японской фирмы "Тошиба" - T1100, Т1200, Т3100, американских фирм"Зенит Дейта Системс" - Z181, "Бондвелл Инк. " - Bondwell 8 и др. Фирма IBM в моделях ПК серии PS/2 использует НГМД c дисками диаметром 89 мм, объемом 720 Кбайт и 1,44 Мбайт.

В-третьих, за счет использования новых технических средств и технологий ряд фирм разрабатывали НГМД сповышенным объемом памяти.

Так, фирма IBM в PC AT применила накопители на 133-мм дисках объемом 1,2 Мбайт форматированной памяти. За счет перехода к большей плотности расположения дорожек на диске удалось более чем вдвое повысить объем внешнего накопителя ПК.

Японская фирма "Хитачи-Максвелл" объявила о разработке 133-мм гибких магнитных дисков с объемом памяти 19 Мбайт на диск. За короткий срок объем 89-мм дисков возрос с 360 Кбайт до 1,44 Мбайт.

К началу 1987 г. наиболее распространенными в мире были 133-мм диски для ПК фирмы IBM и практически пересталивыпускаться накопители на дисках диаметром 203 мм. Очень быстро растет рынок 89-мм НГМД .

По оценкам фирмы "Дейтаквест" (США) производство 133-мм накопителей росло с 8,2 млн. штук в 1985 г. до 11 млн.штук в 1987 г., а затем упало к 1991 г. до 7,3 млн. штук. Одновременно возросло производство 89-мм накопителей с 603 тыс. штук в 1985 г. до 14 млн. штук в 1991 г., т. е. к концу 80-х годов оно превысило производство 133-мм накопителей.

Стоимость стандартного накопителя для IBM PC с 133-мм дисками объемом 360 Кбайт составляла в США в середине 1987 г., 65 долл., а с 89-мм дисками объемом 720 Кбайт - 150 долл.

Компакт-кассеты





Компакт-кассета была изобретена компанией Philips, которая догадалась помесить две небольшие катушки магнитной пленки в пластиковый корпус. Именно в таком формате в 1960-х годах делались аудиозаписи. HP использовала такие кассеты в своем десктопе HP 9830 (1972), но по началу такие кассеты в качестве носителей цифровой информации особой популярностью не пользовались. Потом искатели недорогих носителей данных все же обернули свой взор в сторону кассет, которые с их легкой руки оставались востребованными до начала 1980-х. данные на них, кстати, можно было загружать с обычного аудиоплеера.

После появления первого устройства магнитного хранения данных (IBM RAMAC) рост поверхностной плотности записи достигал 25 % в год, а с начала 1990-х - 60 процентов. Разработка и внедрение магниторезистивных (1991 года) и гигантских магниторезистивных (1997 года) головок еще больше ускорили увеличение поверхностной плотности записи. За 45 лет, прошедших с момента появления первых устройств магнитного хранения данных, поверхностная плотность записи выросла более чем в 5 миллионов раз.

В современных накопителях размером 3.5 дюйма величина этого параметра составляет 10-20 Гбит/дюйм 2 , а в экспериментальных моделях достигает 40 Гбит/дюйм 2 . Это позволяет выпускать накопители емкостью более 400 Гбайт.


ROM-картриджи




ROM-картридж – это плата, состоящая из постоянного запоминающего устройства (ROM) и коннектора, помещенных в твердую оболочку. Область применения картриджей – компьютерные игры и программы. Так, в 1976 году компания Fairchild выпустила ROM-картридж для записи ПО под видеоприставку Fairchild Channel F. Вскоре под использование ROM- картриджей были адаптированы и домашние компьютеры типа Atari 800 (1979) или TI-99/4 (1979).

ROM-картриджи были просты в использовании, но относительно дороги, из-за чего, собственно, и «умерли».



Великие эксперименты с дискетами





В 1980-х многие компании попробовали создать альтернативу дискете размером 3,5 дюйма. Одно такое изобретение (на фото вверху в центре) трудно назвать дискетой даже с натяжкой: картридж ZX Microdrive состоял из огромного мотка магнитной ленты, по принципу восьмидорожковой кассеты. Другой экспериментатор, Apple, создал дискету FileWare (справа), которая поставлялась вместе с первым компьютером Apple Lisa – худшим девайсом в истории компании по версии Network World, a также 3-дюймовый Compact Disk (внизу слева) и редкую сейчас 2-дюймовую дискету

LT-1 (вверху слева), использовавшуюся исключительно в ноутбуке Zenith Minisport 1989 года выпуска. Остальные эксперименты завершились созданием продуктов, которые стали нишевыми и не смогли повторить успех своих 5,25-дюймовой и 3,5-дюймовой предшественниц.

Оптический диск






Компакт-диск, изначально использовавшийся как носитель цифровой аудиоинформации, обязан своим рождением совместному проекту Sony и Philips и впервые появился на рынке в 1982 году. Цифровые данные хранятся на этом пластиковом носителе в виде микроуглублений на его зеркальной поверхности, а считывается информация при помощи лазерной головки.
Как оказалось, что цифровые CD как нельзя лучше подходят для хранения компьютерных данных, и вскоре те же Sony и Philips доработали новинку.

Так в 1985 году мир узнал о CD-ROMах.

На протяжении последующих 25 лет оптический диск претерпел массу изменений, его эволюционная цепочка включает DVD, HD-DVD и Blu-ray. Значимой вехой было появление в 1988 году CD-Recordable (CD-R), позволившего пользователям самостоятельно записывать данные на диск. В конце 1990-х оптические диски, наконец, подешевели, и окончательно отодвинули дискеты на задний план.

Магнитооптические носители




Как и компакт-диски, магнитооптические диски «читает» лазер. Однако в отличие от обычных CD и CD-R большинство магнитооптических носителей позволяют многократно наносить и стирать данные. Это достигается посредством взаимодействия магнитного процесса и лазера при записи данных. Первый магнитооптический диск входил в комплект компьютера NeXT (1988 год, фото справа внизу), а емкость его составляла 256 Мб. Самый известный носитель этого типа – аудиодиск MiniDisc Sony (вверху в центре, 1992 год). Был у него и «собрат» для хранения цифровых данных, который назывался MD-DATA (слева вверху). Магнитооптические диски производятся до сих пор, однако из-за малой емкости и относительновысокой стоимости они перешли в разряд нишевых продуктов.

Iomega и Zip Drive





Iomega заявила о себе на рынке носителей информации в 1980-х, выпустив картриджи с магнитными дисками Bernoulli Box, емкостью от 10 до 20 Мб.

Более поздняя интерпретация этой технологии воплотилась в так называемом носителе Zip (1994 год), который вмещал до 100 Мб информации на недорогой 3,5-дюймовом диске. Формат пришелся по душе демократичной ценой и хорошей емкостью, и диски Zip оставались на гребне популярности до конца 1990-х. Однако на уже появившиеся в то время CD-R можно было записать до 650 Мб, и когда их цена снизилась до нескольких центов за штуку, продажи Zip-дисков катастрофически упали. Iomega сделала попытку спасти технологию и разработала диски размером 250 и 750 Мб, однако CD-R к тому времени уже окончательно завоевали рынок. Так Zip стал историей.

Флоппиобразные-диски




Первую супердискету выпустила компания Insight Peripherals в 1992 году. На 3,5-дюймовом диске вмещалось 21 Мб информации. В отличие от других носителей, этот формат был совместим с более ранними традиционными приводами для 3,5-дюймовых дискет. Секрет высокой эффективности таких накопителей крылся в сочетании гибкого диска и оптики, то есть данные записывались в магнитной среде при помощи лазерной головки, при этом обеспечивалась более точная запись и больше дорожек, соответственно, больше места. В конце 1990-х появились два новых формата – Imation LS-120 SuperDisk (120 Мб, справа внизу) и Sony HiFD (150 Мб, справа вверху). Новинки стали серьезными конкурентами Iomega Zip drive, однако в конечном итоге всех победил формат CD-R.

Бардак в мире портативных носителей





Громкий успех Zip Drive в середине 1990-х породил массу подобных устройств, производители которых надеялись отхватить кусок рынка у Zip. Среди основных конкурентов Iomega можно отметить SyQuest, который сначала раздробил собственный сегмент рынка, а потом погубил свою продуктовую линейку чрезмерным разнообразием – SyJet, SparQ, EZFlyer и EZ135. Еще один серьезный, но «мутный» соперник – Castlewood Orb, придумавший диск наподобие Zip емкостью 2,2 Гб.

Наконец, сама компания Iomega сделала попытку дополнить диск Zip другими типами съемных носителей – от больших съемных винчестеров (1- и 2-гигабайтные Jaz Drive) до миниатюрного Clik drive на 40 Мб. Но ни один не достиг высот Zip.

Flash наступает





В начале 1980-х Toshiba придумала флеш-память NAND, однако технология стала популярной только спустя десятилетие, вслед за появлением цифровых камер и PDA. В это время она начинает реализовываться в разных формах – от больших кредитных карт (предназначенных для использования в ранних наладонниках) до карточек CompactFlash, SmartMedia, Secure Digital, Memory Stick и xD Picture Card.

Карты флеш-памяти удобны, прежде всего, тем, что в них нет подвижных частей. Кроме этого, они экономичны, прочны и относительно недороги при постоянно увеличивающемся объеме памяти. Первые карточки CF вмещали 2 Мб, сейчас же их емкость достигает 128 Гб.

Куда уж меньше






На промослайде IBM/Hitachi изображен крошечный винчестер Microdrive. Появился он в 2003 году и на какое-то время завоевал сердца компьютерных пользователей.

Дебютировавший в 2001 году iPod и другие медиа-плееры оснащены похожими устройствами на базе вращающегося диска, однако производители быстро разочаровались в таком накопителе: слишком уж он хрупок, энергоемок и мал по объему. Так что этот формат уже почти «похоронен».

1956 год - жёсткий диск IBM 350 в составе первого серийного компьютера IBM 305 RAMAC. Накопитель занимал ящик размером с большой холодильник и имел вес 971 кг, а общий объём памяти 50 вращавшихся в нём покрытых чистым железом тонких дисков диаметром 610 мм составлял около 5 миллионов 6-битных байт (3,5 Мб в пересчёте на 8-битные байты).

А вот то, что касается жестких дисков.
* 1980 год - первый 5,25-дюймовый Winchester, Shugart ST-506, 5 Мб.
* 1981 год - 5,25-дюймовый Shugart ST-412, 10 Мб.
* 1986 год - стандарты SCSI, ATA(IDE).
* 1991 год - максимальная ёмкость 100 Мб.
* 1995 год - максимальная ёмкость 2 Гб.
* 1997 год - максимальная ёмкость 10 Гб.
* 1998 год - стандарты UDMA/33 и ATAPI.
* 1999 год - IBM выпускает Microdrive ёмкостью 170 и 340 Мб.
* 2002 год - стандарт ATA/ATAPI-6 и накопители емкостью свыше 137 Гб.
* 2003 год - появление SATA.
* 2005 год - максимальная ёмкость 500 Гб.
* 2005 год - стандарт Serial ATA 3G (или SATA II).
* 2005 год - появление SAS (Serial Attached SCSI).
* 2006 год - применение перпендикулярного метода записи в коммерческих накопителях.
* 2006 год - появление первых «гибридных» жёстких дисков, содержащих блок флеш-памяти.
* 2007 год - Hitachi представляет первый коммерческий накопитель ёмкостью 1 Тб.
* 2009 год - на основе 500-гигабайтных пластин Western Digital, затем Seagate Technology LLC выпустили модели ёмкостью 2 Тб.
* 2009 год - Western Digital объявила о создании 2,5-дюймовых HDD объемом 1 Тб (плотность записи - 333 Гб на одной пластине)
* 2009 год - появление стандарта SATA 3.0 (SATA 6G).

Пришествие USB





В 1998 году началась эпоха USB. Неоспоримое удобство USB-девайсов сделало их практически неотъемлемой частью жизни всех ПК-пользователей. С годами они уменьшаются в физических размерах, но становятся все более емкими и дешевыми. Особенно популярны появившиеся в 2000 году «флешки», или USB thumb drives (от англ. thumb – «большой палец»), названные так за свой размер – с человечески палец. Благодаря большой емкости и маленькому размеру USB-накопители стали, пожалуй, самым лучшим носителем информации, придуманных человечеством.

Переход в виртуальность




На протяжении последних пятнадцати лет локальные сети и интернет постепенно вытесняют портативные носители информации из жизни ПК-пользователей. Поскольку сегодня практически любой компьютер имеет выход в глобальную сеть, пользователям нечасто требуется переносить данные на внешние девайсы или переписывать на другой компьютер. В наше время за перенос информации отвечают провода и электронные сигналы. Беспроводные стандарты Bluetooth и Wi-Fi и вовсе делают физические компьютерные соединения ненужными.

Весной 2016 года Российская академия наук (РАН) обнародовала условия участия в конкурсе на распределение грантов для молодых учёных. Одно из требований к заявкам: они должны быть поданы на дискетах 3,5, а файл создан в программе Word-6. На следующий день пресс-секретарь президиума РАН Сергей Шаракшанэ уточнил , что заявку можно подать и другими способами, в том числе по интернету. Однако дискеты действительно всё ещё используют в научной среде. Например, российские издания «Неотложная терапия » и «Кафедра. Стоматологическое образование » принимают публикации именно на этих носителях.

В сентябре 2015 года инженер Финн Гундерсен рассказал в своём блоге, что в Норвегии врачи получают информацию о пациентах на флоппи-дисках. Гундерсен считает, что дело в экономии - это самый дешёвый носитель - и сложившихся традициях.

«Секрет» выяснил, кто и как пользуется устаревшими носителями, несовременными технологиями передачи информации и устройствами и кто на этом зарабатывает.

Дискеты

Восьмидюймовые дискеты появились в начале 70-х как инновационная разработка компании IBM. Через десять лет компании Philips и Sony выпустили оптический компакт-диск. CD и DVD начали вытеснять дискеты с рынка. Они оказались более долговечным и универсальным носителем - магнитные диски часто застревали в дисководах, размагничивались, а многообразие форматов кодирования делало их нечитаемыми на устройствах разных платформ.

Кассетные магнитофоны в настоящее время не производятся. Но в магазинах электроники можно встретить проигрыватели, воспроизводящие аудиокассеты и диски одновременно. Среди брендов, поставляющих подобные устройства, компания Sony. Стоимость проигрывателя в среднем равняется 4000 рублей.

Факс

Факсимильный аппарат был изобретён в 1843 году шотландским физиком Александром Бейном. Он представлял собой электрический телеграф, способный передавать изображение. В 1924 году компания AT&T создала свой фототелеграф. Несколько десятилетий он активно использовался в фотожурналистике, а в 1964-м компания Xerox сделала факс, которым пользуются до сих пор - передача изображений стала осуществляться по телефонным линиям.

В 70-х факс был самой передовой технологией передачи информации, но сегодня электронная почта почти вытеснила факсимильные аппараты с рынка. Компания NPD, изучающая рыночную конъюнктуру, подсчитала , что в 2012 году американцы купили 350 000 факсов, это на 14% меньше, чем в 2011 году. Падение спроса подтверждает статистика компании «Ситилинк». Сейчас ассортимент магазина представлен одним производителем - Panasonic. В 2014 году продажи факсов упали на 50% по сравнению с 2013-м, а в 2015 году - ещё на 40%. «Объём продаж факсов в количественном выражении - всего несколько тысяч штук за год. Но пока будет спрос, факсы останутся в нашем ассортименте», - говорит Павел Комаров, директор по закупкам электронного дискаунтера «Ситилинк».

В связи с падением спроса производители факсов стараются подстраховаться - выпускают факсимильные аппараты в составе многофункциональных устройств. В частности, так поступил крупный производитель электроники HP. В 2011–2012 годах по всему миру было продано 37 млн таких устройств.

Активнее всех факсом пользуются госпредприятия и ведомственные учреждения. Это вынуждает связанные с ними компании пользоваться факсимильными аппаратами. «Мы получаем по факсу официальные запросы на информацию от правоохранительных органов и Федеральной службы РФ по контролю за оборотом наркотиков в рамках проведения ими доследственных проверок и оперативно-розыскных мероприятий», - рассказывает Олег Мотовилов, коммерческий директор компании Caravan. При этом в месяц может приходить не больше шести сообщений.

По аналогичным причинам имеют факсимильный аппарат в НПО «Родина». По словам Леонида Богуславского, первого заместителя генерального директора компании, большинство ведомств, а также некоторые заводы в РФ до сих пор активно пользуются факсом. «Но как только они откажутся от них, так сразу от этой практики уйдём и мы», - говорит Богуславский.

Пейджеры

Первая коммерческая версия пейджера появилась в 1956 году, её выпустила компания Motorola. Радиус действия достигал 200 м, а количество абонентов - 57 человек. Устройство односторонней связи, позволяющее «тихо» передавать информацию, получило широкое распространение в полиции, армейских подразделениях, больницах и правительственных службах.

В 80-е появились устройства в виде часов с миниатюрными дисплеями - с возможностью напрямую отправлять сообщения. По данным университета Motorola, в 1992 году общее количество пейджеров в мире составляло 30 млн штук. Устройством пользовалось 6% населения США и 17% жителей Сингапура. Особую популярность пейджеры приобрели в бизнес-среде. В 1995 году в России 80% передаваемых сообщений носили деловой характер, 17–18% - личный, ещё 2–3% приходилось на назначения свиданий и поздравления.

В конце нулевых сотовые телефоны (в частности, благодаря функции SMS) вытеснили пейджеры с рынка. Биперы вернулись в больницы и пожарные службы. Компания CEA подсчитала , что в 2012 году в США было куплено 10 000 пейджеров на общую сумму в $7 млн.

Сегодня пейджеры выпускает французская компания TPL Systèmes, а также канадские фирмы - Rogers, PageNet и Bell. Их основные потребители - экстренные службы. Например, среди клиентов PageNet порядка 500 медицинских учреждений. В 2015 году на 25,5 млн абонентов сотовой связи в Канаде приходилось 161 500 клиентов пейджинговых служб. Однако с 2009 года наблюдается ежегодное уменьшение пользователей пейджера в среднем на 10,7% в год.

Фотоплёнка

В середине нулевых, когда цифровые фотоаппараты стали доступными по цене, производители «плёнки» стали массово отказываться от её производства. В 2006 году сразу три компании сообщили о приостановлении производства традиционных фотоаппаратов - Canon, Nikon и Konica Minolta Holdings. Компания Canon пришла к подобному решению после анализа продаж - годом ранее, в 2005-м, ей удалось продать 64,8 млн цифровых камер и только 5,4 млн плёночных.

Finis Conner ) пригласил Алана Шугарта принять участие в разработке и выпуске дисководов с дисками диаметром 5¼″, в результате чего фирма Shugart Associates, разработав контроллер и оригинальный интерфейс Shugart Associates SA-400, выпустила дисковод для миниатюрных (mini-floppy) гибких дисков на 5¼″, который, быстро вытеснив дисководы для дисков 8″, стал популярным в персональных компьютерах. Компания Shugart Associates также создала интерфейс Shugart Associates System Interface (SASI), который после формального одобрения комитетом ANSI в 1986 году был переименован в Small Computer System Interface (SCSI).
  • - Sony выводит на рынок дискету диаметром 3½″ (90 мм). В первой версии (DD) объём составляет 720 килобайт (9 секторов). В 1984 году фирма Hewlett-Packard впервые использовала этот накопитель в своем компьютере HP-150. Поздняя версия (HD) имеет объём 1440 килобайт или 1,44 мегабайт (18 секторов).
  • 1984 год - фирма Apple стала использовать накопители 3½″ в компьютерах Macintosh
  • 1987 год - 3½″ HD накопитель появился в компьютерных системах PS/2 фирмы IBM и становится стандартом для массовых ПК.
  • 1987 год - официально представлены разработанные в 1980-х годах фирмой Toshiba Corporation дисководы сверхвысокой плотности (англ. Extra High Density, ED ), носителем для которых служила дискета ёмкостью 2880 килобайт или 2,88 мегабайт (36 секторов).
  • 2002 год - фирма Sony продала в 2002 году 47 миллионов дискет .
  • 2011 год - фирма Sony в марте 2011 года прекратила производство и продажу дискет 3½″.
  • 2014 год - фирма Toshiba в октябре 2014 года перепрофилировала свой завод по выпуску дискет в овощную ферму .
  • Форматы, в зависимости от диаметра диска

    8″

    Конструктивно дискета 8″ (диск диаметром 8 дюймов) представляет собой диск из полимерных материалов с магнитным покрытием, заключенный в гибкий пластиковый футляр. В футляре имеются отверстия: большое круглое в центре - для шпинделя, маленькое круглое - окно индексного отверстия, позволяющего определить начало дорожки и прямоугольное с закруглёнными концами - для магнитных головок дисковода. Также внизу располагается выемка, сняв наклейку с которой, можно защитить диск от записи. Форматы дискеты различаются количеством секторов на дорожке. В зависимости от формата, дискеты 8″ вмещают следующие объёмы информации: 80, 256 и 800 КБ.

    5¼″

    Пластиковое кольцо на краях приводного отверстия дискеты 5¼″ для повышения износостойкости

    Конструкция пятидюймовой (величина 5,25 дюйма примерно равна 13,34 сантиметрам) дискеты мало отличается от восьмидюймовой: окно индексного отверстия располагается справа, а не сверху, прорезь для защиты от записи - тоже в правой части дискеты. Для лучшей сохранности диска его футляр сделан более жестким, укреплённым по периметру. Для предотвращения преждевременного износа между футляром и диском размещается антифрикционная прокладка, а края приводного отверстия укреплены пластиковым или металлическим кольцом.

    Существовали дискеты с жёсткой разбивкой на сектора: они отличались наличием нескольких индексных отверстий по количеству секторов. В дальнейшем от такой схемы отказались.

    Как дискеты, так и дисководы пятидюймовых дисков существуют одно- и двусторонние. При использовании одностороннего дисковода считать вторую сторону, просто перевернув дискету, не удаётся из-за расположения окна индексного отверстия - для этого требуется наличие аналогичного окна, расположенного симметрично существующему. Механизм защиты данных также был пересмотрен - окно располагается справа, и заклеенное отверстие означает защищенный диск. Это было сделано для защиты от неправильной установки.

    Форматы записи на пятидюймовые дискеты позволяет хранить на ней 110, 360, 720 или 1200 килобайт данных.

    • Устройство дискеты 5¼″
    • Дискета 5,25 дюйма в разобранном виде (с раскрытым футляром).jpg

      Дискета 5,25 дюйма в разобранном виде (с раскрытым футляром): 1 - футляр; 2 - антифрикционные прокладки; 3 - окно для шпинделя привода; 4 - окно индексного отверстия; 5 - окно для магнитных головок; 6 - полимерный диск с магнитным покрытием; 7 - отверстие для шпинделя привода; 8 - индексное отверстие; 9 - выемка защиты от записи

      Футляр дискеты 5,25 дюймов в развёрнутом виде.jpg

      Футляр в развёрнутом виде

      Магнитный диск дискеты 5,25 дюйма.jpg

      Магнитный диск

      Оборотная сторона дискеты 5,25 дюйма - варианты крепления клапанов футляра.jpg

      Варианты закрепления клапанов футляра: термосвариванием (вверху) и склеиванием (внизу)

    Информация о содержимом дискеты указывается на этикетке, обычно располагающейся на лицевой стороне в части, противоположной отверстию для магнитной головки дисковода.

    Для хранения и транспортировки дискет обычно используются бумажные конверты. На конвертах размещается различная информация о производителе дискеты, либо её наполнении. На оборотной стороне конверта иногда размещается информация по правильному использованию и хранению дискеты.

    Информация по использованию дискеты на оборотной стороне конверта


    3½″

    Принципиальным отличием дискеты 3½″ является жёсткий пластмассовый корпус. Вместо индексного отверстия в дискетах диаметром 3½″ используется металлическая втулка с установочным отверстием, которая находится в центре дискеты. Механизм дисковода захватывает металлическую втулку, а отверстие в ней позволяет правильно позиционировать дискету, поэтому отпала необходимость делать для этого отверстие непосредственно в магнитном диске. В отличие от 8″ и 5¼″ дискет, окно для головок дискеты 3½″ закрыто сдвижной металлической заслонкой, которая открывается при установке её в дисковод. Защита от записи выполнена сдвигающейся шторкой в нижнем левом углу. Снизу справа находятся окошки, позволяющие схеме дисковода по количеству отверстий определить плотность записи на дискету:

    • нет - 720 КБ,
    • одно - 1,44 МБ,
    • два - 2,88 МБ.

    Несмотря на многие недостатки - чувствительность к магнитным полям и недостаточную уже к середине 90-х годов ёмкость, формат 3½″ продержался на рынке треть века, начав сдавать позиции лишь после появления доступных по цене накопителей на основе флэш-памяти .

    Устройство дискеты 3½″

    1 - окошко, определяющее плотность записи (на другой стороне - переключатель защиты от записи); 2 - основа диска с отверстиями для приводящего механизма; 3 - защитная шторка открытой области корпуса; 4 - пластиковый корпус дискеты; 5 - антифрикционная прокладка; 6 - магнитный диск; 7 - область записи (красным условно выделен один сектор одной дорожки).


    Iomega Zip

    К середине 90-х ёмкости дискеты даже в 2,88 МБ уже было недостаточно. На смену дискете 3,5″ претендовали несколько форматов, среди которых наибольшую популярность завоевали дискеты Iomega Zip. Так же, как и дискета 3,5″, носитель Iomega Zip представлял собой мягкий полимерный диск, покрытый ферромагнитным слоем и заключённый в жёсткий корпус с защитной шторкой. В отличие от 3,5″-дискеты, отверстие для магнитных головок располагалось в торце корпуса, а не на боковой поверхности. Существовали дискеты Zip на 100, 250, а к концу существования формата - и 750 МБ. Кроме бо́льшего объёма, диски Zip обеспечивали более надёжное хранение данных и более высокую скорость чтения и записи, чем 3,5″. Однако они так и не смогли вытеснить трёхдюймовые дискеты из-за высокой цены как дисководов, так и дискет, а также из-за неприятной особенности приводов, когда дискета с механическим повреждением диска выводила из строя дисковод, который, в свою очередь, мог испортить вставленную в него после этого дискету.

    Форматы

    Хронология возникновения форматов дискет
    Формат Год возникновения Объём в килобайтах
    8″ 80
    8″ 256
    8″ 800
    8″ двойной плотности 1000
    5¼″ 110
    5¼″ двойной плотности 360
    5¼″ четырёхкратной плотности 720
    5¼″ высокой плотности 1200
    3″ 360
    3″ двойной плотности 720
    3½″ двойной плотности 720
    2″ 720
    3½″ высокой плотности 1440
    3½″ расширенной плотности 2880

    Следует отметить, что фактическая ёмкость дискет зависит от способа их форматирования. Поскольку, кроме самых ранних моделей, практически все флоппи-диски не содержат жёстко сформированных дорожек, дорога для экспериментов в области более эффективного использования дискеты была открыта для системных программистов. Результатом стало появление множества не совместимых между собою форматов дискет даже под одними и теми же операционными системами.

    Форматы дискет в оборудовании IBM

    «Стандартные» форматы дискет IBM PC различались размером диска, количеством секторов на дорожке, количеством используемых сторон (SS обозначает одностороннюю дискету, DS - двухстороннюю), а также типом (плотностью записи) дисковода - тип дисковода маркировался:

    • SD (англ. Single Density , одинарная плотность, впервые появился в IBM System 3740),
    • DD (англ. Double Density , двойная плотность, впервые появился в IBM System 34),
    • QD (англ. Quadruple Density , четверная плотность, использовался в отечественных клонах Robotron-1910 - 5¼″ дискета 720 К, Amstrad PC , Нейрон И9.66 - 5¼″ дискета 640 К),
    • HD (англ. High Density , высокая плотность, отличался от QD повышенным количеством секторов),
    • ED (англ. Extra High Density , сверхвысокая плотность).

    В дополнительных (нестандартных) дорожках и секторах иногда размещали данные защиты от копирования проприетарных дискет. Стандартные программы, такие, как diskcopy , не переносили эти сектора при копировании.

    Рабочие плотности дисководов и ёмкости дискет в килобайтах
    Параметр магнитного покрытия 5¼″ 3½″
    Двойная плотность (DD) Четверная плотность (QD) Высокая плотность (HD) Двойная плотность (DD) Высокая плотность (HD) Сверхвысокая плотность (ED)
    Основа магнитного слоя Fe Co Co
    Коэрцитивная сила , 300 300 600 600 720 750
    Толщина магнитного слоя , микродюйм 100 100 50 70 40 100
    Ширина дорожки, мм 0,300 0,155 0,115 0,115 0,115
    Плотность дорожек на дюйм 48 96 96 135 135 135
    Линейная плотность 5876 5876 9646 8717 17434 34868
    Ёмкость
    (после форматирования)
    360 720 1200
    (1213952)
    720 1440
    (1457664)
    2880
    Сводная таблица форматов дискет, используемых в IBM PC и совместимых ПК
    Диаметр диска, ″ 5¼″ 3½″
    Ёмкость диска, Кбайт 1200 360 320 180 160 2 880 1 440 720
    Байт описания носителя в MS-DOS F9 16 FD 16 FF 16 FC 16 FE 16 F0 16 F0 16 F9 16
    Количество сторон (головок) 2 2 2 1 1 2 2 2
    Количество дорожек на каждой стороне 80 40 40 40 40 80 80 80
    Количество секторов на дорожке 15 9 8 9 8 36 18 9
    Размер сектора, байт 512
    Количество секторов в кластере 1 2 2 1 1 2 1 2
    Длина FAT (в секторах) 2 2 1 2 1 9 9 3
    Количество FAT 2 2 2 2 2 2 2 2
    Длина корневого каталога в секторах 14 7 7 4 4 15 14 7
    Максимальное количество элементов в корневом каталоге 224 112 112 64 64 240 224 112
    Общее количество секторов на диске 2400 720 640 360 320 5 760 2 880 1 440
    Количество доступных секторов 2371 708 630 351 313 5 726 2 847 1 426
    Количество доступных кластеров 2371 354 315 351 313 2 863 2 847 713

    Первой (точнее, 0-й) является нижняя головка. В односторонних дисководах фактически используется только нижняя головка, а верхняя заменяется войлочной прокладкой. При этом на односторонних дисководах можно было использовать двухсторонние дискеты, отформатировав каждую сторону отдельно и переворачивая её при необходимости, но чтобы этой возможностью воспользоваться, в пластиковом конверте 8-дюймовой дискеты требовалось прорезать второе индексное окно, симметрично первому.

    Все дисководы гибких дисков имеют скорость вращения шпинделя 300 оборотов в минуту, за исключением дисковода для гибких дисков диаметром 5¼″ высокой плотности, шпиндель которого вращается со скоростью 360 мин −1 .

    Форматы дискет в прочем зарубежном оборудовании

    Дополнительную путаницу внёс тот факт, что компания Apple использовала в своих компьютерах Macintosh дисководы, применяющие иной принцип кодирования при магнитной записи, чем на IBM PC - в результате, несмотря на использование идентичных дискет, перенос информации между платформами на дискетах не был возможен до того момента, когда Apple внедрила дисководы высокой плотности SuperDrive, работавшие в обоих режимах.

    Достаточно частой модификацией формата дискет 3½″ является их форматирование на 1,2 МБ (с пониженным числом секторов). Эта возможность обычно может быть включена в BIOS современных компьютеров. Такое использование 3½″ характерно для Японии и ЮАР . В качестве побочного эффекта, активация этой настройки BIOS обычно даёт возможность читать дискеты, отформатированные с использованием драйверов типа 800.com .

    Особенности использования дискет в отечественной технике

    Кроме вышеперечисленных вариаций форматов, существовал целый ряд усовершенствований и отклонений от стандартного формата дискет:

    • например, для RT-11 и её адаптированных в СССР версий количество находящихся в обороте несовместимых форматов дискеты превышало десяток. Наиболее известные - применяемые в ДВК MX, MY;
    • также известны 320/360-килобайтные дискеты Искра-1030/Искра-1031 - фактически они представляли собой SS/QD-дискеты, но их загрузочный сектор был отмаркирован как DS/DD. В результате стандартный дисковод IBM PC не мог прочесть их без использования специальных драйверов (типа 800.com), а дисковод Искра-1030/Искра-1031 , соответственно, не мог читать стандартные дискеты DS/DD от IBM PC;
    • в компьютерах платформы ZX-Spectrum применялись дискеты 5.25″ и 3.5″, но применялся свой собственный уникальный формат TR-DOS - 16 секторов на дорожке, каждый сектор по 256 байт (вместо 512 байт, стандартных для IBM PC). Поддерживались как двухсторонние, так и односторонние дискеты и дисководы. В результате объём данных составлял 640 и 320 Кб соответственно. Формат поддерживает только корневой каталог, который занимает только первые 8 секторов 0-й дорожки, в 9-м секторе располагается системная информация о дискете - тип (TR-DOS или нет), одно или двухсторонний диск, общее количество файлов и количество свободных секторов (не байт, а именно секторов). Сектора с 10 по 16 на 0-й дорожке не используются. Все файлы располагаются только последовательно - формат TR-DOS понятия не имеет о фрагментации, а максимальный размер файла - 64 Кб. После удаления файла внутри занятого пространства, появляются свободные сектора, которые занять уже нельзя до тех пор, пока не будет выполнена команда уплотнения диска ″Move″. На IBM PC совместимых компьютерах такие дискеты можно прочитать и записать только с помощью специальных программ, например ZX Spectrum Navigator v.1.14 или ZXDStudio .

    Сохранность информации

    Одной из главных проблем, связанных с использованием дискет, является их недолговечность. Магнитный диск может относительно легко размагнититься от воздействия металлических намагниченных поверхностей, природных магнитов, электромагнитных полей вблизи высокочастотных приборов, что делает хранение информации на дискетах достаточно ненадёжным: даже однократная перевозка дискеты с информацией в общественном транспорте на электрическом ходу (троллейбус , трамвай , метрополитен) может привести к потере информации на дискете.

    Наиболее уязвимым элементом конструкции дискеты является жестяной или пластиковый кожух, закрывающий собственно гибкий диск: его края могут отгибаться, что приводит к застреванию дискеты в дисководе, возвращающая кожух в исходное положение пружина может смещаться, в результате кожух дискеты отделяется от корпуса и больше не возвращается в исходное положение. Сам пластиковый корпус дискеты не служит достаточной защитой гибкого диска от механических повреждений (например, при падении дискеты на пол), которые выводят магнитный носитель из строя. В щели между корпусом дискеты и кожухом может проникать пыль .

    Современное положение

    В настоящее время массовое использование дискет практически прекращено. С 2010 года выпускается большое количество материнских плат для настольных персональных компьютеров, которые вообще не содержат разъёма для подключения дисковода. Из ноутбуков встроенные дисководы полностью исчезли ещё несколькими годами ранее.

    Электронные ключи при работе с системами «Банк-клиент» , обеспечивающие электронную цифровую подпись документа, ранее распространявшиеся на дискетах, всё чаще выпускаются в виде флэшки с функцией биометрической защиты.

    При установке драйверов для оборудования (например, RAID -массива) во время установки современных ОС семейства MS Windows (Windows Vista , Windows Server 2008 R2 , Windows 7) также может применяться флэш-накопитель.

    В случае отсутствия дисководов, подключаемых в соответствующий «классический» интерфейсный разъём на материнской плате, можно воспользоваться внешним устройством, имеющим USB - или SCSI -интерфейс.

    Производство

    По состоянию на 2015 год дискеты 3.5" 2HD 1.44 Мб выпускаются фирмами Verbatim , TDK , EMTEC , Imation на единственном тайваньском заводе .

    Флоппинет

    Английскому названию дискеты «флоппи-диск» обязан своим появлением неформальный термин «Флоппинет », обозначающий использование сменных носителей информации (в первую очередь, именно дискет - флоппи-дисков) для переноса файлов между компьютерами. Приставка «-нет» в ироничной форме сравнивает такой способ передачи информации с подобием компьютерной сети в то время, когда использование «настоящей» компьютерной сети по каким-либо причинам невозможно. Также иногда используется термин «дискетные сети».

    Символичность

    Изображение трёхдюймовой дискеты до сих пор используется в приложениях с графическим интерфейсом в качестве значка для кнопок и пунктов меню Сохранить .

    Напишите отзыв о статье "Дискета"

    Примечания

    Литература

    • Воройский Ф. С. Информатика. Новый систематизированный толковый словарь-справочник. - 3-е изд. - М .: ФИЗМАТЛИТ, 2003. - 760 с. - (Введение в современные информационные и телекоммуникационные технологии в терминах и фактах). - ISBN 5-9221-0426-8 .

    Ссылки

    Отрывок, характеризующий Дискета

    – Что я выиграл несомненно, – сказал он, – так это свободу… – начал он было серьезно; но раздумал продолжать, заметив, что это был слишком эгоистический предмет разговора.
    – А вы строитесь?
    – Да, Савельич велит.
    – Скажите, вы не знали еще о кончине графини, когда остались в Москве? – сказала княжна Марья и тотчас же покраснела, заметив, что, делая этот вопрос вслед за его словами о том, что он свободен, она приписывает его словам такое значение, которого они, может быть, не имели.
    – Нет, – отвечал Пьер, не найдя, очевидно, неловким то толкование, которое дала княжна Марья его упоминанию о своей свободе. – Я узнал это в Орле, и вы не можете себе представить, как меня это поразило. Мы не были примерные супруги, – сказал он быстро, взглянув на Наташу и заметив в лице ее любопытство о том, как он отзовется о своей жене. – Но смерть эта меня страшно поразила. Когда два человека ссорятся – всегда оба виноваты. И своя вина делается вдруг страшно тяжела перед человеком, которого уже нет больше. И потом такая смерть… без друзей, без утешения. Мне очень, очень жаль еe, – кончил он и с удовольствием заметил радостное одобрение на лице Наташи.
    – Да, вот вы опять холостяк и жених, – сказала княжна Марья.
    Пьер вдруг багрово покраснел и долго старался не смотреть на Наташу. Когда он решился взглянуть на нее, лицо ее было холодно, строго и даже презрительно, как ему показалось.
    – Но вы точно видели и говорили с Наполеоном, как нам рассказывали? – сказала княжна Марья.
    Пьер засмеялся.
    – Ни разу, никогда. Всегда всем кажется, что быть в плену – значит быть в гостях у Наполеона. Я не только не видал его, но и не слыхал о нем. Я был гораздо в худшем обществе.
    Ужин кончался, и Пьер, сначала отказывавшийся от рассказа о своем плене, понемногу вовлекся в этот рассказ.
    – Но ведь правда, что вы остались, чтоб убить Наполеона? – спросила его Наташа, слегка улыбаясь. – Я тогда догадалась, когда мы вас встретили у Сухаревой башни; помните?
    Пьер признался, что это была правда, и с этого вопроса, понемногу руководимый вопросами княжны Марьи и в особенности Наташи, вовлекся в подробный рассказ о своих похождениях.
    Сначала он рассказывал с тем насмешливым, кротким взглядом, который он имел теперь на людей и в особенности на самого себя; но потом, когда он дошел до рассказа об ужасах и страданиях, которые он видел, он, сам того не замечая, увлекся и стал говорить с сдержанным волнением человека, в воспоминании переживающего сильные впечатления.
    Княжна Марья с кроткой улыбкой смотрела то на Пьера, то на Наташу. Она во всем этом рассказе видела только Пьера и его доброту. Наташа, облокотившись на руку, с постоянно изменяющимся, вместе с рассказом, выражением лица, следила, ни на минуту не отрываясь, за Пьером, видимо, переживая с ним вместе то, что он рассказывал. Не только ее взгляд, но восклицания и короткие вопросы, которые она делала, показывали Пьеру, что из того, что он рассказывал, она понимала именно то, что он хотел передать. Видно было, что она понимала не только то, что он рассказывал, но и то, что он хотел бы и не мог выразить словами. Про эпизод свой с ребенком и женщиной, за защиту которых он был взят, Пьер рассказал таким образом:
    – Это было ужасное зрелище, дети брошены, некоторые в огне… При мне вытащили ребенка… женщины, с которых стаскивали вещи, вырывали серьги…
    Пьер покраснел и замялся.
    – Тут приехал разъезд, и всех тех, которые не грабили, всех мужчин забрали. И меня.
    – Вы, верно, не все рассказываете; вы, верно, сделали что нибудь… – сказала Наташа и помолчала, – хорошее.
    Пьер продолжал рассказывать дальше. Когда он рассказывал про казнь, он хотел обойти страшные подробности; но Наташа требовала, чтобы он ничего не пропускал.
    Пьер начал было рассказывать про Каратаева (он уже встал из за стола и ходил, Наташа следила за ним глазами) и остановился.
    – Нет, вы не можете понять, чему я научился у этого безграмотного человека – дурачка.
    – Нет, нет, говорите, – сказала Наташа. – Он где же?
    – Его убили почти при мне. – И Пьер стал рассказывать последнее время их отступления, болезнь Каратаева (голос его дрожал беспрестанно) и его смерть.
    Пьер рассказывал свои похождения так, как он никогда их еще не рассказывал никому, как он сам с собою никогда еще не вспоминал их. Он видел теперь как будто новое значение во всем том, что он пережил. Теперь, когда он рассказывал все это Наташе, он испытывал то редкое наслаждение, которое дают женщины, слушая мужчину, – не умные женщины, которые, слушая, стараются или запомнить, что им говорят, для того чтобы обогатить свой ум и при случае пересказать то же или приладить рассказываемое к своему и сообщить поскорее свои умные речи, выработанные в своем маленьком умственном хозяйстве; а то наслажденье, которое дают настоящие женщины, одаренные способностью выбирания и всасыванья в себя всего лучшего, что только есть в проявлениях мужчины. Наташа, сама не зная этого, была вся внимание: она не упускала ни слова, ни колебания голоса, ни взгляда, ни вздрагиванья мускула лица, ни жеста Пьера. Она на лету ловила еще не высказанное слово и прямо вносила в свое раскрытое сердце, угадывая тайный смысл всей душевной работы Пьера.
    Княжна Марья понимала рассказ, сочувствовала ему, но она теперь видела другое, что поглощало все ее внимание; она видела возможность любви и счастия между Наташей и Пьером. И в первый раз пришедшая ей эта мысль наполняла ее душу радостию.
    Было три часа ночи. Официанты с грустными и строгими лицами приходили переменять свечи, но никто не замечал их.
    Пьер кончил свой рассказ. Наташа блестящими, оживленными глазами продолжала упорно и внимательно глядеть на Пьера, как будто желая понять еще то остальное, что он не высказал, может быть. Пьер в стыдливом и счастливом смущении изредка взглядывал на нее и придумывал, что бы сказать теперь, чтобы перевести разговор на другой предмет. Княжна Марья молчала. Никому в голову не приходило, что три часа ночи и что пора спать.
    – Говорят: несчастия, страдания, – сказал Пьер. – Да ежели бы сейчас, сию минуту мне сказали: хочешь оставаться, чем ты был до плена, или сначала пережить все это? Ради бога, еще раз плен и лошадиное мясо. Мы думаем, как нас выкинет из привычной дорожки, что все пропало; а тут только начинается новое, хорошее. Пока есть жизнь, есть и счастье. Впереди много, много. Это я вам говорю, – сказал он, обращаясь к Наташе.
    – Да, да, – сказала она, отвечая на совсем другое, – и я ничего бы не желала, как только пережить все сначала.
    Пьер внимательно посмотрел на нее.
    – Да, и больше ничего, – подтвердила Наташа.
    – Неправда, неправда, – закричал Пьер. – Я не виноват, что я жив и хочу жить; и вы тоже.
    Вдруг Наташа опустила голову на руки и заплакала.
    – Что ты, Наташа? – сказала княжна Марья.
    – Ничего, ничего. – Она улыбнулась сквозь слезы Пьеру. – Прощайте, пора спать.
    Пьер встал и простился.

    Княжна Марья и Наташа, как и всегда, сошлись в спальне. Они поговорили о том, что рассказывал Пьер. Княжна Марья не говорила своего мнения о Пьере. Наташа тоже не говорила о нем.
    – Ну, прощай, Мари, – сказала Наташа. – Знаешь, я часто боюсь, что мы не говорим о нем (князе Андрее), как будто мы боимся унизить наше чувство, и забываем.
    Княжна Марья тяжело вздохнула и этим вздохом признала справедливость слов Наташи; но словами она не согласилась с ней.
    – Разве можно забыть? – сказала она.
    – Мне так хорошо было нынче рассказать все; и тяжело, и больно, и хорошо. Очень хорошо, – сказала Наташа, – я уверена, что он точно любил его. От этого я рассказала ему… ничего, что я рассказала ему? – вдруг покраснев, спросила она.
    – Пьеру? О нет! Какой он прекрасный, – сказала княжна Марья.
    – Знаешь, Мари, – вдруг сказала Наташа с шаловливой улыбкой, которой давно не видала княжна Марья на ее лице. – Он сделался какой то чистый, гладкий, свежий; точно из бани, ты понимаешь? – морально из бани. Правда?
    – Да, – сказала княжна Марья, – он много выиграл.
    – И сюртучок коротенький, и стриженые волосы; точно, ну точно из бани… папа, бывало…
    – Я понимаю, что он (князь Андрей) никого так не любил, как его, – сказала княжна Марья.
    – Да, и он особенный от него. Говорят, что дружны мужчины, когда совсем особенные. Должно быть, это правда. Правда, он совсем на него не похож ничем?
    – Да, и чудесный.
    – Ну, прощай, – отвечала Наташа. И та же шаловливая улыбка, как бы забывшись, долго оставалась на ее лице.

    Пьер долго не мог заснуть в этот день; он взад и вперед ходил по комнате, то нахмурившись, вдумываясь во что то трудное, вдруг пожимая плечами и вздрагивая, то счастливо улыбаясь.
    Он думал о князе Андрее, о Наташе, об их любви, и то ревновал ее к прошедшему, то упрекал, то прощал себя за это. Было уже шесть часов утра, а он все ходил по комнате.
    «Ну что ж делать. Уж если нельзя без этого! Что ж делать! Значит, так надо», – сказал он себе и, поспешно раздевшись, лег в постель, счастливый и взволнованный, но без сомнений и нерешительностей.
    «Надо, как ни странно, как ни невозможно это счастье, – надо сделать все для того, чтобы быть с ней мужем и женой», – сказал он себе.
    Пьер еще за несколько дней перед этим назначил в пятницу день своего отъезда в Петербург. Когда он проснулся, в четверг, Савельич пришел к нему за приказаниями об укладке вещей в дорогу.
    «Как в Петербург? Что такое Петербург? Кто в Петербурге? – невольно, хотя и про себя, спросил он. – Да, что то такое давно, давно, еще прежде, чем это случилось, я зачем то собирался ехать в Петербург, – вспомнил он. – Отчего же? я и поеду, может быть. Какой он добрый, внимательный, как все помнит! – подумал он, глядя на старое лицо Савельича. – И какая улыбка приятная!» – подумал он.
    – Что ж, все не хочешь на волю, Савельич? – спросил Пьер.
    – Зачем мне, ваше сиятельство, воля? При покойном графе, царство небесное, жили и при вас обиды не видим.
    – Ну, а дети?
    – И дети проживут, ваше сиятельство: за такими господами жить можно.
    – Ну, а наследники мои? – сказал Пьер. – Вдруг я женюсь… Ведь может случиться, – прибавил он с невольной улыбкой.
    – И осмеливаюсь доложить: хорошее дело, ваше сиятельство.
    «Как он думает это легко, – подумал Пьер. – Он не знает, как это страшно, как опасно. Слишком рано или слишком поздно… Страшно!»
    – Как же изволите приказать? Завтра изволите ехать? – спросил Савельич.
    – Нет; я немножко отложу. Я тогда скажу. Ты меня извини за хлопоты, – сказал Пьер и, глядя на улыбку Савельича, подумал: «Как странно, однако, что он не знает, что теперь нет никакого Петербурга и что прежде всего надо, чтоб решилось то. Впрочем, он, верно, знает, но только притворяется. Поговорить с ним? Как он думает? – подумал Пьер. – Нет, после когда нибудь».
    За завтраком Пьер сообщил княжне, что он был вчера у княжны Марьи и застал там, – можете себе представить кого? – Натали Ростову.
    Княжна сделала вид, что она в этом известии не видит ничего более необыкновенного, как в том, что Пьер видел Анну Семеновну.
    – Вы ее знаете? – спросил Пьер.
    – Я видела княжну, – отвечала она. – Я слышала, что ее сватали за молодого Ростова. Это было бы очень хорошо для Ростовых; говорят, они совсем разорились.
    – Нет, Ростову вы знаете?
    – Слышала тогда только про эту историю. Очень жалко.
    «Нет, она не понимает или притворяется, – подумал Пьер. – Лучше тоже не говорить ей».
    Княжна также приготавливала провизию на дорогу Пьеру.
    «Как они добры все, – думал Пьер, – что они теперь, когда уж наверное им это не может быть более интересно, занимаются всем этим. И все для меня; вот что удивительно».
    В этот же день к Пьеру приехал полицеймейстер с предложением прислать доверенного в Грановитую палату для приема вещей, раздаваемых нынче владельцам.
    «Вот и этот тоже, – думал Пьер, глядя в лицо полицеймейстера, – какой славный, красивый офицер и как добр! Теперь занимается такими пустяками. А еще говорят, что он не честен и пользуется. Какой вздор! А впрочем, отчего же ему и не пользоваться? Он так и воспитан. И все так делают. А такое приятное, доброе лицо, и улыбается, глядя на меня».
    Пьер поехал обедать к княжне Марье.
    Проезжая по улицам между пожарищами домов, он удивлялся красоте этих развалин. Печные трубы домов, отвалившиеся стены, живописно напоминая Рейн и Колизей, тянулись, скрывая друг друга, по обгорелым кварталам. Встречавшиеся извозчики и ездоки, плотники, рубившие срубы, торговки и лавочники, все с веселыми, сияющими лицами, взглядывали на Пьера и говорили как будто: «А, вот он! Посмотрим, что выйдет из этого».
    При входе в дом княжны Марьи на Пьера нашло сомнение в справедливости того, что он был здесь вчера, виделся с Наташей и говорил с ней. «Может быть, это я выдумал. Может быть, я войду и никого не увижу». Но не успел он вступить в комнату, как уже во всем существе своем, по мгновенному лишению своей свободы, он почувствовал ее присутствие. Она была в том же черном платье с мягкими складками и так же причесана, как и вчера, но она была совсем другая. Если б она была такою вчера, когда он вошел в комнату, он бы не мог ни на мгновение не узнать ее.
    Она была такою же, какою он знал ее почти ребенком и потом невестой князя Андрея. Веселый вопросительный блеск светился в ее глазах; на лице было ласковое и странно шаловливое выражение.
    Пьер обедал и просидел бы весь вечер; но княжна Марья ехала ко всенощной, и Пьер уехал с ними вместе.
    На другой день Пьер приехал рано, обедал и просидел весь вечер. Несмотря на то, что княжна Марья и Наташа были очевидно рады гостю; несмотря на то, что весь интерес жизни Пьера сосредоточивался теперь в этом доме, к вечеру они всё переговорили, и разговор переходил беспрестанно с одного ничтожного предмета на другой и часто прерывался. Пьер засиделся в этот вечер так поздно, что княжна Марья и Наташа переглядывались между собою, очевидно ожидая, скоро ли он уйдет. Пьер видел это и не мог уйти. Ему становилось тяжело, неловко, но он все сидел, потому что не мог подняться и уйти.
    Княжна Марья, не предвидя этому конца, первая встала и, жалуясь на мигрень, стала прощаться.
    – Так вы завтра едете в Петербург? – сказала ока.
    – Нет, я не еду, – с удивлением и как будто обидясь, поспешно сказал Пьер. – Да нет, в Петербург? Завтра; только я не прощаюсь. Я заеду за комиссиями, – сказал он, стоя перед княжной Марьей, краснея и не уходя.
    Наташа подала ему руку и вышла. Княжна Марья, напротив, вместо того чтобы уйти, опустилась в кресло и своим лучистым, глубоким взглядом строго и внимательно посмотрела на Пьера. Усталость, которую она очевидно выказывала перед этим, теперь совсем прошла. Она тяжело и продолжительно вздохнула, как будто приготавливаясь к длинному разговору.
    Все смущение и неловкость Пьера, при удалении Наташи, мгновенно исчезли и заменились взволнованным оживлением. Он быстро придвинул кресло совсем близко к княжне Марье.
    – Да, я и хотел сказать вам, – сказал он, отвечая, как на слова, на ее взгляд. – Княжна, помогите мне. Что мне делать? Могу я надеяться? Княжна, друг мой, выслушайте меня. Я все знаю. Я знаю, что я не стою ее; я знаю, что теперь невозможно говорить об этом. Но я хочу быть братом ей. Нет, я не хочу.. я не могу…
    Он остановился и потер себе лицо и глаза руками.
    – Ну, вот, – продолжал он, видимо сделав усилие над собой, чтобы говорить связно. – Я не знаю, с каких пор я люблю ее. Но я одну только ее, одну любил во всю мою жизнь и люблю так, что без нее не могу себе представить жизни. Просить руки ее теперь я не решаюсь; но мысль о том, что, может быть, она могла бы быть моею и что я упущу эту возможность… возможность… ужасна. Скажите, могу я надеяться? Скажите, что мне делать? Милая княжна, – сказал он, помолчав немного и тронув ее за руку, так как она не отвечала.
    – Я думаю о том, что вы мне сказали, – отвечала княжна Марья. – Вот что я скажу вам. Вы правы, что теперь говорить ей об любви… – Княжна остановилась. Она хотела сказать: говорить ей о любви теперь невозможно; но она остановилась, потому что она третий день видела по вдруг переменившейся Наташе, что не только Наташа не оскорбилась бы, если б ей Пьер высказал свою любовь, но что она одного только этого и желала.
    – Говорить ей теперь… нельзя, – все таки сказала княжна Марья.
    – Но что же мне делать?
    – Поручите это мне, – сказала княжна Марья. – Я знаю…
    Пьер смотрел в глаза княжне Марье.
    – Ну, ну… – говорил он.
    – Я знаю, что она любит… полюбит вас, – поправилась княжна Марья.
    Не успела она сказать эти слова, как Пьер вскочил и с испуганным лицом схватил за руку княжну Марью.
    – Отчего вы думаете? Вы думаете, что я могу надеяться? Вы думаете?!
    – Да, думаю, – улыбаясь, сказала княжна Марья. – Напишите родителям. И поручите мне. Я скажу ей, когда будет можно. Я желаю этого. И сердце мое чувствует, что это будет.
    – Нет, это не может быть! Как я счастлив! Но это не может быть… Как я счастлив! Нет, не может быть! – говорил Пьер, целуя руки княжны Марьи.
    – Вы поезжайте в Петербург; это лучше. А я напишу вам, – сказала она.
    – В Петербург? Ехать? Хорошо, да, ехать. Но завтра я могу приехать к вам?
    На другой день Пьер приехал проститься. Наташа была менее оживлена, чем в прежние дни; но в этот день, иногда взглянув ей в глаза, Пьер чувствовал, что он исчезает, что ни его, ни ее нет больше, а есть одно чувство счастья. «Неужели? Нет, не может быть», – говорил он себе при каждом ее взгляде, жесте, слове, наполнявших его душу радостью.
    Когда он, прощаясь с нею, взял ее тонкую, худую руку, он невольно несколько дольше удержал ее в своей.
    «Неужели эта рука, это лицо, эти глаза, все это чуждое мне сокровище женской прелести, неужели это все будет вечно мое, привычное, такое же, каким я сам для себя? Нет, это невозможно!..»
    – Прощайте, граф, – сказала она ему громко. – Я очень буду ждать вас, – прибавила она шепотом.
    И эти простые слова, взгляд и выражение лица, сопровождавшие их, в продолжение двух месяцев составляли предмет неистощимых воспоминаний, объяснений и счастливых мечтаний Пьера. «Я очень буду ждать вас… Да, да, как она сказала? Да, я очень буду ждать вас. Ах, как я счастлив! Что ж это такое, как я счастлив!» – говорил себе Пьер.

    В душе Пьера теперь не происходило ничего подобного тому, что происходило в ней в подобных же обстоятельствах во время его сватовства с Элен.
    Он не повторял, как тогда, с болезненным стыдом слов, сказанных им, не говорил себе: «Ах, зачем я не сказал этого, и зачем, зачем я сказал тогда „je vous aime“?» [я люблю вас] Теперь, напротив, каждое слово ее, свое он повторял в своем воображении со всеми подробностями лица, улыбки и ничего не хотел ни убавить, ни прибавить: хотел только повторять. Сомнений в том, хорошо ли, или дурно то, что он предпринял, – теперь не было и тени. Одно только страшное сомнение иногда приходило ему в голову. Не во сне ли все это? Не ошиблась ли княжна Марья? Не слишком ли я горд и самонадеян? Я верю; а вдруг, что и должно случиться, княжна Марья скажет ей, а она улыбнется и ответит: «Как странно! Он, верно, ошибся. Разве он не знает, что он человек, просто человек, а я?.. Я совсем другое, высшее».
    Только это сомнение часто приходило Пьеру. Планов он тоже не делал теперь никаких. Ему казалось так невероятно предстоящее счастье, что стоило этому совершиться, и уж дальше ничего не могло быть. Все кончалось.
    Радостное, неожиданное сумасшествие, к которому Пьер считал себя неспособным, овладело им. Весь смысл жизни, не для него одного, но для всего мира, казался ему заключающимся только в его любви и в возможности ее любви к нему. Иногда все люди казались ему занятыми только одним – его будущим счастьем. Ему казалось иногда, что все они радуются так же, как и он сам, и только стараются скрыть эту радость, притворяясь занятыми другими интересами. В каждом слове и движении он видел намеки на свое счастие. Он часто удивлял людей, встречавшихся с ним, своими значительными, выражавшими тайное согласие, счастливыми взглядами и улыбками. Но когда он понимал, что люди могли не знать про его счастье, он от всей души жалел их и испытывал желание как нибудь объяснить им, что все то, чем они заняты, есть совершенный вздор и пустяки, не стоящие внимания.
    Когда ему предлагали служить или когда обсуждали какие нибудь общие, государственные дела и войну, предполагая, что от такого или такого исхода такого то события зависит счастие всех людей, он слушал с кроткой соболезнующею улыбкой и удивлял говоривших с ним людей своими странными замечаниями. Но как те люди, которые казались Пьеру понимающими настоящий смысл жизни, то есть его чувство, так и те несчастные, которые, очевидно, не понимали этого, – все люди в этот период времени представлялись ему в таком ярком свете сиявшего в нем чувства, что без малейшего усилия, он сразу, встречаясь с каким бы то ни было человеком, видел в нем все, что было хорошего и достойного любви.
    Рассматривая дела и бумаги своей покойной жены, он к ее памяти не испытывал никакого чувства, кроме жалости в том, что она не знала того счастья, которое он знал теперь. Князь Василий, особенно гордый теперь получением нового места и звезды, представлялся ему трогательным, добрым и жалким стариком.
    Пьер часто потом вспоминал это время счастливого безумия. Все суждения, которые он составил себе о людях и обстоятельствах за этот период времени, остались для него навсегда верными. Он не только не отрекался впоследствии от этих взглядов на людей и вещи, но, напротив, в внутренних сомнениях и противуречиях прибегал к тому взгляду, который он имел в это время безумия, и взгляд этот всегда оказывался верен.
    «Может быть, – думал он, – я и казался тогда странен и смешон; но я тогда не был так безумен, как казалось. Напротив, я был тогда умнее и проницательнее, чем когда либо, и понимал все, что стоит понимать в жизни, потому что… я был счастлив».
    Безумие Пьера состояло в том, что он не дожидался, как прежде, личных причин, которые он называл достоинствами людей, для того чтобы любить их, а любовь переполняла его сердце, и он, беспричинно любя людей, находил несомненные причины, за которые стоило любить их.

    С первого того вечера, когда Наташа, после отъезда Пьера, с радостно насмешливой улыбкой сказала княжне Марье, что он точно, ну точно из бани, и сюртучок, и стриженый, с этой минуты что то скрытое и самой ей неизвестное, но непреодолимое проснулось в душе Наташи.
    Все: лицо, походка, взгляд, голос – все вдруг изменилось в ней. Неожиданные для нее самой – сила жизни, надежды на счастье всплыли наружу и требовали удовлетворения. С первого вечера Наташа как будто забыла все то, что с ней было. Она с тех пор ни разу не пожаловалась на свое положение, ни одного слова не сказала о прошедшем и не боялась уже делать веселые планы на будущее. Она мало говорила о Пьере, но когда княжна Марья упоминала о нем, давно потухший блеск зажигался в ее глазах и губы морщились странной улыбкой.
    Перемена, происшедшая в Наташе, сначала удивила княжну Марью; но когда она поняла ее значение, то перемена эта огорчила ее. «Неужели она так мало любила брата, что так скоро могла забыть его», – думала княжна Марья, когда она одна обдумывала происшедшую перемену. Но когда она была с Наташей, то не сердилась на нее и не упрекала ее. Проснувшаяся сила жизни, охватившая Наташу, была, очевидно, так неудержима, так неожиданна для нее самой, что княжна Марья в присутствии Наташи чувствовала, что она не имела права упрекать ее даже в душе своей.
    Наташа с такой полнотой и искренностью вся отдалась новому чувству, что и не пыталась скрывать, что ей было теперь не горестно, а радостно и весело.
    Когда, после ночного объяснения с Пьером, княжна Марья вернулась в свою комнату, Наташа встретила ее на пороге.
    – Он сказал? Да? Он сказал? – повторила она. И радостное и вместе жалкое, просящее прощения за свою радость, выражение остановилось на лице Наташи.
    – Я хотела слушать у двери; но я знала, что ты скажешь мне.
    Как ни понятен, как ни трогателен был для княжны Марьи тот взгляд, которым смотрела на нее Наташа; как ни жалко ей было видеть ее волнение; но слова Наташи в первую минуту оскорбили княжну Марью. Она вспомнила о брате, о его любви.
    «Но что же делать! она не может иначе», – подумала княжна Марья; и с грустным и несколько строгим лицом передала она Наташе все, что сказал ей Пьер. Услыхав, что он собирается в Петербург, Наташа изумилась.
    – В Петербург? – повторила она, как бы не понимая. Но, вглядевшись в грустное выражение лица княжны Марьи, она догадалась о причине ее грусти и вдруг заплакала. – Мари, – сказала она, – научи, что мне делать. Я боюсь быть дурной. Что ты скажешь, то я буду делать; научи меня…
    – Ты любишь его?
    – Да, – прошептала Наташа.
    – О чем же ты плачешь? Я счастлива за тебя, – сказала княжна Марья, за эти слезы простив уже совершенно радость Наташи.
    – Это будет не скоро, когда нибудь. Ты подумай, какое счастие, когда я буду его женой, а ты выйдешь за Nicolas.
    – Наташа, я тебя просила не говорить об этом. Будем говорить о тебе.
    Они помолчали.
    – Только для чего же в Петербург! – вдруг сказала Наташа, и сама же поспешно ответила себе: – Нет, нет, это так надо… Да, Мари? Так надо…

    Прошло семь лет после 12 го года. Взволнованное историческое море Европы улеглось в свои берега. Оно казалось затихшим; но таинственные силы, двигающие человечество (таинственные потому, что законы, определяющие их движение, неизвестны нам), продолжали свое действие.
    Несмотря на то, что поверхность исторического моря казалась неподвижною, так же непрерывно, как движение времени, двигалось человечество. Слагались, разлагались различные группы людских сцеплений; подготовлялись причины образования и разложения государств, перемещений народов.
    Историческое море, не как прежде, направлялось порывами от одного берега к другому: оно бурлило в глубине. Исторические лица, не как прежде, носились волнами от одного берега к другому; теперь они, казалось, кружились на одном месте. Исторические лица, прежде во главе войск отражавшие приказаниями войн, походов, сражений движение масс, теперь отражали бурлившее движение политическими и дипломатическими соображениями, законами, трактатами…
    Эту деятельность исторических лиц историки называют реакцией.
    Описывая деятельность этих исторических лиц, бывших, по их мнению, причиною того, что они называют реакцией, историки строго осуждают их. Все известные люди того времени, от Александра и Наполеона до m me Stael, Фотия, Шеллинга, Фихте, Шатобриана и проч., проходят перед их строгим судом и оправдываются или осуждаются, смотря по тому, содействовали ли они прогрессу или реакции.

    (МО), которые представляли собой жесткий полимерный диск, чтение с которого производилось лазером, а запись - при помощи комбинированного воздействия лазера (для нагрева участка поверхности) и неподвижного магнита (для перемагничивания информационного слоя). Они не являются полностью магнитными, хотя и используют картриджи, по форме напоминающие дискеты.

    История

    Устройство дискеты 3½″

    Iomega Zip

    К середине 90-х ёмкости дискеты даже в 2,88 МБ уже было недостаточно. На смену дискете 3,5″ претендовали несколько форматов, среди которых наибольшую популярность завоевали дискеты Iomega Zip. Так же, как и дискета 3,5″, носитель Iomega Zip представлял собой мягкий полимерный диск, покрытый ферромагнитным слоем и заключённый в жёсткий корпус с защитной шторкой. В отличие от 3,5″-дискеты, отверстие для магнитных головок располагалось в торце корпуса, а не на боковой поверхности. Существовали дискеты Zip на 100, 250, а к концу существования формата - и 750 МБ. Кроме бо́льшего объёма, диски Zip обеспечивали более надёжное хранение данных и более высокую скорость чтения и записи, чем 3,5″. Однако они так и не смогли вытеснить трёхдюймовые дискеты из-за высокой цены как дисководов, так и дискет, а также из-за неприятной особенности приводов, когда дискета с механическим повреждением диска выводила из строя дисковод, который, в свою очередь, мог испортить вставленную в него после этого дискету.

    Форматы

    Хронология возникновения форматов дискет
    Формат Год возникновения Объём в килобайтах
    8″ 80
    8″ 256
    8″ 800
    8″ двойной плотности 1000
    5¼″ 110
    5¼″ двойной плотности 360
    5¼″ четырёхкратной плотности 720
    5¼″ высокой плотности 1200
    3″ 360
    3″ двойной плотности 720
    3½″ двойной плотности 720
    2″ 720
    3½″ высокой плотности 1440
    3½″ расширенной плотности 2880

    Следует отметить, что фактическая ёмкость дискет зависит от способа их форматирования. Поскольку, кроме самых ранних моделей, практически все флоппи-диски не содержат жёстко сформированных дорожек, дорога для экспериментов в области более эффективного использования дискеты была открыта для системных программистов. Результатом стало появление множества не совместимых между собою форматов дискет даже под одними и теми же операционными системами.

    Форматы дискет в оборудовании IBM

    «Стандартные» форматы дискет IBM PC различались размером диска, количеством секторов на дорожке, количеством используемых сторон (SS обозначает одностороннюю дискету, DS - двухстороннюю), а также типом (плотностью записи) дисковода - тип дисковода маркировался:

    • SD (англ. Single Density , одинарная плотность, впервые появился в IBM System 3740),
    • DD (англ. Double Density , двойная плотность, впервые появился в IBM System 34),
    • QD (англ. Quadruple Density , четверная плотность, использовался в отечественных клонах Robotron-1910 - 5¼″ дискета 720 К, Amstrad PC, Нейрон И9.66 - 5¼″ дискета 640 К),
    • HD (англ. High Density , высокая плотность, отличался от QD повышенным количеством секторов),
    • ED (англ. Extra High Density , сверхвысокая плотность).

    В дополнительных (нестандартных) дорожках и секторах иногда размещали данные защиты от копирования проприетарных дискет. Стандартные программы, такие, как diskcopy , не переносили эти сектора при копировании.

    Рабочие плотности дисководов и ёмкости дискет в килобайтах
    Параметр магнитного покрытия 5¼″ 3½″
    Двойная плотность (DD) Четверная плотность (QD) Высокая плотность (HD) Двойная плотность (DD) Высокая плотность (HD) Сверхвысокая плотность (ED)
    Основа магнитного слоя Fe Co Co
    Коэрцитивная сила , 300 300 600 600 720 750
    Толщина магнитного слоя , микродюйм 100 100 50 70 40 100
    Ширина дорожки, мм 0,300 0,155 0,115 0,115 0,115
    Плотность дорожек на дюйм 48 96 96 135 135 135
    Линейная плотность 5876 5876 9646 8717 17434 34868
    Ёмкость
    (после форматирования)
    360 720 1200
    (1213952)
    720 1440
    (1457664)
    2880
    Сводная таблица форматов дискет, используемых в IBM PC и совместимых ПК
    Диаметр диска, ″ 5¼″ 3½″
    Ёмкость диска, Кбайт 1200 360 320 180 160 2 880 1 440 720
    Байт описания носителя в MS-DOS F9 16 FD 16 FF 16 FC 16 FE 16 F0 16 F0 16 F9 16
    Количество сторон (головок) 2 2 2 1 1 2 2 2
    Количество дорожек на каждой стороне 80 40 40 40 40 80 80 80
    Количество секторов на дорожке 15 9 8 9 8 36 18 9
    Размер сектора, байт 512
    Количество секторов в кластере 1 2 2 1 1 2 1 2
    Длина FAT (в секторах) 2 2 1 2 1 9 9 3
    Количество FAT 2 2 2 2 2 2 2 2
    Длина корневого каталога в секторах 14 7 7 4 4 15 14 7
    Максимальное количество элементов в корневом каталоге 224 112 112 64 64 240 224 112
    Общее количество секторов на диске 2400 720 640 360 320 5 760 2 880 1 440
    Количество доступных секторов 2371 708 630 351 313 5 726 2 847 1 426
    Количество доступных кластеров 2371 354 315 351 313 2 863 2 847 713

    Первой (точнее, 0-й) является нижняя головка. В односторонних дисководах фактически используется только нижняя головка, а верхняя заменяется войлочной прокладкой. При этом на односторонних дисководах можно было использовать двухсторонние дискеты, отформатировав каждую сторону отдельно и переворачивая её при необходимости, но чтобы этой возможностью воспользоваться, в пластиковом конверте 8-дюймовой дискеты требовалось прорезать второе индексное окно, симметрично первому.

    Все дисководы гибких дисков имеют скорость вращения шпинделя 300 оборотов в минуту, за исключением дисковода для гибких дисков диаметром 5¼″ высокой плотности, шпиндель которого вращается со скоростью 360 мин −1 .

    Форматы дискет в прочем зарубежном оборудовании

    Дополнительную путаницу внёс тот факт, что компания Apple использовала в своих компьютерах Macintosh дисководы, применяющие иной принцип кодирования при магнитной записи, чем на IBM PC - в результате, несмотря на использование идентичных дискет, перенос информации между платформами на дискетах не был возможен до того момента, когда Apple внедрила дисководы высокой плотности SuperDrive, работавшие в обоих режимах.

    Достаточно частой модификацией формата дискет 3½″ является их форматирование на 1,2 МБ (с пониженным числом секторов). Эта возможность обычно может быть включена в BIOS современных компьютеров. Такое использование 3½″ характерно для Японии и ЮАР . В качестве побочного эффекта, активация этой настройки BIOS обычно даёт возможность читать дискеты, отформатированные с использованием драйверов типа 800.com .

    Особенности использования дискет в отечественной технике

    Кроме вышеперечисленных вариаций форматов, существовал целый ряд усовершенствований и отклонений от стандартного формата дискет:

    • например, для RT-11 и её адаптированных в СССР версий количество находящихся в обороте несовместимых форматов дискеты превышало десяток. Наиболее известные - применяемые в ДВК MX, MY;
    • также известны 320/360-килобайтные дискеты Искра-1030/Искра-1031 - фактически они представляли собой SS/QD-дискеты, но их загрузочный сектор был отмаркирован как DS/DD. В результате стандартный дисковод IBM PC не мог прочесть их без использования специальных драйверов (типа 800.com), а дисковод Искра-1030/Искра-1031 , соответственно, не мог читать стандартные дискеты DS/DD от IBM PC;
    • в компьютерах платформы ZX-Spectrum применялись дискеты 5.25″ и 3.5″, но применялся свой собственный уникальный формат TR-DOS - 16 секторов на дорожке, каждый сектор по 256 байт (вместо 512 байт, стандартных для IBM PC). Поддерживались как двухсторонние, так и односторонние дискеты и дисководы. В результате объём данных составлял 640 и 320 Кб соответственно. Формат поддерживает только корневой каталог, который занимает только первые 8 секторов 0-й дорожки, в 9-м секторе располагается системная информация о дискете - тип (TR-DOS или нет), одно или двухсторонний диск, общее количество файлов и количество свободных секторов (не байт, а именно секторов). Сектора с 10 по 16 на 0-й дорожке не используются. Все файлы располагаются только последовательно - формат TR-DOS понятия не имеет о фрагментации, а максимальный размер файла - 64 Кб. После удаления файла внутри занятого пространства, появляются свободные сектора, которые занять уже нельзя до тех пор, пока не будет выполнена команда уплотнения диска ″Move″. На IBM PC совместимых компьютерах такие дискеты можно прочитать и записать только с помощью специальных программ, например ZX Spectrum Navigator v.1.14 или ZXDStudio.

    Кроме формата TR-DOS , в ZX-Spectrum совместимых компьютерах часто применялись и произвольные форматы дисков. Некоторые электронные журналы и игры на всю дискету использовали свой собственный формат, вообще ни с чем не совместимый. Могли использовать сектора по 512 байт, и даже по 1024 байт, и нередко комбинировали разные размеры секторов на одной дорожке, например, по 256 и по 1024 байт, и просто для разных дорожек применялись разные форматы. Например, так делали в электронном журнале ZX-Format. Причём, от номера выпуска к номеру, данный журнал постоянно менял формат дорожек дискет. Делалось это для двух целей: Во-первых, для увеличения объёма данных на дискете, во-вторых, для защиты дискет от пиратского копирования. Такие дискеты на ZX-Spectrum совместимых компьютерах пользователей можно было только прочитать, запустить с них журнал или игру, но нельзя было ничем скопировать. Для копирования таких дискет, для каждого отдельного номера журнала ZX-Format или игры, нужно было написать на ассемблере свой индивидуальный форматер и копировщик, предварительно взломав остальные ступени защиты. Разумеется, нельзя такие дискеты прочитать и скопировать и на IBM PC совместимых компьютерах. Однажды попался вообще уникальный формат - кроме нестандартного размера секторов на дорожке (5 секторов по 1024 байта), номера всех 5 секторов были одинаковыми. Для запуска ПО с такой дискеты использовался специальный загрузчик, размещённый на первой после каталога дорожке со стандартным для ZX-Spectrum формата TR-DOS . В ZX-Spectrum совместимых компьютерах одинаковым образом применялись как 5.25″, так и 3.5″ дискеты, формат при этом не зависит ни от размера дискеты, ни от поддерживаемой ей плотности. Но для использования дискет 3.5″ высокой плотности HD, нужно было изолентой заклеить боковое окошко плотности. Дискеты 5.25″ высокой плотности HD можно применять в ZX-Spectrum только в случае использования дисковода, который так же поддерживает плотность HD, но перемычками дисковод нужно предварительно перевести на формат SD (720 Кб).

    Драйвер pu_1700 позволял также обеспечивать форматирование со сдвигом и интерливингом секторов - это ускоряло операции последовательного чтения-записи, так как головка при переходе на следующий цилиндр оказывалась перед первым сектором. При использовании обычного форматирования, когда первый сектор всегда находится за индексным отверстием (5¼″) или за зоной прохождения над герконом или датчиком Холла магнитика, закреплённого на моторе (3½″), за время шага головки начало первого сектора успевает проскочить, поэтому дисководу приходится совершать лишний оборот.

    Специальные драйверы-расширители BIOS (800, pu_1700, vformat и ряд других) позволяли форматировать дискеты с произвольным числом дорожек и секторов. Поскольку дисководы обычно поддерживали от одной до четырёх дополнительных дорожек, а также позволяли, в зависимости от конструкционных особенностей, отформатировать на 1-4 сектора на дорожке больше, чем положено по стандарту, эти драйверы обеспечивали появление таких нестандартных форматов, как 800 КБ (80 дорожек, 10 секторов), 840 КБ (84 дорожки, 10 секторов) и т. д. Максимальная ёмкость, устойчиво достигавшаяся таким методом на 3½″ HD-дисководах, составляла 1700 КБ. Эта техника была впоследствии использована в форматах дискет DMF



    © 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows