Три схемы включения биполярного транзистора. Схема включения с общим эмиттером

Три схемы включения биполярного транзистора. Схема включения с общим эмиттером

05.08.2019

Схема включения биполярного транзистора с общим эмиттером приведена на рис. 6.13:

В транзисторе, включенном по схеме с общим эмиттером, имеет место усиление не только по напряжению, но и по току. Входными параметрами для схемы с общим эмиттером будут ток базы I Б , и напряжение на базе относительно эмиттера U БЭ, а выходными характеристиками будут ток коллектора I К и напряжение на коллекторе U КЭ . Для любых напряжений:

U КЭ = U КБ + U БЭ

Отличительной особенностью режима работы с ОЭ является одинаковая полярность напряжения смещения на входе (базе) и выходе (коллекторе): отрицательный потенциал в случае pnp -транзистора и положительный в случае npn -транзистора. При этом переход база-эмиттер смещается в прямом направлении, а переход база-коллектор – в обратном.

Ранее при анализе биполярного транзистора в схеме с общей базой была получена связь между током коллектора и током эмиттера в следующем виде:
. В схеме с общим эмиттером дляpnp -транзистора (в соответствии с первым законом Кирхгофа) (6.1):
, отсюда получим:

Коэффициент α/(1-α) называется коэффициентом усиления по току биполярного транзистора в схеме с общим эмиттером . Обозначим этот коэффициент знаком β , итак:

.

Коэффициент передачи тока для транзистора, включенного по схеме с общим эмиттером β показывает, во сколько раз изменяется ток коллектора I К при изменении тока базы I Б. Поскольку величина коэффициента передачи α близка к единице (α <1), то из уравнения (6.38) следует, что коэффициент усиления β будет существенно больше единицы (β >>1). При значениях коэффициента передачи α =0,98÷0,99 коэффициент усиления тока базы будет лежать в диапазоне β =50÷100.

6.2.1 Статические вольт-амперные характеристики транзистора, включенные по схеме с общим эмиттером

Рассмотрим ВАХ pnp -транзистора в режиме ОЭ (рис. 6.13, 6.14).

При U КЭ =0
. Сувеличением напряжения U БЭ концентрация на переходе ЭБ растет (рис. 6.15,а), градиент концентрации инжектированных дырок растет, диффузионный ток дырок, как и в прямо смещенном pn -переходе, растет экспоненциально (т. А) и отличается от тока эмиттера только масштабом (6.36).

При обратных напряжениях на коллекторе и фиксированном напряжении на ЭП |U БЭ | (рис. 6.15,б) постоянной будет и концентрация дырок в базе вблизи эмиттера. Увеличение напряжения U КЭ будет сопровождаться расширением ОПЗ коллекторного перехода и уменьшением ширины базы (эффект Эрли) и, следовательно, уменьшением общего количества дырок, находящихся в базе.

При этом градиент концентрации дырок в базе будут расти, что приводит к дальнейшему уменьшению их концентрации. Поэтому число рекомбинаций электронов и дырок в базе в единицу времени уменьшается (возрастает коэффициент переноса ). Так как электроны для рекомбинации приходят через базовый вывод, ток базы уменьшается и входные ВАХ смещаются вниз .

При U БЭ =0 и отрицательном напряжении на коллекторе (U кб << 0) ток через эмиттерный переход равен нулю, в базе транзистора концентрация дырок меньше равновесной, так как у КП эта концентрация равна нулю, а у ЭП ее величина определяется равновесным значением. Через коллекторный переход протекает ток экстрагированных из коллектора дырок I КЭ 0 .

В базе, как и в pn -переходе при обратном смещении, процесс тепловой генерации будет преобладать над процессом рекомбинации. Генерированные электроны уходят из базы через базовый вывод, что означает наличие электрического тока, направленного в базу транзистора (т. В). Это – режим отсечки , он характеризуется сменой направления тока базы.

Выходные ВАХ.

В активном режиме (|U КЭ |> |U БЭ |>0 ) поток инжектированных эмиттером дырок p экстрагируется коллекторным переходом также, как и в режиме ОБ, с коэффициентом
. Часть дырок(1-α) p рекомбинирует в базе в электронами, поступающими из омического контакта базы.

При увеличении тока базы отрицательный заряд электронов уменьшает потенциальный барьер эмиттерного перехода, вызывая дополнительную инжекцию дырок в базе.

Проанализируем, почему малые изменения тока базы I Б вызывают значительные изменения коллекторного тока I К. Значение коэффициента β , существенно большее единицы, означает, что коэффициент передачи α близок к единице. В этом случае коллекторный ток близок к эмиттерному току, а ток базы (по физической природе рекомбинационный) существенно меньше и коллекторного и эмиттерного тока. При значении коэффициента α = 0,99 из 100 дырок, инжектированных через эмиттерный переход, 99 экстрагируются через коллекторный переход, и лишь одна прорекомбинирует с электронами в базе и даст вклад в базовый ток.

Увеличение базового тока в два раза (должны прорекомбинировать две дырки) вызовет в два раза большую инжекцию через эмиттерный переход (должно инжектироваться 200 дырок) и соответственно экстракцию через коллекторный (экстрагируется 198 дырок). Таким образом, малое изменение базового тока, например, с 5 до 10 мкА, вызывает большие изменения коллекторного тока, соответственно с 500 мкА до 1000 мкА. Ток базы стократно вызывает увеличение тока коллектора.

По аналогии с (6.34) можно записать:

Учитывая (6.1):
, получим:

Учитывая, что

, а

где - сквозной тепловой ток отдельно взятого коллекторногоpn -перехода в режиме оторванной базы (при
, т. С, режим отсечки ). За счет прямого смещения базового перехода (рис. 6.16) ток
много больше теплового тока коллектора I к 0 .

Рис. 6.16 U БЭ =const,U КЭ – переменное

В режиме насыщения база должна быть обогащена неосновными носителями. Критерием этого режима является равновесная концентрация носителей на КП (U КБ =0 ). В силу уравнения U КЭ = U КБ + U БЭ, равенство напряжения на коллекторном переходе нулю может иметь место при небольших отрицательных напряжениях между базой и эмиттером. При U КЭ 0 иU БЭ <0, оба перехода смещаются в прямом направлении, их сопротивление падает. При малых напряжениях на коллекторе (U КЭ < U БЭ ) U КБ меняет свой знак, сопротивление коллекторного перехода резко уменьшается, коллектор начинает инжектировать дырки в базу. Поток дырок из коллектора компенсирует поток дырок из эмиттера. Ток коллектора меняет свой знак (на выходных ВАХ эта область обычно не показывается).

При больших напряжениях на коллекторе возможен пробой коллекторного перехода за счет лавинного умножения носителей в ОПЗ (т. D). Напряжение пробоя зависит от степени легирования областей транзистора. В транзисторах с очень тонкой базой возможно расширение ОПЗ на всю базовую область (происходит прокол базы).

Сравнивая выходные ВАХ транзистора, включенного по схеме с ОЭ и ОБ (рис. 6.17), можно заметить две наиболее существенные особенности: во-первых, характеристики в схеме с ОЭ имеют больший наклон, свидетельствующий об уменьшении выходного сопротивления транзистора и, во-вторых, переход в режим насыщения наблюдается при отрицательных напряжениях на коллекторе.

Рост тока коллектора с увеличением U КЭ определяется уменьшением ширины базы. Коэффициенты переноса æ и передачи тока эмиттера α растут, но коэффициент передачи тока базы в схеме с ОЭ
растет быстрееα . Поэтому при постоянном токе базы ток коллектора увеличивается сильнее, чем в схеме с ОБ.

Рис. 6.23 Выходные характеристики pnp -транзистора

а – в схеме с ОБ, б – в схеме с ОЭ

6.3 Включение транзистора по схеме с общим коллектором

Если входная и выходная цепи имеют общим электродом коллектор (ОК) и выходным током является ток эмиттера, а входным ток базы, то для коэффициента передачи тока справедливо:

Вв таком включении коэффициент передачи тока несколько выше, чем во включении ОЭ, а коэффициент усиления по напряжению незначительно меньше единицы, так как разность потенциалов между базой и эмиттером практически не зависит от тока базы. Потенциал эмиттера практически повторяет потенциал базы, поэтому каскад, построенный на основе транзистора с ОК, называют эмиттерным повторителем . Однако этот тип включения используется сравнительно редко.

Сопоставляя полученные результаты, можно сделать выводы :

    Схема с ОЭ обладает высоким усилением как по напряжению, так и по току, У нее самое большое усиление по мощности. Отметим, что схема изменяет фазу выходного напряжения на 180. Это самая распространенная усилительная схема.

    Схема с ОБ усиливает напряжение (примерно, как и схема с ОЭ), но не усиливает ток. Фаза выходного напряжения по отношению к входному не меняется. Схема находит применение в усилителях высоких и сверхвысоких частот.

    Схема с ОК (эмиттерный повторитель) не усиливает напряжение, но усиливает ток. Основное применение данной схемы - согласование сопротивлений источника сигнала и низкоомной нагрузки.

Схема с общим эмиттером

Схема с общим эмиттером (ОЭ) представлена на рис. 1.11. Транзистор п-р-п в этой схеме работает так же, как и в схеме с ОБ. Заметим лишь, что общепринятое направление токов (от К источника напряжения), обозначенное на рис. 1.11, а, противоположно направлению движения электронов. Характерным признаком схемы с ОЭ является то, что нагрузка располагается в коллекторной цепи (рис. 1.11,6).

Рис. 1.11. Схема включения транзистора с общим эмиттером (а); типовое изображение в схемах (б)

Так же как и для схемы с ОБ, входным сигналом в этой схеме является напряжение между базой и эмиттером, а выходными величинами – коллекторный ток I к и напряжение на нагрузке U вых = I к R н Транзистор в схеме с ОЭ характеризуется коэффициентом передачи тока

имеющим значения β = 10... 100, который связан с коэффициентом α для схемы с ОБ соотношением:

Оценим значения коэффициентов усиления схемы с ОЭ (их обозначают индексом "Э").

Выходным током, как и в схеме с ОБ, является ток I к, протекающий но нагрузке, а входным током (в отличие от схемы с ОБ) – ток базы I Б; коэффициент усиления по току схемы с ОЭ равен

При α = 0,98 КIЭ = 0,98/(1 – 0,98) ≈ 50, т.е. нескольким десяткам, что многократно превосходит аналогичный коэффициент у схемы с ОБ.

Входное сопротивление в схеме с ОЭ также значительно выше, чем в схеме с ОБ, так как в схеме с ОЭ входным током является ток базы, а в схеме с ОБ – во много раз больший ток эмиттера (а именно в 1/(1 – α) ≈ β раз):

Величина входного сопротивления в схеме с ОЭ больше, чем в схеме с ОБ в ≈ β раз и составляет сотни ом.

Коэффициент усиления по напряжению в схеме с ОЭ соизмерим с таким же коэффициентом у схемы с ОБ:

По коэффициенту усиления по мощности схема с ОЭ за счет значительно большего коэффициента усиления по току также многократно превосходит схему с ОБ:

и зависит от коэффициента передачи тока β и отношения сопротивления нагрузки к входному сопротивлению.

Благодаря отмеченным свойствам, схема с ОЭ нашла очень широкое применение.

Входные и выходные характеристики схемы с общим эмиттером

Работу схемы обычно описывают с помощью входных и выходных характеристик транзистора в той или иной схеме включения. Для схемы с ОЭ входная характеристика – это зависимость входного тока от напряжения на входе схемы, т.е. I Б = f (UБЭ) при фиксированных значениях напряжения коллектор – эмиттер (U кэ = const).

Выходные характеристики – это зависимости выходного тока, т.е. тока коллектора, от падения напряжения между коллектором и эмиттером транзистора I к = f (и БЭ) при токе базы I Б = const.

Входная характеристика по существу повторяет вид характеристики диода при подаче прямого напряжения (рис. 1.12, б). С ростом напряжения U KЭ входная характеристика будет незначительно смещаться вправо.

Рис. 1.12. Выходные (а) и входная (б ) характеристики транзистора в схеме с общим эмиттером

Вид выходных характеристик (рис. 1.12, а) резко различен в области малых (участок ОA) и относительно больших значений U кэ. Напомним, что для нормальной работы транзистора необходимо, чтобы на переход база–эмиттер подавалось прямое напряжение, а на переход база–коллектор – обратное. Поэтому, пока |1/кэ|< 1/БЭ, напряжение на коллекторном переходе оказывается прямым, что резко уменьшает ток I к. При |UКЭ| > U БЭ напряжение на коллекторном переходе UБK = UКЭ – U БЭ становится обратным и, следовательно, мало влияет на величину коллекторного тока, который определяется в основном током эмиттера. При таком напряжении все носители, инжектированные эмиттером в базу и прошедшие через область базы, устремляются к внешнему источнику. При напряжении UБЭ < 0 эмиттер носителей не инжектирует и ток базы I Б = 0, однако в коллекторной цепи протекает ток I К0 (самая нижняя выходная характеристика). Этот ток соответствует обратному току I 0 обычного р-n-перехода.

При работе транзистора изменяется его режим. Действительно, чем больше ток, протекающий через транзистор, тем больше падение напряжения на нагрузке, а следовательно, тем меньшее напряжение будет падать на самом транзисторе. Характеристики, представленные на рис. 1.12, а, б, описывают лишь статический режим работы схемы. Для оценки динамики и влияния нагрузки на работу схемы используют графоаналитический метод расчета на основе входных и выходных характеристик. Рассмотрим этот метод на примере входных и выходных характеристик схемы с ОЭ.

Проведем прямую через точку Eк, отложенную на оси абсцисс, и точку Е к /R н отложенную на оси ординат выходных характеристик транзистора. Полученная прямая называется нагрузочной. Точка Е к /R н этой прямой соответствует такому току, который мог бы течь через нагрузку, если транзистор замкнуть накоротко. Точка Е к соответствует другому крайнему случаю – цепь разомкнута, ток через нагрузку равен нулю, а напряжение Uкэ равно Е к. Точка р пересечения нагрузочной прямой со статической выходной характеристикой, соответствующей входному току I Б, определит рабочий режим схемы, т.е. ток в нагрузке I к, падение напряжения на ней U н = I к R н и падение напряжения (/кэ на самом транзисторе. На рис. 1.12, а точка р соответствует подаче в транзистор тока базы I Б = 1 мА. Нетрудно видеть, что подача тока базы I Б = 2 мА приводит к смещению рабочей точки в точку А и перераспределению напряжений между нагрузкой и транзистором.

Пример 1.1. Рассчитайте схему с ОЭ и R н =110 Ом при входном напряжении UБЭ = +0,1 В, напряжении питания Е к = +25 В, используя характеристики транзистора.

Решение. Найдем отношение E K/R н = 25/110 = 228 мА и, отложив найденную точку на оси I к и значение Е к = +25 В на оси Uкэ, проведем нагрузочную прямую.

По входной характеристике для напряжения 1/БЭ = 0,1 В определим входной ток I Б = 1 мЛ.

Точка пересечения р прямой с характеристикой, соответствующей I Б = 1 мА, определит ток I к = 150 мА.

Напряжение на нагрузке равно

Напряжение между коллектором и эмиттером транзистора

В заключение отметим, что режим, соответствующий точке А, называют режимом насыщения (при заданных значениях R н и Е к ток I к в точке А достигает наибольшего возможного значения). Режим, соответствующий точке В (входной сигнал равен нулю), а также точке С (входной сигнал отрицателен и запирает транзистор), называют режимом отсечки. Все промежуточные состояния транзистора с нагрузкой между точками А и В относятся к активному режиму его работы.


Схема включения транзистора с общим эмиттером (ОЭ). При исследовании свойств обычно используют схему включения транзистора с общим эмиттером, то есть когда эмиттер подключен к "земле", коллектор, через сопротивление нагрузки, подключен к источнику питания, а на базу подаётся напряжение смещения. Соберём схему, показанную на рисунке:

В схеме используется транзистор структуры n-p-n, нагрузочное сопротивление - 1 кОм, источник питания напряжением 12 вольт и амперметр.
Мы видим, что амперметр показывает очень низкое значение тока протекающего через нагрузочное сопротивление и переход коллектор - эмиттер транзистора. Этот ток называется током утечки n-p-n перехода.
По определению транзистора, малый ток базы управляет большим током в цепи коллектор - эмиттер (в схеме с ОЭ).
Для создания усилительного каскада по схеме с ОЭ, следует создать начальный ток базы, такой, чтобы транзистор находился рабочем режиме. В нашей схеме транзистор находится в режиме отсечки (сопротивление К - Э стремится к бесконечности). Второй крайний режим называется режимом насыщения, то есть когда на базу поступает максимальный ток, который уже никак не влияет на ток проходящий в цепи К-Э (ток коллектора). В этом случае говорят, что транзистор открыт и коллекторный ток определяется сопротивлением нагрузки, а сопротивление перехода К - Э можно принять равным 0. Между двумя этими точками, посередине находится рабочий ток (рабочая точка) базы транзистора.
На практике, для определения рабочего режима транзистора используют измерение не тока, а напряжения на базе и на участке К-Э. Включение вольтметра не требует разрыва цепи.
Для определения рабочей точки следует собрать схему, показанную на рисунке:

Через резистор R1 подаётся напряжение смещения, которое создаёт ток базы. Сопротивление R1, в процессе эксперимента, мы будем изменять от 40 до 300 кОм, с шагом 20 кОм. Вольтметром V1 будем измерять напряжение база - эмиттер, а вольтметром V2, напряжение коллектор - эмиттер.
Результаты измерений лучше заносить в таблицу, например в Microsoft Excel или Open Office Calc.

По результатам измерений построим график для изменения напряжения коллектор - эмиттер (КЭ):

Мы видим, что при измерениях 1-2-3 напряжение КЭ практически не меняется и близко к 0. Этот режим называется режим насыщения. В таком режиме каскад усилителя будет работать с сильными искажениями сигнала, так как усиление будет производиться только отрицательных полуволн сигнала.
На участке 12-13-14, тоже график постепенно приобретает линейную зависимость, а напряжение на коллекторе практически не меняется. В такой режим называется режимом отсечки. В этом режиме усиление сигнала будет производиться, так же с большими искажениями, так как усиливаться будут только положительные полуволны сигнала. Каскады с режимом отсечки используются в цифровой технике как ключ с инверсией - логический элемент "НЕ".
Для выбора рабочей точки транзистора в качестве усилителя следует рассчитать точку В на графике. Для этого, следует напряжение базы в точке А сложить с напряжением базы в точке С и поделить пополам (найти среднее арифметическое. (820 + 793)/2 = 806,5. Мы видим, что напряжение базы 806,5 мВ, примерно соответствует 6-му измерению - 807 мВ. Это напряжение на базе транзистора и соответствует рабочей точке каскада с общим эмиттером.
Подключим ко входу усилителя генератор, а ко входу и выходу осциллограф. Вход соединим с каналом А, а выход усилителя с каналом В. Для развязки усилительного каскада по переменному току на входе каскада установим конденсаторы С1 и С1.
Примем частоту генератора 1000 Гц (1 кГц), а амплитуду сигнала 10 мВ. На осциллографе установим время развёртки 0,5 миллисекунд на деление, чувствительность канала А - 10 милливольт на деление и чувствительность канала В - 1 вольт на деление.

Далее следует включить питание схемы и через 2 - 5 секунд выключить. Для удобного считывания показаний осциллографа, следует синусоиду входного сигнала опустить ниже оси Y (счётчиком Y position), а синусоиду выходного сигнала выше оси Y аналогичным образом. Мы видим, что выходной сигнал перевёрнут относительно входного на 180 градусов.
Рассмотрим амплитудные значения входного и выходного сигналов. Входной сигнал имеет амплитуду 10 мВ (такое значение мы установили на генераторе), а выходной сигнал получился с амплитудой в 1,5 вольта (3 деления по оси Y / 2. Одно деление - 1 вольт). Отношение выходного напряжения сигнала к входному называется коэффициентом усиления по напряжению транзистора в схеме с общим эмиттером. Рассчитаем усиление нашего транзистора Ku = Uвх / Uвых = 1,5 / 0,01 = 150. То есть, каскад на транзисторе, включенном по схеме ОЭ, усиливает входной сигнал в 150 раз.
Для транзисторного каскада с ОЭ справедливы следующие значения:
Ku - от 50 до 1500
Ki (коэффициент усиления тока) - 10-20
Kp (коэффициент усиления мощности) - 1000-10000
Rвх (входное сопротивление) - 100 ом - 10 ком
Rвых (выходное сопротивление) - 100 ом - 100 ком
Каскад с ОЭ используется, обычно, как усилитель назко- и высокочастотных сигналов.

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ


Биполярным транзистором называют полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и предназначеный для усиления сигнала.

Биполярные транзисторы являются полупроводниковыми приборами универсального назначения и широко применяются в различных усилителях, генераторах, в импульсных и ключевых устройствах.

Биполярные транзисторы можно классифицировать по материалу: германиевые и кремниевые; по виду проводимости: типа р- n -р и n - p - n ; по мощности: малая (Р мах < 0,3Вт), средняя (Р мах = 1,5Вт) и большая (Р мах > 1,5Вт); по частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ.

В таких транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок. Отсюда пошло их название: биполярные.

Биполярный транзистор представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n -р- n средняя область имеет дырочную, а крайние области – электронную электропроводность.

Транзисторы типа р- n -р имеют среднюю область с электронной, а крайние - с дырочной проводностью.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, вторая – коллектором. Таким образом в транзисторе имеются два р- n - перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором.

Эмиттером - это область транзистора для инжекции носителей заряда в базу. Коллектором - область, назначением которой является извлечение носителей заряда из базы. Базой называется область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера гораздо выше проводимости базы, а проводимость коллектора меньше проводимости эмиттера.

В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).

Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка.

Принцип действия транзистора на примере транзистора р- n -р –типа, включенного по схеме с общей базой (ОБ).

Внешние напряжения двух источников питания ЕЭ и Е к подключают к транзистору таким образом, чтобы обеспечивалось смещение эмиттерного перехода П1 в прямом направлении, а коллекторного перехода П2 – в обратном направлении.

Если к коллекторному переходу приложено обратное напряжение, а цепь эмиттера разомкнута, то в цепи коллектора протекает небольшой обратный ток I ко . Он возникает под действием обратного напряжения и создается направленным перемещением неосновных носителей заряда дырок базы и электронов коллектора через коллекторный переход. Обратный ток протекает по цепи: +Е к , база-коллектор, −Е к .

При включении в цепь эмиттера постоянного напряжения ЕЭ в прямом направлении потенциальный барьер эмиттерного перехода понижается. Начинается инжектирование дырок в базу.

Внешнее напряжение, приложенное к транзистору, оказывается приложенным в основном к переходам П1 и П2, т.к. они имеют большое сопротивление по сравнению с сопротивлением базовой, эмиттерной и коллекторной областей. Поэтому инжектированные в базу дырки перемещаются в ней посредством диффузии. При этом дырки рекомбинируют с электронами базы. Поскольку концентрация носителей в базе значительно меньше, чем в эмиттере, то рекомбинируют очень немногие дырки. При малой толщине базы почти все дырки будут доходить до коллекторного перехода П2. На место рекомбинированных электронов в базу поступают электроны от источника питания Е к . Дырки, рекомбинировавшие с электронами в базе, создают ток базы I Б.

Под воздействием обратного напряжения Е к, потенциальный барьер коллекторного перехода повышается, а толщина перехода П2 увеличивается. Вошедшие в область коллекторного перехода дырки попадают в ускоряющее поле, созданное на переходе коллекторным напряжением, и втягиваются коллектором, создавая коллекторный ток I к . Коллекторный ток протекает по цепи: +Е к , база-коллектор, -Е к .

Таким образом, в б иполярном транзисторе протекает три вида тока: эмиттера, коллектора и базы.

В проводе, являющемся выводом базы, токи эмиттера и коллектора направлены встречно. Ток базы равен разности токов эмиттера и коллектора: I Б = I Э − I К.

Физические процессы в транзисторе типа n -р- n протекают аналогично процессам в транзисторе типа р- n -р.

Полный ток эмиттера I Э определяется количеством инжектированных эмиттером основных носителей заряда. Основная часть этих носителей заряда достигая коллектора, создает коллекторный ток I к . Незначительная часть инжектированных в базу носителей заряда рекомбинируют в базе, создавая ток базы I Б. Следовательно, ток эмиттера разделятся на токи базы и коллектора, т.е. I Э = I Б + I к .

Выходной ток транзистора зависит от входного тока. Поэтому транзистор- прибор, управляемый током.

Изменения тока эмиттера, вызванные изменением напряжения эмиттерного перехода, полностью передаются в коллекторную цепь, вызывая изменение тока коллектора. А т.к. напряжение источника коллекторного питания Е к значительно больше, чем эмиттерного Е э , то и мощность, потребляемая в цепи коллектора Р к , будет значительно больше мощности в цепи эмиттера Р э . Таким образом, обеспечивается возможность управления большой мощностью в коллекторной цепи транзистора малой мощностью, затрачиваемой в эмиттерной цепи, т.е. имеет место усиление мощности.

Схемы включения биполярных транзисторов

Транзистор, в схему включают так, что один из его выводов является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК . Для транзистора n -р- n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора, полярность включения источников питания должна быть выбрана такой, чтоб эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.

Статические характеристики биполярных транзисторов

Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

Характеристики транзистора, включенного по схеме ОБ

I Э = f (U ЭБ) при U КБ = const (а).

I К = f (U КБ) при I Э = const (б).

Статические характеристики биполярного транзистора, включенного по схеме ОБ. Выходные ВАХ имеют три характерные области: 1 – сильная зависимость I к от U КБ; 2 – слабая зависимость I к от U КБ; 3 – пробой коллекторного перехода. Особенностью характеристик в области 2 является их небольшой подъем при увеличении напряжения U КБ.

Характеристики транзистора, включенного по схеме ОЭ:

Входной характеристикой является зависимость:

I Б = f (U БЭ) при U КЭ = const (б).

Выходной характеристикой является зависимость:

I К = f (U КЭ) при I Б = const (а).


Режим работы биполярного транзистора

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода (оба р- n - перехода закрыты).

Если же на обоих переходах напряжение прямое (оба р- n - перехода открыты), то транзистор работает в режиме насыщения. В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы - усиление, генерирация.

усилительный каскад на биполярном транзисторе

Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером. Основными элементами схемы являются источник питания Е к , управляемый элемент – транзистор VT и резистор R к . Эти элементы образуют выходную цепь усилительного каскада, в которой за счет протекания управляемого тока создается усиленное переменное напряжение на выходе схемы. Другие элементы схемы выполняют вспомогательную роль. Конденсатор С р является разделительным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Е к .

Резистор R Б, включенный в цепь базы, обеспечивает работу транзистора при отсутствии входного сигнала. Режим покоя обеспечивается током базы покоя I Б = Е к / R Б. С помощью резистора R к создается выходное напряжение. R к выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого по цепи базы.

Для коллекторной цепи усилительного каскада можно записать следующее уравнение электрического состояния:

Е к = U кэ + I к R к ,

сумма падения напряжения на резисторе R к и напряжения коллектор-эмиттер U кэ транзистора всегда равна постоянной величине – ЭДС источника питания Е к .

Процесс усиления основывается на преобразовании энергии источника постоянного напряжения Е к в энергию переменного напряжения в выходной цепи за счет изменения сопротивления управляемого элемента (транзистора) по закону, задаваемого входным сигналом.

Усилитель представляет собой четырехполюсник, два вывода которого предназначены для подключения входного сигнала и два оставшихся вывода служат для снятия с них усиленного сигнала (напряжения или тока). У транзистора же есть только три вывода, поэтому для реализации четырехполюсника приходится один из выводов подключать как ко входу, так и к выходу усилителя. В зависимости от того, какой вывод транзистора является общим как для входа, так и для выхода усилителя, схемы включения транзистора называются:

  • Схема с общим эмиттером
  • Схема с общей базой
  • Схема с общим коллектором

Следует отметить, что данные схемы включения применяются не только для биполярных транзисторах, но и для всех типов полевых транзисторов. В них эти схемы будут называться схемами с общим истоком, общим затвором и общим стоком соответственно. Во всех последующих схемах границы четырехполюсника усилителя будут показаны пунктирной линией. Для подключения источника сигнала и нагрузки в них предусмотрено по два вывода.

Схема с общим эмиттером

Наиболее распространенной схемой включения транзистора является (ОЭ). Это связано с наибольшим усилением этой схемы по мощности. Схема с общим эмиттером обладает усилением, как по напряжению, так и по току. Функциональная схема включения транзистора с общим эмиттером приведена на рисунке 1.


Рисунок 1. Функциональная схема включения транзистора с общим эмиттером

На данной схеме цепи питания коллектора и базы транзистора не показаны. Мы рассмотрим их позднее при подробном изучении с общим эмиттером. Входное сопротивление схемы включения транзистора с общим эмиттером определяется входной характеристикой транзистора. Оно зависит от базового, а, следовательно, и коллекторного тока транзистора. Для большинства маломощных усилителей оно составляет значение порядка 2,5 кОм.

Схема с общей базой

Схема с общим коллектором

Обычно применяется для получения высокого входного сопротивления. Коэффициент усиления по мощности данной схемы включения транзистора меньше по сравнению со схемой с общим эмиттером и соизмерим с коэффициентом усиления схемы с общей базой. Это связано с тем, что схема включения транзистора с общим коллектором не усиливает по напряжению. В данной схеме производится усиление только по току. Функциональная схема включения транзистора с общим коллектором приведена на рисунке 3.


Рисунок 3. Функциональная схема включения транзистора с общим коллектором

На схеме, приведенной на рисунке 5, цепи питания коллектора и базы не показаны. В качестве входного сопротивления схемы включения транзистора с общим коллектором служит сумма сопротивления базы транзистора (как в схеме с общим эмиттером) и пересчитанного ко входу сопротивления в цепи эмиттера, поэтому входное сопротивление схемы с общим коллектором очень велико. Её входное сопротивление самое большое из всех схем включения транзистора.

Литература:

Вместе со статьей "Схемы включения транзистора" читают:


http://сайт/Sxemoteh/ShTrzKask/KollStab/


http://сайт/Sxemoteh/ShTrzKask/EmitStab/



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows