Воспроизведение через usb type a. USB Type-C: универсальный разъем для всего

Воспроизведение через usb type a. USB Type-C: универсальный разъем для всего

10.09.2019

Почему новый стандарт USB действительно лучше, чем привычные всем USB-порты телефонов, планшетов или ноутбуков и у каких устройств уже есть разъемы USB Type-C? Редакция CHIP отвечает на все эти вопросы.

Сначала немного важной информации: обозначения USB Type-C и USB 3.1, как говорится, идут нога в ногу, поскольку обозначают фактически одно и то же. Когда используется числовое обозначение USB 3.1, речь обычно идет о скорости передачи данных.

Если встречаете название USB Type-C - обычно имеется ввиду непосредственно тип разъема для подключения устройств. Для начала давайте сравним предыдущий стандарт USB 3.0 с новым USB 3.1. Все подробности вы найдете в нижеприведенной таблице.

Сравнение USB 3.0 и USB 3.1

Лучшие устройства с USB Type-C

Какие устройства с разъемом USB Type-C вообще доступны в настоящий момент? Первым из них стал 12-дюймовый MacBook, в котором этот разъем вообще был единственным. Актуальные гуглофоны Nexus 6P и 5X тоже оснащены USB 3.1 - да и вообще все больше и больше производителей интегрируют в свои смартфоны порт нового стандарта.

В следующей таблице мы собрали для вас перечень самых интересных устройств с интерфейсом USB Type-C.

USB Type-C: у этих устройств он уже есть

Разъем USB больше не получится подключить неправильно

USB Type-C: штекер типа С (слева) можно использовать любой стороной

Вот что делает разъем USB Type-C невероятно удобным: он является симметричным. Вам больше не придется думать о том, с какой попытки получится правильно вставить штекер в гнездо. Ранее такое свойство разъема было большим преимуществом продукции компании Apple, iPad или iPhone, а теперь оно становится доступным для широких масс пользователей. Этот кабель можно вставлять любой стороной.

Упомянем и еще одно существенное преимущество над стандартом USB 3.0: за счет увеличенной до 100 Вт максимальной передаваемой мощности, через USB 3.1 в будущем без дополнительного источника питания смогут подключаться различные периферийные устройства, например, мониторы или колонки. Сила тока 5 А также существенно сокращает время зарядки мобильного телефона.

Вам приходилось встречать человека, который с восторгом говорил: «В моем смартфоне есть Type-C»?

Дебаты о современности и пользе нового интерфейса ведутся достаточно долго. Одни считают его будущим, другие - утопией. Вся беда в том, что обе стороны имеют весомые доказательства своей правоты. Чтобы разобраться в ситуации, необходимо всесторонне изучить вопрос.

Развитие

Не все помнят первый разъем USB Type-A, который по сей день используется в новейших компьютерах, ноутбуках и планшетах. В далеких 90-х годах он имел такую же физическую форму, но другой стандарт - USB 1.1. Если говорить более подробно, были ограничения по скорости передачи данных.

В 2001 году был разработан стандарт 2.0, который является самым распространенным на сегодняшний день. Он обеспечил скорость передачи данных до 480 Мбит/с. В этот момент началась эпоха создания универсального и скоростного разъема для подключения.

Первым общепринятым разъемом, получившим большую популярность и распространение, стал Type-B Mini. Он успешно применяется в телефонах, фотоаппаратах, видеокамерах и позволяет подключить устройства к компьютеру. Однако не стоит считать это большим прорывом, так изменилась только форма, стандарт остался прежним - USB 2.0. Другими словами, скорость передачи не увеличилась.

Стремление минимизировать габариты гаджетов привело к созданию нового Type-B Micro. Он продолжает оставаться главным героем подавляющего количества современной техники, но не может предложить пользователям больших преимуществ.

Настоящим прорывом стала спецификация USB 3.0, которая кардинально поменяла взгляд на многие вещи. Новый интерфейс позволил увеличить скорость передачи данных до 5 Гбит/с. Изменения коснулись и внутреннего строения. В новом 3.0 представлена 9-контактная группа (в 2.0 было всего 4 контакта).

Последним шагом на пути к появлению Type-C стало принятие стандарта 3.1, который остается самым быстрым и эффективным в наши дни. Пользователи получили возможность передавать данные со скоростью до 10 Гбит/с. Новый стандарт также позволяет передавать заряд мощностью в 100 Вт.

Стандарт состоит из 24 пинов: два ряда по 12 штук. 8 пинов интерфейса USB 3.1 применяются для обмена данными с высокой скоростью. Пины B8 и A8 (SUB1 и 2) используются для передачи аналоговых сигналов в наушники (правый и левый), A5 и B5 (СС1 и 2) необходимы для выбора режима питания. Также есть выводы земли (GND) и питания (V+).

Преимущества Type-C

Он не так уж и необходим, а просто является очередной физической модификацией, получившей поддержку USB 3.1. Но не стоит спешить с выводами, так как есть целый ряд преимуществ, которые предлагает новый разъем:

  • Безопасность . Разъем является двусторонним, т.е. можно подключать кабель в любом положении. Это обеспечивает полную безопасность и сохранность гаджета от поломок, которые сопровождаются загнутыми или сломанными контактами.
  • Универсальность . Обеспечена полная совместимость со всеми стандартами старого поколения, начиная с USB 1.1.
  • Независимость . Type-C, поддерживающий USB 3.1, может обеспечивать подключаемые устройства питанием до 100 Вт. Проще говоря, при подключении идет не просто полноценное энергоснабжение, но и подзарядка аккумуляторов других гаджетов, как от « ».
  • Компактность . Разъем имеет очень маленькие габариты, поэтому активно используется в производстве современных и планшетов.

Недостатки

С технической точки зрения USB Type-C практически совершенен. Так почему он до сих пор не стал самым популярным? Почему производители не спешат оснастить им свою технику? Для технического оснащения нет никаких препятствий, однако есть весомые причины, которые тормозят этот процесс.

В первую очередь, он имеет уникальную физическую структуру, поэтому для подключения большинства гаджетов необходимы кабели-переходники, всевозможные разветвители и адаптеры. Если подключаемое устройство не поддерживает USB 3.1, такое подключение просто теряет смысл, так как не будет обеспечена максимальная скорость передачи данных и поддержка питания.

Большинство выпущенной компьютерной, мобильной, аудио- и видеотехники оснащено Type-A, Type-B Mini/Micro, которые не имеют поддержки USB 3.1 или даже 3.0. Массовый переход на USB Type-C снизит спрос на существующие товары, у которых он отсутствует. Независимо от желаний и надежд пользователей, производители осознанно отодвигают эффективную технологию и тормозят ее распространение.

Во-вторых, даже при наличии в двух подключаемых устройствах Type-C получение всех преимуществ может быть недоступно. Это связанно с несовершенной технологией обработки и передачи информации определенных категорий устройств. Например, можно синхронизировать смартфон и персональный компьютер/ноутбук через Type-C. Однако передача данных в обоих направлениях будет ограничена, так как максимальную скорость не сможет обеспечить винчестер.

Да, новая технология доступна, она используется, но до полного перехода пока далеко. Нужно понимать, что в случае полного перехода на USB Type-C придется отправить на утилизацию всю устаревшую технику.

Редко бывает, что одна лишняя буква в названии стандарта грозит совершить революцию в мире интерфейсов передачи данных и гаджетов, но появление последней разновидности USB 3.1 Type-C похоже как раз тот случай. Что же нам обещает принести очередное обновление старого доброго USB интерфейса?

  • Скорость передачи данных до 10 GBps
  • Возможность запитывания от порта устройств с потребляемой мощностью вплоть до 100Вт
  • Размеры коннектора сравнимые с micro-USB
  • Симметричность разъёма - у него не существует верха и низа, а значит нет ключа, который часто приводит к повреждениям как самих разъёмов, так и подключаемых через них гаджетов
  • С помощью данного интерфейса можно запитывать устройства с напряжением вплоть до 20 вольт
  • Больше не существует разных типов коннекторов - А и В. На обоих концах кабеля стоят совершенно одинаковые разъёмы. Как данные так и питающее напряжение могут передаваться через один и тот же разъём в обоих направлениях. В зависимости от ситуации каждый разъём может выступать в роли ведущего или ведомого
  • Нам обещают, что конструкция разъёма способна выдерживать до 10 000 подключений
  • Возможно использование этого интерфейса для непосредственного подключения вместо некоторых других широко распространённых интерфейсов для быстрого обмена данными.
  • Стандарт совместим сверху вниз как c обычным USB 3 интерфейсом, так и с его младшими братьями. Конечно не на прямую, но с помощью переходника через него возможно подключение скажем USB 2.0 диска
Под катом постараюсь разобрать тему по косточкам - начиная от конструкции разъёма и кабеля, и заканчивая кратким обзором профилей оборудования и новинок чипов для поддержки возможностей данного интерфейса. Я долго думал на какой площадке размещать статью, ведь все предыдущие касающиеся этой темы выходили на GT, но в моей публикации так много технических деталей, что она будет полезней не гикам, а потенциальным разработчикам, которым уже сегодня стоит начинать к нему присматриваться. Поэтому рискнул поселить статью тут.

Не буду касаться истории развития USB интерфейса, эта тема не плохо развита в данном комиксе в смысле истории в картинках

Электроника - наука о контактах

Для начала сравнительные фото сегодняшнего героя в компании заслуженных предков.

Коннектор USB Type-C немного крупнее привычного USB 2.0 Micro-B, однако заметно компактнее сдвоенного USB 3.0 Micro-B, не говоря уже о классическом USB Type-A.
Габариты разъема (8,34×2,56 мм) позволяют без особых сложностей использовать его для устройств любого класса, включая смартфоны и планшеты.


Сигнальные и силовые выводы размещены на пластиковой вставке пожалуй это самое слабое его место в центральной части разъёма. Контактная группа USB Type-C содержит 24 вывода. Напомню, что у USB 1.0/2.0 имелось всего 4 контакта, а разъемам USB 3.0 потребовалось уже 9 выводов.



Если внимательно присмотреться к рисунку слева, то видно, что контакты имеют разную длину. Это обеспечивает их замыкание в определённой последовательности. На рисунке в центре мы видим наличие защёлок, которые должны удерживать воткнутый кабель и обеспечивать тактильный щелчок в процессе соединения-рассоединения. На правом графике изображена зависимость усилия в процессе вставки-вынимания разъёма.

Пики, которые мы видим на нём - это моменты срабатывания защёлки.

Можно констатировать, что разработчики стандарта сделали если не всё, то почти всё, чтобы разъём стал максимально удобным и надёжным: он вставляется любым концом и любой стороной с ощутимым щелчком. По их мнению, он способен пережить эту процедуру более 10 тысяч раз.

Многоликий симметричный янус

Крайне приятной и полезной особенностью USB-C стал симметричный дизайн разъёма, позволяющий подключать его к порту любой стороной. Достигается это благодаря симметричному расположению его выводов.

По краям расположены выводы земли. Плюсовые контакты питания также расположены симметрично. В центре находятся контакты, отвечающие за совместимость с интерфейсом USB2 и младше. Им повезло больше всего - они дублируются и поэтому поворот на 180 градусов при соединении не страшен. Синим цветом помечены выводы, отвечающие за высокоскоростной обмен данными. Как мы видим тут всё хитрее. Если мы повернём разъём, то к примеру, выход TX1 поменяется местами с TX2, но одновременно и место входа RX1 займёт RX2.

Выводы Secondary Bus и USB Power Delivery Communication служебные и предназначены для общения между собой двух соединяемых устройств. Ведь им необходимо очень о многом друг другу рассказать, прежде чем начать обмен, но об этом позже.

А пока ещё об одной особенности. Порт USB Type-C изначально разрабатывался в качестве универсального решения. Помимо непосредственной передачи данных по USB, он может также использоваться в альтернативном режиме (Alternate Mode) для реализации сторонних интерфейсов. Такую гибкость USB Type-C использовала ассоциация VESA, внедрив возможность передачи видеопотока посредством DisplayPort Alt Mode.

USB Type-C располагает четырьмя высокоскоростными линиями (парами) Super Speed USB. Если две из них выделяются на нужды DisplayPort, этого достаточно для получения картинки с разрешением 3840×2160. При этом не страдает скорость передачи данных по USB. На пике это все те же 10 Гб/с (для USB 3.1 Gen2). Также передача видеопотока никак не влияет на энергетические способности порта. На нужды DisplayPort может быть выделено даже 4 скоростные линии. В этом случае будут доступны разрешения вплоть до 5120×2880. В таком режиме остаются не задействованы линии USB 2.0, потому USB Type-C все еще сможет параллельно передавать данные, хотя уже с ограниченной скоростью.

В альтернативном режиме для передачи аудиопотока используются контакты SBU1/SBU2, которые преобразуются в каналы AUX+/AUX-. Для протокола USB они не задействуются, потому здесь тоже никаких дополнительных функциональных потерь.

При использовании интерфейса DisplayPort, коннектор USB Type-C по-прежнему можно подключать любой стороной. Необходимое сигнальное согласование предусмотрено изначально.

Подключение устройств с помощью HDMI, DVI и даже D-Sub (VGA) также возможно, но для этого понадобятся отдельные переходники, однако это должны быть активные адаптеры, так как для DisplayPort Alt Mode, не поддерживается режим Dual-Mode Display Port (DP++).

Альтернативный режим USB Type-C может быть использован отнюдь не только для протокола DisplayPort. Возможно, вскоре мы узнаем о том, что данный порт научился, например, передавать данные с помощью PCI Express или Ethernet.

И этому дала, и тому дала. В общем… о питании.

Еще одна важная особенность, которую привносит USB Type-C – возможность передачи по нему энергии мощностью до 100 Вт. Этого хватит не только для питания/зарядки мобильных устройств, но и для работы ноутбуков, мониторов, а если пофантазировать, то и небольшого лабораторного источника питания.

При появлении шины USB, передача энергии была важной, но всё же второстепенной её функцией. Порт USB 1.0 обеспечивал всего 0,75 Вт (0,15 А, 5 В). Достаточно для работы мыши и клавиатуры, но не более того. Для USB 2.0 номинальная сила тока была увеличена до 0,5 А, что позволило получать от неё уже 2,5 Ватта для питания, например, внешних жестких дисков формата 2,5”. Для USB 3.0 номинально предусмотрена сила тока в 0,9 А, что при неизменном напряжении питания в 5В гарантирует мощность в 4,5 Вт. Специальные усиленные разъемы на материнских платах или ноутбуках способны были выдавать до 1,5 А для ускорения зарядки подключенных мобильных устройств, но и это “всего лишь” 7,5 Вт. На фоне этих цифр возможность передачи 100 Вт выглядит чем-то фантастическим.

Для того чтобы наполнить такой энергией порт USB Type-C служит поддержка спецификации USB Power Delivery 2.0 (USB PD). Если таковой нет, порт USB Type-C штатно сможет выдать на гора 7,5 Вт (1,5 А, 5 В) или 15 Вт (3А, 5 В) в зависимости от конфигурации. Для подробного описания этой спецификации в данной статье недостаточно места, да и всё равно я не сделаю это лучше, чем уважаемый в своей замечательной статье .

Однако, совсем обойти эту архиважную тему не получится.

Для того, чтобы обеспечить мощность в 100 ватт при напряжении пять вольт потребуется ток в 20 ампер! Такое при габаритах кабеля USB Type-C возможно пожалуй только если изготовить его из сверхпроводника! Боюсь, что сегодня это будет обходиться пользователям дороговато, поэтому разработчики стандарта пошли по другому пути. Они увеличили напряжение питания до 20 Вольт. “Позвольте, но ведь оно выжжет напрочь мой любимый планшет” - воскликните вы, и будете совершенно правы. Для того, чтобы не пасть жертвой разъярённых пользователей, инженеры задумали хитрый трюк - они ввели систему силовых профилей. Перед соединением любое устройство находится в стандартном режиме. Напряжение в нём ограничено пятью вольтами, а ток двумя амперами. Для соединения с устройствами старого типа этим режимом всё и закончится, а вот для более продвинутых случаев, после обмена данными, устройства переходят в другой согласованный режим работы с расширенными возможностями. Чтобы познакомиться с основными существующими режимами глянем на таблицу.

Профиль 1 гарантирует возможность передачи 10 Вт энергии, второй уже – 18 Вт, третий – 36 Вт, четвёртый целых – 60 Вт, ну а пятый нашу заветную сотню! Порт, соответствующий профилю более высокого уровня, поддерживает все состояния предыдущих по нисходящей. В качестве опорных напряжений выбраны 5В, 12В и 20В. Использование 5В необходимо для совместимости с огромным парком имеющейся USB-периферии. 12В – стандартное напряжение питания различных компонентов систем. 20В предложено с учетом того, что для зарядки аккумуляторов большинства ноутбуков используются внешние БП на 19–20В.

Пара слов о кабелях!

Поддержка описываемого в статье формата в полном объёме потребует огромной работы не только программистов, но и производителей электроники. Потребуется разработать и развернуть производство очень большого количества компонентов. Самое очевидное это разъёмы. Для того, чтобы выдерживать высокие токи питающего напряжения, не оказывать помех передаче сигналов очень высокой частоты, да ещё при этом не выходить из строя после второго коннекта и не вываливаться в самый неподходящий момент, качество их изготовления должно быть радикально выше по сравнению с форматом USB 2.

Для совмещения передачи энергии большой мощности и сигналом с гигабитным трафиком, производителям кабелей придётся серьёзно напрячься.

Полюбуйтесь, как выглядит подходящий для нашей задачи кабель в разрезе.

Кстати, об ограничениях на длину кабелей при использовании интерфейса USB 3.1. Для передачи данных без существенных потерь на скоростях до 10 Гб/c (Gen 2) длина кабеля c разъемами USB Type-C не должна превышать 1 метр, для соединения на скорости до 5 Гб/c (Gen 1) – 2 метра.

Схемотехники производителей материнских плат, докстанций и ноутбуков долго будут ломать голову, как сгенерировать мощность порядка сотни ватт, а трассировщики, как подвести её к разъёму USB Type-C.

Производители чипов на низком старте.

Симметричное подсоединение и работа сигнальных линий в разных режимах потребует применения микросхем высокоскоростных коммутаторов сигналов. Сегодня уже появились первые ласточки. Вот, например, коммутатор от фирмы Texas Instruments, который поддерживает работу в устройствах как в режиме хоста так и ведомого устройства. Он способен коммутировать линии дифференциальных пар с частотой сигнала вплоть до 5ГГц.

При этом размеры чипа HDC3SS460 3.5 на 5.5 мм и в режиме покоя он потребляет ток порядка 1 микроампера. В активном же режиме - меньше миллиампера. Существуют и более продвинутые решения, например чипы производства NXP поддерживают частоту обмена до 10 ГГц.

Стали появляться и менеджеры питания, совмещённые с цепями защиты сигнальных линий от статики, например вот такое изделие от NXP

Оно предназначено для корректной обработки момента подключения разъёма, а так же размыкания цепи питания в случае неполадок. Данный чип уже поддерживает напряжение на VBUS до 30 вольт, а вот с максимальным коммутируемым током всё много хуже - он не должен превышать 1 ампера, что и понятно, учитывая габариты - 1.4 на 1.7 мм!

Безусловным лидером в этой области выступила Cypress, которая выпустила специализированный микроконтроллер с ядром ARM Cortex M0 поддерживающий все пять возможных для стандарта профилей питания.

Типичная схема включения для использования в ноутбуке даёт о нём некоторое представление, а подробнее с ним можно будет ознакомиться скачав даташит.

В отличие от чипа NXP он ориентирован на управление внешними силовыми ключами и поэтому может обеспечить коммутацию требуемых токов и напряжений, не смотря на свои малые размеры.

Внимание, Важная особенность для тех кто уже торопится заказать первые образцы - микроконтроллер не имеет USB интерфейса и не является полным и законченным решением. Он может служить только в качестве менеджера питания. В данный момент открыт предзаказ на поставку образцов и демонстрационных плат. Судьба этого микроконтроллера видимо будет во многом зависеть от того, снабдит ли фирма - производитель разработчиков референсными библиотеками для его использования в разных режимах.

Тот факт, что уже для него уже создано несколько демокитов сильно повышает вероятность последнего.

Лифт в небеса или Вавилонская башня.

Итак сегодня полностью сложилась революционная ситуация. Верхи не могут, а низы не хотят жить по старому. Всем надоела неразбериха с огромным количеством кабелей, зарядных устройств, блоков питания и их низкая надёжность.

Новый стандарт породил невиданную активность. Флагманы электронной индустрии - Apple, Nokia, Asus готовят к выпуску свои первые гаджеты с поддержкой USB Type-C. Китайцы уже штампуют кабели и переходники. На подходе докстанции и хабы с поддержкой высокой нагрузки по мощности. Производители чипов разрабатывают новые микросхемы и думают как бы запихнуть драйвер нового порта в микроконтроллер. Маркетологи решают куда воткнуть новый разъём, а инженеры чешут репу пытаясь реализовать многопрофильные устройства из уже имеющихся электронных компонентов.

Пока не ясно только одно. Что мы получим в результате? Удобный и надёжный разъём, который заменит львиную долю интерфейсов и найдёт повседневное применение, или вавилонское столпотворение, ведь ситуация может начать развиваться по не самому благоприятному сценарию:

Пользователи могут окончательно запутаться в многочисленных спецификациях и кабелях, которые будут выглядеть с виду совершенно одинаково, но при этом будут сертифицированы только под определённые профили. Попробуй разберись с ходу со всеми этими маркировками.

Но даже если получится, то это вряд ли решит проблему - китайцы без зазрения совести легко поставят на любой шнур любой значок. А если надо, то до кучи на каждую сторону одного кабеля разные, их не смутит даже если они будут взаимоисключающими.

Рынок наводнится невероятным количеством переходников разного калибра и сомнительного качества.

Пытаясь подключить одно устройство к другому никогда в результате не будешь знать к какому результату этот процесс приведёт и из-за чего коннект либо вовсе отсутствует, либо всё жутко глючит. То ли один из гаджетов не поддерживает нужный профиль, то ли поддерживает но не слишком корректно, то ли вместо качественного кабеля попалась его грубая китайской подделка. А что прикажете делать, если вдруг на вашем ноутбуке выйдет из строя единственный оставшийся на нём разъём?

До новых встреч.

P.S. Новый стандарт уже приводит к появлению весьма экзотических устройств. Так анонсирован кабель 100 метровой длины, который вроде бы никак не вписывается в стандарты. Вся фишка в том, что он активный. На обоих своих концах кабель имеет преобразователь сигналов USB3 интерфейса в оптический. Сигнал передаётся по оптике и на выходе конвертируется назад. Естественно он не передают энергию, а только данные. При этом каждый из преобразователей на его концах питается от разъёма к которому подключен.
Думаю, что в скором времени для подтверждения подлинности уважающие себя фирмы начнут вставлять в кабели активные метки. Проблема хабов породит невиданную активность у разработчиков и производителей DC-DC преобразователей. Как справедливо заметил уважаемый пользователь

Скорость работы интерфейса зависит от установленных контроллеров, и вы будете удивлены тем, что делают с ними некоторые производители. Технология USB Type-C обещает нам скорость передачи данных на уровне до 10 Гбит/с, но первое поколение устройств с USB Type-C оказывается далеко не настолько быстрым. В этой статье мы разбираемся, в чем здесь дело…

USB Type-C - новый интригующий стандарт, который больше года назад стал появляться в ноутбуках, планшетах, телефонах и на других устройствах. И у нас давно возникло желание проверить, какую же скорость он в реальности может обеспечить. Благодаря появлению SanDisk Extreme 900 мы действительно можем заставить этот двусторонний порт работать на пределе. Для тестирования мы подготовили 8 ноутбуков с USB Type-C, а также вставили в настольный ПК специальную карту PCIe, чтобы тест был более полным.

О чем «молчит» ваш порт USB-C

Подразумевается, что USB Type-C станет универсальным стандартным портом, но на сегодня его универсальность проявляется только в запутанности. USB Type-C может работать на скорости 5 Гбит/с или 10 Гбит/с, будучи по-прежнему маркированным как USB 3.1 производителем ноутбука. Технически USB Type-C может работать даже на скорости USB 2.0 - на жалких 480 Мбит/с. Так что если вы видите порт USB Type-C, то нем можно сказать только то, что скорость интерфейса может варьироваться от скромных 480 Мбит/с до внушительных 10 Гбит/с.

Чтобы запутать все еще сильнее, технология Intel Thunderbolt 3 использует порт USB Type-C для передачи данных через PCIe. И она также поддерживает USB 3.1 со скоростью 10 Гбит/с.

Обсуждать Thunderbolt 3 и поддержку передачи видео через USB Type-C нужно отдельно, и мы посвятим этому другую статью. Однако о питании и не столь универсальной зарядке через USB Type-C уже было сказано.

Не все порты USB Type-C одинаковы

Что же установлено в ваш ноутбук?

На производительность USB Type-C влияет ряд ключевых факторов. Первое - это возможности жесткого диска в вашем ПК. Если вы копируете со встроенного винчестера, получить скорость даже близкую к скорости порта просто невозможно, просто потому что большинство дисковых интерфейсов не дотягивают до максимальной производительности USB Type-C.

Другой важный фактор - это контроллер, используемый для подключения порта. На сегодняшний день существует два популярных чипа, доступных на рынке. Первый из них - ASmedia ASM1142. Этот чип USB 3.1, работающий со скоростью 10 Гбит/с, можно найти во множестве ранних версий ноутбуков и настольных ПК, которые были оснащены USB Type-C. И поскольку нам не удалось оперативно найти ноутбук с этим чипом, мы вставили карту Atech BlackB1rd MX1 PCIe в настольный ПК. Производительность собранной системы должна быть практически такой же, как у ноутбуков с данным чипом. Другой кандидат на лидерство - это дорогостоящий чип Intel Thunderbolt 3, который также поддерживает возможность работы USB со скоростью 10 Гбит/с.

Ну и, наконец, весьма популярное на сегодня решение, которое можно найти во множестве ноутбуков - это контроллер USB 3.0, встроенный непосредственно в чипсет системной логики Intel. Тот же чип используется для подключения стандартных прямоугольных портов USB 3.0 Type-A. Многие производители ПК просто передают его сигнал на овальные порты USB Type-C. И именно это решение является самым популярным, так как оно дешевле и требует меньше энергозатрат. Однако оно также ограничивает работу любого порта USB Type-C максимальной скоростью USB 3.0 - 5 Гбит/с.

SanDisk Extreme 900 - один из первых дисков с поддержкой USB 3.1 10 Гбит/с

Метод тестирования

Для проведения тестов мы использовали SanDisk Extreme 900 SSD, который действительно поддерживает подключение USB Type-C на скорости 10 Гбит/с. SanDisk удалось создать это накопитель емкостью 2 Тб, объединив два диска M.2 SSD в массив RAID 0 внутри одного корпуса. И получился действительно быстрый USB-диск. Подключая его к портам USB Type-C каждого компьютера, мы запускали утилиту AS SSD, которая позволяет оценить реальную скорость последовательной передачи данных порта.

Результаты, которые говорят сами за себя, вы можете увидеть на диаграмме ниже. Мы расположили их в порядке убывания производительности. На подписях указаны как модели ноутбуков, так и версии установленных контроллеров.

Мы оценили 8 ноутбуков, чтобы исследовать производительность USB Type-C (нажмите на картинку для увеличения)

Неудивительно, что производители ноутбуков, выбравшие самый дешевый вариант (подключение контроллера Intel USB 3.0 5 Гб/с к порту USB Type-C), обеспечивают вам… производительность в 5 Гбит/с. Нам не удалось протестировать 12-дюймовый MacBook, потому что AS SSD не работает на OS X, но он использует тот же контролер. Так что приходится ждать эквивалентной производительности.

Куда больший интерес вызывает работа чипов со скоростью 10 Гбит/с: ASMedia и Thunderbolt 3. На диаграмме они представлены 2 моделями Dell XPS (для Thunderbolt) и картой ASMedia в настольном ПК. В нашем тесте ASmedia показал небольшое преимущество над контроллером Thunderbolt 3. Впрочем, производители ПК подтверждают эти данные, сославшись на результаты собственных внутренних тестирований.

Модель Samsung Notebook 9 Pro использует только часть контроллера Intel Thunderbolt 3, поддерживающую USB 3.1

Впрочем, в тесте есть еще один интересный участник - это ноутбук Samsung Notebook 9 Pro. 15,6-дюймовая модель использует достаточно редкий подход оснащения порта USB Type-C за счет использования чипа Intel «Alpine Ridge» с Thunderbolt 3, однако включает в нем только поддержку USB. Даже в панели «Диспетчера устройств» вы найдете только контроллер Intel USB 3.1, как это показано на скриншоте выше.

Представители Samsung подтвердили, что этот ноутбук не работает с Thunderbolt 3. Мы проверили это при помощи диска Akitio Thunderbolt 3 - действительно не работает. Зачем инженеры Samsung поступили таким образом, остается тайной.

Однако нам известно, что производительность оказалась удивительно низкой. Да, этот порт работает быстрее, чем обычные USB Type-C со встроенным чипом Intel, но намного медленнее, чем ASMedia и полная версия Thunderbolt 3. Странный ход.

Заключение

Один взгляд на тестовую диаграмму дает понять, что у наличия в компьютере полноценного порта USB 3.1 со скоростью 10 Гбит/с есть реальные преимущества. Самый очевидный вывод: вам не придется долго ждать копирования файлов на USB-диск. Но кроме этого только с полноценным портом вы сможете раскрыть все преимущества внешнего диска с USB 3.1. И поскольку на рынке будет появляться все больше моделей ПК с портами USB Type-C, мы рекомендуем внимательнее читать характеристики перед покупкой компьютера.

Редко бывает, что одна лишняя буква в названии стандарта грозит совершить революцию в мире интерфейсов передачи данных и гаджетов, но появление последней разновидности USB 3.1 Type-C похоже как раз тот случай. Что же нам обещает принести очередное обновление старого доброго USB интерфейса?

  • Скорость передачи данных до 10 GBps
  • Возможность запитывания от порта устройств с потребляемой мощностью вплоть до 100Вт
  • Размеры коннектора сравнимые с micro-USB
  • Симметричность разъёма - у него не существует верха и низа, а значит нет ключа, который часто приводит к повреждениям как самих разъёмов, так и подключаемых через них гаджетов
  • С помощью данного интерфейса можно запитывать устройства с напряжением вплоть до 20 вольт
  • Больше не существует разных типов коннекторов - А и В. На обоих концах кабеля стоят совершенно одинаковые разъёмы. Как данные так и питающее напряжение могут передаваться через один и тот же разъём в обоих направлениях. В зависимости от ситуации каждый разъём может выступать в роли ведущего или ведомого
  • Нам обещают, что конструкция разъёма способна выдерживать до 10 000 подключений
  • Возможно использование этого интерфейса для непосредственного подключения вместо некоторых других широко распространённых интерфейсов для быстрого обмена данными.
  • Стандарт совместим сверху вниз как c обычным USB 3 интерфейсом, так и с его младшими братьями. Конечно не на прямую, но с помощью переходника через него возможно подключение скажем USB 2.0 диска
Под катом постараюсь разобрать тему по косточкам - начиная от конструкции разъёма и кабеля, и заканчивая кратким обзором профилей оборудования и новинок чипов для поддержки возможностей данного интерфейса. Я долго думал на какой площадке размещать статью, ведь все предыдущие касающиеся этой темы выходили на GT, но в моей публикации так много технических деталей, что она будет полезней не гикам, а потенциальным разработчикам, которым уже сегодня стоит начинать к нему присматриваться. Поэтому рискнул поселить статью тут.

Не буду касаться истории развития USB интерфейса, эта тема не плохо развита в данном комиксе в смысле истории в картинках

Электроника - наука о контактах

Для начала сравнительные фото сегодняшнего героя в компании заслуженных предков.

Коннектор USB Type-C немного крупнее привычного USB 2.0 Micro-B, однако заметно компактнее сдвоенного USB 3.0 Micro-B, не говоря уже о классическом USB Type-A.
Габариты разъема (8,34×2,56 мм) позволяют без особых сложностей использовать его для устройств любого класса, включая смартфоны и планшеты.


Сигнальные и силовые выводы размещены на пластиковой вставке пожалуй это самое слабое его место в центральной части разъёма. Контактная группа USB Type-C содержит 24 вывода. Напомню, что у USB 1.0/2.0 имелось всего 4 контакта, а разъемам USB 3.0 потребовалось уже 9 выводов.



Если внимательно присмотреться к рисунку слева, то видно, что контакты имеют разную длину. Это обеспечивает их замыкание в определённой последовательности. На рисунке в центре мы видим наличие защёлок, которые должны удерживать воткнутый кабель и обеспечивать тактильный щелчок в процессе соединения-рассоединения. На правом графике изображена зависимость усилия в процессе вставки-вынимания разъёма.

Пики, которые мы видим на нём - это моменты срабатывания защёлки.

Можно констатировать, что разработчики стандарта сделали если не всё, то почти всё, чтобы разъём стал максимально удобным и надёжным: он вставляется любым концом и любой стороной с ощутимым щелчком. По их мнению, он способен пережить эту процедуру более 10 тысяч раз.

Многоликий симметричный янус

Крайне приятной и полезной особенностью USB-C стал симметричный дизайн разъёма, позволяющий подключать его к порту любой стороной. Достигается это благодаря симметричному расположению его выводов.

По краям расположены выводы земли. Плюсовые контакты питания также расположены симметрично. В центре находятся контакты, отвечающие за совместимость с интерфейсом USB2 и младше. Им повезло больше всего - они дублируются и поэтому поворот на 180 градусов при соединении не страшен. Синим цветом помечены выводы, отвечающие за высокоскоростной обмен данными. Как мы видим тут всё хитрее. Если мы повернём разъём, то к примеру, выход TX1 поменяется местами с TX2, но одновременно и место входа RX1 займёт RX2.

Выводы Secondary Bus и USB Power Delivery Communication служебные и предназначены для общения между собой двух соединяемых устройств. Ведь им необходимо очень о многом друг другу рассказать, прежде чем начать обмен, но об этом позже.

А пока ещё об одной особенности. Порт USB Type-C изначально разрабатывался в качестве универсального решения. Помимо непосредственной передачи данных по USB, он может также использоваться в альтернативном режиме (Alternate Mode) для реализации сторонних интерфейсов. Такую гибкость USB Type-C использовала ассоциация VESA, внедрив возможность передачи видеопотока посредством DisplayPort Alt Mode.

USB Type-C располагает четырьмя высокоскоростными линиями (парами) Super Speed USB. Если две из них выделяются на нужды DisplayPort, этого достаточно для получения картинки с разрешением 3840×2160. При этом не страдает скорость передачи данных по USB. На пике это все те же 10 Гб/с (для USB 3.1 Gen2). Также передача видеопотока никак не влияет на энергетические способности порта. На нужды DisplayPort может быть выделено даже 4 скоростные линии. В этом случае будут доступны разрешения вплоть до 5120×2880. В таком режиме остаются не задействованы линии USB 2.0, потому USB Type-C все еще сможет параллельно передавать данные, хотя уже с ограниченной скоростью.

В альтернативном режиме для передачи аудиопотока используются контакты SBU1/SBU2, которые преобразуются в каналы AUX+/AUX-. Для протокола USB они не задействуются, потому здесь тоже никаких дополнительных функциональных потерь.

При использовании интерфейса DisplayPort, коннектор USB Type-C по-прежнему можно подключать любой стороной. Необходимое сигнальное согласование предусмотрено изначально.

Подключение устройств с помощью HDMI, DVI и даже D-Sub (VGA) также возможно, но для этого понадобятся отдельные переходники, однако это должны быть активные адаптеры, так как для DisplayPort Alt Mode, не поддерживается режим Dual-Mode Display Port (DP++).

Альтернативный режим USB Type-C может быть использован отнюдь не только для протокола DisplayPort. Возможно, вскоре мы узнаем о том, что данный порт научился, например, передавать данные с помощью PCI Express или Ethernet.

И этому дала, и тому дала. В общем… о питании.

Еще одна важная особенность, которую привносит USB Type-C – возможность передачи по нему энергии мощностью до 100 Вт. Этого хватит не только для питания/зарядки мобильных устройств, но и для работы ноутбуков, мониторов, а если пофантазировать, то и небольшого лабораторного источника питания.

При появлении шины USB, передача энергии была важной, но всё же второстепенной её функцией. Порт USB 1.0 обеспечивал всего 0,75 Вт (0,15 А, 5 В). Достаточно для работы мыши и клавиатуры, но не более того. Для USB 2.0 номинальная сила тока была увеличена до 0,5 А, что позволило получать от неё уже 2,5 Ватта для питания, например, внешних жестких дисков формата 2,5”. Для USB 3.0 номинально предусмотрена сила тока в 0,9 А, что при неизменном напряжении питания в 5В гарантирует мощность в 4,5 Вт. Специальные усиленные разъемы на материнских платах или ноутбуках способны были выдавать до 1,5 А для ускорения зарядки подключенных мобильных устройств, но и это “всего лишь” 7,5 Вт. На фоне этих цифр возможность передачи 100 Вт выглядит чем-то фантастическим.

Для того чтобы наполнить такой энергией порт USB Type-C служит поддержка спецификации USB Power Delivery 2.0 (USB PD). Если таковой нет, порт USB Type-C штатно сможет выдать на гора 7,5 Вт (1,5 А, 5 В) или 15 Вт (3А, 5 В) в зависимости от конфигурации. Для подробного описания этой спецификации в данной статье недостаточно места, да и всё равно я не сделаю это лучше, чем уважаемый stpark в своей замечательной статье .

Однако, совсем обойти эту архиважную тему не получится.

Для того, чтобы обеспечить мощность в 100 ватт при напряжении пять вольт потребуется ток в 20 ампер! Такое при габаритах кабеля USB Type-C возможно пожалуй только если изготовить его из сверхпроводника! Боюсь, что сегодня это будет обходиться пользователям дороговато, поэтому разработчики стандарта пошли по другому пути. Они увеличили напряжение питания до 20 Вольт. “Позвольте, но ведь оно выжжет напрочь мой любимый планшет” - воскликните вы, и будете совершенно правы. Для того, чтобы не пасть жертвой разъярённых пользователей, инженеры задумали хитрый трюк - они ввели систему силовых профилей. Перед соединением любое устройство находится в стандартном режиме. Напряжение в нём ограничено пятью вольтами, а ток двумя амперами. Для соединения с устройствами старого типа этим режимом всё и закончится, а вот для более продвинутых случаев, после обмена данными, устройства переходят в другой согласованный режим работы с расширенными возможностями. Чтобы познакомиться с основными существующими режимами глянем на таблицу.

Профиль 1 гарантирует возможность передачи 10 Вт энергии, второй уже – 18 Вт, третий – 36 Вт, четвёртый целых – 60 Вт, ну а пятый нашу заветную сотню! Порт, соответствующий профилю более высокого уровня, поддерживает все состояния предыдущих по нисходящей. В качестве опорных напряжений выбраны 5В, 12В и 20В. Использование 5В необходимо для совместимости с огромным парком имеющейся USB-периферии. 12В – стандартное напряжение питания различных компонентов систем. 20В предложено с учетом того, что для зарядки аккумуляторов большинства ноутбуков используются внешние БП на 19–20В.

Пара слов о кабелях!

Поддержка описываемого в статье формата в полном объёме потребует огромной работы не только программистов, но и производителей электроники. Потребуется разработать и развернуть производство очень большого количества компонентов. Самое очевидное это разъёмы. Для того, чтобы выдерживать высокие токи питающего напряжения, не оказывать помех передаче сигналов очень высокой частоты, да ещё при этом не выходить из строя после второго коннекта и не вываливаться в самый неподходящий момент, качество их изготовления должно быть радикально выше по сравнению с форматом USB 2.

Для совмещения передачи энергии большой мощности и сигналом с гигабитным трафиком, производителям кабелей придётся серьёзно напрячься.

Полюбуйтесь, как выглядит подходящий для нашей задачи кабель в разрезе.

Кстати, об ограничениях на длину кабелей при использовании интерфейса USB 3.1. Для передачи данных без существенных потерь на скоростях до 10 Гб/c (Gen 2) длина кабеля c разъемами USB Type-C не должна превышать 1 метр, для соединения на скорости до 5 Гб/c (Gen 1) – 2 метра.

Схемотехники производителей материнских плат, докстанций и ноутбуков долго будут ломать голову, как сгенерировать мощность порядка сотни ватт, а трассировщики, как подвести её к разъёму USB Type-C.

Производители чипов на низком старте.

Симметричное подсоединение и работа сигнальных линий в разных режимах потребует применения микросхем высокоскоростных коммутаторов сигналов. Сегодня уже появились первые ласточки. Вот, например, коммутатор от фирмы Texas Instruments, который поддерживает работу в устройствах как в режиме хоста так и ведомого устройства. Он способен коммутировать линии дифференциальных пар с частотой сигнала вплоть до 5ГГц.

При этом размеры чипа HDC3SS460 3.5 на 5.5 мм и в режиме покоя он потребляет ток порядка 1 микроампера. В активном же режиме - меньше миллиампера. Существуют и более продвинутые решения, например чипы производства NXP поддерживают частоту обмена до 10 ГГц.

Стали появляться и менеджеры питания, совмещённые с цепями защиты сигнальных линий от статики, например вот такое изделие от NXP

Оно предназначено для корректной обработки момента подключения разъёма, а так же размыкания цепи питания в случае неполадок. Данный чип уже поддерживает напряжение на VBUS до 30 вольт, а вот с максимальным коммутируемым током всё много хуже - он не должен превышать 1 ампера, что и понятно, учитывая габариты - 1.4 на 1.7 мм!

Безусловным лидером в этой области выступила Cypress, которая выпустила специализированный микроконтроллер с ядром ARM Cortex M0 поддерживающий все пять возможных для стандарта профилей питания.

Типичная схема включения для использования в ноутбуке даёт о нём некоторое представление, а подробнее с ним можно будет ознакомиться скачав даташит.

В отличие от чипа NXP он ориентирован на управление внешними силовыми ключами и поэтому может обеспечить коммутацию требуемых токов и напряжений, не смотря на свои малые размеры.

Внимание, Важная особенность для тех кто уже торопится заказать первые образцы - микроконтроллер не имеет USB интерфейса и не является полным и законченным решением. Он может служить только в качестве менеджера питания. В данный момент открыт предзаказ на поставку образцов и демонстрационных плат. Судьба этого микроконтроллера видимо будет во многом зависеть от того, снабдит ли фирма - производитель разработчиков референсными библиотеками для его использования в разных режимах.

Тот факт, что уже для него уже создано несколько демокитов сильно повышает вероятность последнего.

Лифт в небеса или Вавилонская башня.

Итак сегодня полностью сложилась революционная ситуация. Верхи не могут, а низы не хотят жить по старому. Всем надоела неразбериха с огромным количеством кабелей, зарядных устройств, блоков питания и их низкая надёжность.

Новый стандарт породил невиданную активность. Флагманы электронной индустрии - Apple, Nokia, Asus готовят к выпуску свои первые гаджеты с поддержкой USB Type-C. Китайцы уже штампуют кабели и переходники. На подходе докстанции и хабы с поддержкой высокой нагрузки по мощности. Производители чипов разрабатывают новые микросхемы и думают как бы запихнуть драйвер нового порта в микроконтроллер. Маркетологи решают куда воткнуть новый разъём, а инженеры чешут репу пытаясь реализовать многопрофильные устройства из уже имеющихся электронных компонентов.

Пока не ясно только одно. Что мы получим в результате? Удобный и надёжный разъём, который заменит львиную долю интерфейсов и найдёт повседневное применение, или вавилонское столпотворение, ведь ситуация может начать развиваться по не самому благоприятному сценарию:

Пользователи могут окончательно запутаться в многочисленных спецификациях и кабелях, которые будут выглядеть с виду совершенно одинаково, но при этом будут сертифицированы только под определённые профили. Попробуй разберись с ходу со всеми этими маркировками.

Но даже если получится, то это вряд ли решит проблему - китайцы без зазрения совести легко поставят на любой шнур любой значок. А если надо, то до кучи на каждую сторону одного кабеля разные, их не смутит даже если они будут взаимоисключающими.

Рынок наводнится невероятным количеством переходников разного калибра и сомнительного качества.

Пытаясь подключить одно устройство к другому никогда в результате не будешь знать к какому результату этот процесс приведёт и из-за чего коннект либо вовсе отсутствует, либо всё жутко глючит. То ли один из гаджетов не поддерживает нужный профиль, то ли поддерживает но не слишком корректно, то ли вместо качественного кабеля попалась его грубая китайской подделка. А что прикажете делать, если вдруг на вашем ноутбуке выйдет из строя единственный оставшийся на нём разъём?

До новых встреч.

P.S. Новый стандарт уже приводит к появлению весьма экзотических устройств. Так анонсирован кабель 100 метровой длины, который вроде бы никак не вписывается в стандарты. Вся фишка в том, что он активный. На обоих своих концах кабель имеет преобразователь сигналов USB3 интерфейса в оптический. Сигнал передаётся по оптике и на выходе конвертируется назад. Естественно он не передают энергию, а только данные. При этом каждый из преобразователей на его концах питается от разъёма к которому подключен.
Думаю, что в скором времени для подтверждения подлинности уважающие себя фирмы начнут вставлять в кабели активные метки. Проблема хабов породит невиданную активность у разработчиков и производителей DC-DC преобразователей. Как справедливо заметил уважаемый пользователь



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows