Метод жордана гаусса примеры с решением подробно. Преобразование Жордана-Гаусса и симплекс-метод в Excel. «системы линейных алгебраических уравнений

Метод жордана гаусса примеры с решением подробно. Преобразование Жордана-Гаусса и симплекс-метод в Excel. «системы линейных алгебраических уравнений

13.04.2019

Записывается в виде расширенной матрицы, т.е. в столбец свободных членов помещается в одну матрицу с коэффициентами неизвестных. Аалгоритм заключается в приведении исходной матрицы, характеризующей систему линейных уравнений, к единичной путем эквивалентных преобразований (домножения строки матрицы на константу и сложения с другой строкой матрицы). В качестве константы используется 1/a[i][i] , т.е. число, обратное по отношению к элементу диагонали. Естественно, в ряде случаев возникают проблемы, связанные с делением на ноль, которые решаются перестановкой строк и столбцов:

Весь алгоритм можно представить 10 пунктами:

    В качестве опорной выбираем первую строку матрицы.

    Если элемент опорной строки, индекс которого равен номеру опорной строки, равен нулю, то меняем всю опорную строку на первую попавшуюся строку снизу, в столбце которого нет нуля.

    Все элементы опорной строки делим на первый слева ненулевой элемент этой строки.

    Из оставшихся снизу строк вычитают опорную строку, умноженную на элемент, индекс которого равен номеру опорной строки.

    В качестве опорной строки выбираем следующую строку.

    Повторяем действия 2 – 5 пока номер опорной строки не превысит число строк.

    В качестве опорной выбираем последнюю строку.

    Вычитаем из каждой строки выше опорную строку, умноженную на элемент этой строки с индексом равным номеру опорной строки.

    В качестве опорной строки выбираем строку выше.

    Повторяем 8 – 9 пока номер опорной строки не станет меньше номера первой строки.

Пример расчета 1

Пусть имеется система уравнений:

Запишем расширенную матрицу системы:

и выполним элементарные преобразования ее строк.

Для этого умножим первую строку на 1 и вычитаем из второй строки; затем умножим первую строку на 2 и вычтем из третьей строки.

В результате мы исключим переменную x 1 из всех уравнений, кроме первого. Получим:

Теперь вычтем из строки 3 строку 2, умноженную на 3:

Теперь вычитаем из 1 строки сначала 3 строку, а затем 2 строку:

После преобразований получаем систему уравнений:

Из этого следует, что система уравнений имеет следующее решение:

x1 = 1, x2 = 3 , x3 = -1

Пример расчета 2

    В качестве примера решим систему уравнений, представленную в виде матрицы (Таблица 1), методом Гаусса – Жордана.

Делим первую строку на 3 (элемент первой строки, расположенный на главной диагонали), получим:

4/3

1/3

Умножаем первую строку на 1 и вычитаем из второй строки. Умножаем первую строку на 6 и вычитаем из третьей строки. Получим:

4/3

1/3

17/3

17/3

В первом столбце все элементы кроме диагонального равны нулю, займемся вторым столбцом, для этого выберем вторую строку в качестве опорной. Вторая Делим ее на 17/3:

4/3

1/3

3 /17

Умножаем строку 2 на -6 и вычитаем из третьей строки:

4/3

1/3

3 /17

3 3 /17

Теперь третья строка – опорная, делим ее на -33/17:

4/3

1/3

3 /17

17/3

Умножаем опорную строку на 3/17 и вычитаем ее из второй. Умножаем третью строку на 1 и вычитаем ее из первой

4/3

17/3

Получена треугольная матрица, начинается обратный ход алгоритма (во время которого получим единичную матрицу). Вторая строка становится опорной. Умножаем третью строку на 4/3 и вычитаем ее из первой:

10/3

17/3

Последний столбец матрицы – решение системы уравнений.

В данной статье мы рассмотрим метод Жордана-Гаусса для решения систем линейных уравнений, отличие метода Гаусса от метода Жордана-Гаусса, алгоритм действий, а также приведем примеры решений СЛАУ.

Yandex.RTB R-A-339285-1

Основные понятия

Определение 1

Метод Жордана-Гаусса - один из методов, предназначенный для решения систем линейных алгебраических уравнений.

Этот метод является модификацией метода Гаусса - в отличие от исходного (метода Гаусса) метод Жордана-Гаусса позволяет решить СЛАУ в один этап (без использования прямого и обратного ходов).

Примечание

Матричная запись СЛАУ: вместо обозначения А в методе Жордана-Гаусса для записи используют обозначение Ã - обозначение расширенной матрицы системы.

Пример 1

4 x 1 - 7 x 2 + 8 x 3 = - 23 2 x 1 - 4 x 2 + 5 x 3 = - 13 - 3 x 1 + 11 x 2 + x 3 = 16

Как решить?

Записываем расширенную матрицу системы:

à = 4 - 7 8 | - 23 2 - 4 5 | - 13 - 3 11 1 | 16

Напоминаем, что слева от черты записывается матрица системы А:

A = 4 - 7 8 2 - 4 5 - 3 11 1

Замечание 1

На каждом шаге решения необходимо выбирать разрешающие элементы матрицы. Процесс выбора может быть различным - в зависимости от того, как выбираются элементы, решения будут отличаться. Можно выбирать в качестве разрешающих элементов диагональные элементы матрицы, а можно выбирать произвольно.

В этой статье мы покажем оба способа решения.

Произвольный способ выбора разрешающих элементов

  • Первый этап:

Следует обратиться к 1-му столбцу матрицы Ã - необходимо выбрать ненулевой (разрешающий) элемент.

В 1-ом столбце есть 3 ненулевых элемента: 4, 2, -3. Можно выбрать любой, но, по правилам, выбирается тот, чей модуль ближе всего к единице. В нашем примере таким числом является 2.

Цель: обнулить все элементы, кроме разрешающего, т.е. необходимо обнулить 4 и -3:

4 - 7 8 2 - 4 5 - 3 11 1

Произведем преобразование: необходимо сделать разрешающий элемент равным единице. Для этого делим все элементы 2-ой строки на 2. Такое преобразование имеет обозначение: I I: 2:

4 - 7 8 | - 23 2 - 4 5 | - 13 - 3 11 1 | 16 I I ÷ 2 → 4 - 7 8 | - 23 2 - 4 5 / 2 | - 13 / 2 - 3 11 1 | 16

Теперь обнуляем остальные элементы: 4 и -3:

4 - 7 8 | - 23 2 - 4 5 / 2 | - 13 / 2 - 3 11 1 | 16 I - 4 × I I I I I - (- 3) × I I

Необходимо выполнить преобразования:

I - 4 × I I и I I I - (- 3) × I I = I I I + 3 × I I

Запись I - 4 × I I означает, что от элементов 1-ой строки вычитаются соответствующие элементы 2-ой строки, умноженные на 4.

Запись I I I + 3 × I I означает, что к элементам 3-ей строки прибавляются соответствующие элементы 2-ой строки, умноженные на 3.

I - 4 × I I = 4 - 7 8 - 23 - 4 1 - 2 5 / 2 - 13 / 2 = = 4 - 7 8 - 23 - 4 - 8 10 - 26 = 0 1 - 2 3

Записываются такие изменения следующим образом:

4 - 7 8 | - 23 2 - 4 5 / 2 | - 13 / 2 - 3 11 1 | 16 I - 4 × I I I I I - (- 3) × I I → 0 1 - 2 | 3 1 - 2 5 / 2 | - 13 / 2 0 5 17 / 2 | - 7 / 2

  • Второй этап

Необходимо обнулить 2-ой столбец, следовательно, нужно выбрать разрешающий элемент: 1, -2, 5. Однако 2-ую строку матрицы мы использовали в первом этапе, так что элемент -2 не может быть использован.

Поскольку необходимо выбирать число, чей модуль ближе всего к единице, то выбор очевиден - это 1. Обнуляем остальные элементы 2-го столбца:

0 1 - 2 | 3 1 - 2 5 / 2 | - 13 / 2 0 5 17 / 2 | - 7 / 2 I I - (- 2) × I I I I - 5 × I

0 1 - 2 | 3 1 - 2 5 / 2 | - 13 / 2 0 5 17 / 2 | - 7 / 2 I I + 2 × I I I I - 5 × I → 0 1 - 2 | 3 1 0 - 3 / 2 | - 1 / 2 0 0 37 / 2 | - 37 / 2

  • Третий этап

Теперь требуется обнулить элементы 3-го столбца. Поскольку первая и вторая строки уже использованы, поэтому остается только один вариант: 37 / 2 . Обнуляем с его помощью элементы третьего столбца:

0 1 - 2 | 3 1 0 - 3 / 2 | - 1 / 2 0 0 37 / 2 | - 37 / 2

Выполнив преобразования

I - (- 2) × I I I = I + 2 × I I I и I I - (- 3 2) × I I I = I I + 3 2 × I I

получим следующий результат:

0 1 - 2 | 3 1 0 - 3 / 2 | - 1 / 2 0 0 1 | - 1 I + 2 × I I I I I + 3 / 2 × I I I → 0 1 0 | 1 1 0 0 | - 2 0 0 1 | - 1

Ответ : x 1 = - 2 ; x 2 = 1 ; x 3 = - 1 .

Полное решение:

4 - 7 8 | - 23 2 - 4 5 | - 13 - 3 11 1 | 16 I I ÷ 2 → 4 - 7 8 | - 23 2 - 4 5 / 2 | - 13 / 2 - 3 11 1 | 16 I - 4 × I I I I I - (- 3) × I I →

→ 0 1 - 2 | 3 1 - 2 5 / 2 | - 13 / 2 0 5 17 / 2 | - 7 / 2 I I - (- 2) × I I I I - 5 × I → 0 1 - 2 | 3 1 0 - 3 / 2 | - 1 / 2 0 0 37 / 2 | - 37 / 2 I I I ÷ 37 2 →

→ 0 1 - 2 | 3 1 0 - 3 / 2 | - 1 / 2 0 0 1 | - 1 I + 2 × I I I I I + 3 / 2 × I I I → 0 1 0 | 1 1 0 0 | - 2 0 0 1 | - 1 .

Выбор разрешающих элементов на главной диагонали матрицы системы

Определение 2

Принцип выбора разрешающих элементов строится на простом отборе соответствующих элементов: в 1-ом столбце выбирается элемент 1-го столбца, во 2-ом - второй, в 3-ем - третий и т.д.

  • Первый этап

В первом столбце необходимо выбрать элемент первой строки, т.е. 4. Но поскольку в первом столбце есть число 2, чей модуль ближе к единице, чем 4, то можно поменять местами первую и вторую строку:

4 - 7 8 | - 23 2 - 4 5 | - 13 - 3 11 1 | 16 → 2 - 4 5 | - 13 4 - 7 8 | - 23 - 3 11 1 | 16

Теперь разрешающий элемент - 2. Как показано в первом способе, делим первую строку на 2, а затем обнуляем все элементы:

4 - 7 8 | - 23 2 - 4 5 | - 13 - 3 11 1 | 16 I ÷ 2 → 2 - 4 5 / 2 | - 13 / 2 4 - 7 8 | - 23 - 3 11 1 | 16 I I - 4 × I I I I + 3 × I → 1 - 2 5 / 2 | - 13 / 2 0 1 - 2 | 3 0 5 17 / 2 | - 7 / 2

  • Второй этап

На втором этапе требуется обнулить элементы второго столбца. Разрешающий элемент - 1, поэтому никаких изменений производить не требуется:

0 1 - 2 | 3 1 - 2 5 / 2 | - 13 / 2 0 5 17 / 2 | - 7 / 2 I + 2 × I I I I I - 5 × I I → 0 1 - 2 | 3 1 0 - 3 / 2 | - 1 / 2 0 0 37 / 2 | - 37 / 2

  • Третий этап

На третьем этапе необходимо обнулить элементы третьего столбца. Разрешающий элемент - 37/2. Делим все элементы на 37/2 (чтобы сделать равными 1), а затем обнуляем:

0 1 - 2 | 3 1 0 - 3 / 2 | - 1 / 2 0 0 37 / 2 | - 37 / 2 I I I ÷ 37 2 → 1 0 - 3 / 2 | - 1 / 2 0 1 - 2 | 3 0 0 1 | - 1 I + 2 × I I I I I + 3 / 2 × I I I → 1 0 0 | - 2 0 1 0 | 1 0 0 1 | - 1

Ответ: x 1 = - 2 ; x 2 = 1 ; x 3 = - 1 .

4 - 7 8 | - 23 2 - 4 5 | - 13 - 3 11 1 | 16 I ÷ 2 → 2 - 4 5 / 2 | - 13 / 2 4 - 7 8 | - 23 - 3 11 1 | 16 I I - 4 × I I I I + 3 × I → 0 1 - 2 | 3 1 - 2 5 / 2 | - 13 / 2 0 5 17 / 2 | - 7 / 2 I + 2 × I I I I I - 5 × I I →

→ 0 1 - 2 | 3 1 0 - 3 / 2 | - 1 / 2 0 0 37 / 2 | - 37 / 2 I I I ÷ 37 2 → 1 0 - 3 / 2 | - 1 / 2 0 1 - 2 | 3 0 0 1 | - 1 I + 2 × I I I I I + 3 / 2 × I I I → 1 0 0 | - 2 0 1 0 | 1 0 0 1 | - 1

Пример 2

Решить СЛАУ методом Жордана-Гаусса:

3 x 1 + x 2 + 2 x 3 + 5 x 4 = - 6 3 x 1 + x 2 + 2 x 4 = - 10 6 x 1 + 4 x 2 + 11 x 3 + 11 x 4 = - 27 - 3 x 1 - 2 x 2 - 2 x 3 - 10 x 4 = 1

Как решить?

Записать расширенную матрицу данной системы Ã :

3 1 2 5 | - 6 3 1 0 2 | 10 6 4 11 11 | - 27 - 3 - 2 - 2 - 10 | 1

Для решения используем второй способ: выбор разрешающих элементов на главной диагонали системы. На первом этапе выбираем элемент первой строки, на втором - второй строки, на третьем - третьей и т.д.

  • Первый этап

Необходимо выбрать разрешающий элемент первой строки, т.е. 3. Затем обнуляем все элементы столбца, разделяя на 3 все элементы:

3 1 2 5 | - 6 3 1 0 2 | - 10 6 4 11 11 | - 27 - 3 - 2 - 2 - 10 | 1 I ÷ 3 → 1 1 / 3 2 / 3 5 / 3 | - 2 3 1 0 2 | - 10 6 4 11 11 | - 27 - 3 - 2 - 2 - 10 | 1 I I - 3 × I I I I - 6 × I I V + 3 × I →

→ 1 1 / 3 2 / 3 5 / 3 | - 2 0 0 - 2 - 3 | - 4 0 2 7 1 | - 15 0 - 1 0 - 5 | - 5

  • Второй этап

Необходимо обнулить элементы второго столбца. Для этого выделяем разрешающий элемент, но элемент первой строки второго столбца равен нулю, поэтому необходимо менять строки местами.

Поскольку в четвертой строке есть число -1, то меняем местами вторую и четвертую строки:

1 1 / 3 2 / 3 5 / 3 | - 2 0 0 - 2 - 3 | - 4 0 2 7 1 | - 15 0 - 1 0 - 5 | - 5 → 1 1 / 3 2 / 3 5 / 3 | - 2 0 - 1 0 - 5 | - 5 0 2 7 1 | - 15 0 0 - 2 - 3 | - 4

Теперь разрешающий элемент равен -1. Делим элементы второго столбца на -1, а затем обнуляем:

1 1 / 3 2 / 3 5 / 3 | - 2 0 - 1 0 - 5 | - 5 0 2 7 1 | - 15 0 0 - 2 - 3 | - 4 I I ÷ (- 1) → 1 1 / 3 2 / 3 5 / 3 | - 2 0 1 0 5 | 5 0 2 7 1 | - 15 0 0 - 2 - 3 | - 4 I - 1 / 3 × I I I I I - 2 × I →

→ 1 0 2 / 3 0 | - 11 / 3 0 1 0 5 | 5 0 0 7 - 9 | - 25 0 0 - 2 - 3 | - 4

  • Третий этап

На третьем этапе необходимо также обнулить элементы третьего столбца. Для этого находим разрешающий элемент в третьей строке - это 7. Но на 7 делить неудобно, поэтому необходимо менять строки местами, чтобы разрешающий элемент стал -2:

1 0 2 / 3 0 | - 11 / 3 0 1 0 5 | 5 0 0 7 - 9 | - 25 0 0 - 2 - 3 | - 4 → 1 0 2 / 3 0 | - 11 / 3 0 1 0 5 | 5 0 0 - 2 - 3 | - 4 0 0 7 - 9 | - 25

Теперь делим все элементы третьего столбца на -2 и обнуляем все элементы:

1 0 2 / 3 0 | - 11 / 3 0 1 0 5 | 5 0 0 - 2 - 3 | - 4 0 0 7 - 9 | - 25 I I I ÷ (- 2) → 1 0 2 / 3 0 | - 11 / 3 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 - 9 | - 25 I - 2 / 3 × I I I I V - 7 × I I I →

1 0 0 - 1 | - 5 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 - 39 / 2 | - 39

  • Четвертый этап

Обнуляем четвертый столбец. Разрешающий элемент - - 39 2:

1 0 0 - 1 | - 5 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 - 39 / 2 | - 39 I V ÷ (- 39 2) → 1 0 0 - 1 | - 5 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 1 | 2 I + I V I I - 5 × I V I I I - 3 / 2 × I V →

→ 1 0 0 0 | - 3 0 1 0 0 | - 5 0 0 1 0 | - 1 0 0 0 1 | 2 .

Ответ : x 1 = - 3 ; x 2 = - 5 ; x 3 = - 1 ; x 4 = 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Здесь вы сможете бесплатно решить систему линейных уравнений методом Гаусса онлайн больших размеров в комплексных числах с очень подробным решением. Наш калькулятор умеет решать онлайн как обычную определенную, так и неопределенную систему линейных уравнений методом Гаусса, которая имеет бесконечное множество решений. В этом случае в ответе вы получите зависимость одних переменных через другие, свободные. Также можно проверить систему уравнений на совместность онлайн, используя решение методом Гаусса.

Размер матрицы: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 X 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

О методе

При решении системы линейных уравнений онлайн методом Гаусса выполняются следующие шаги.

  1. Записываем расширенную матрицу.
  2. Фактически решение разделяют на прямой и обратный ход метода Гаусса. Прямым ходом метода Гаусса называется приведение матрицы к ступенчатому виду. Обратным ходом метода Гаусса называется приведение матрицы к специальному ступенчатому виду. Но на практике удобнее сразу занулять то, что находится и сверху и снизу рассматриваемого элемента. Наш калькулятор использует именно этот подход.
  3. Важно отметить, что при решении методом Гаусса, наличие в матрице хотя бы одной нулевой строки с НЕнулевой правой частью (столбец свободных членов) говорит о несовместности системы. Решение линейной системы в таком случае не существует.

Чтобы лучше всего понять принцип работы алгоритма Гаусса онлайн введите любой пример, выберите "очень подробное решение" и посмотрите его решение онлайн.

метод Гаусса–Жордана - один из наиболее известных и широко применяемых методов решения систем линейных уравнений. Матричный метод и метод Крамера обладают тем недостатком, что они не дают ответа в том случае, когда detA = 0, а определяют лишь единственное решение при detA неравном 0. Еще одним недостатком является то, что объем математических вычислений в рамках этих методов резко возрастает с ростом числа уравнений. Метод Гаусса практически свободен от этих недостатков.

Алгоритм метода Гаусса

  1. На основании системы линейных уравнений составляем расширенную матрицу системы;
  2. Приводим матрицу к "треугольному" виду;
  3. Определяем ранги основной и расширенной матриц, и на основании этого делаем вывод о совместности системы и количестве допустимых решений;
  4. В случае, если система имеет единственное решение производим обратную подстановку и находим его, если система имеет множество решений: выражаем базисные переменные через переменные которые могут принимать произвольные значения;
Комментарий к шагу 2 Метода Гаусса. Треугольной называют матрицу, в которой все элементы расположенные ниже главной диагонали равны нулю.

Для приведения исходной расширенной матрицы к треугольному виду используем следующие два свойства определителей:

Свойство 1. Определитель не изменит свое значение, если ко всем элементам какой-либо строки (столбца) матрицы прибавить соответствующие элементы параллельной строки (столбца), умноженные на произвольное одно и то же число.

Свойство 2. При перестановке двух любых столбцов или строк матрицы ее определитель меняет знак на противоположный, а абсолютная величина определителя остается неизменной.

На основании этих свойств определителей составим алгоритм преобразования матрицы к треугольному виду:

  1. Рассматриваем строку i(начиная с первой). Если, элемент a i i равен нулю, меняем местами i-ю и i+1-ю строки матрицы. Знак определителя при этом изменится на противоположный. Если a 1 1 отличен от нуля - переходим к следующему шагу;
  2. Для каждой строки j, ниже i-й находим значение коэффициента K j =a j i /a i i ;
  3. Пересчитываем элементы всех строк j, расположенных ниже текущей строки i, с использованием соответствующих коэффициентов по формуле: a j k нов.=a j k -K j *a i k ; После чего, возвращаемся к первому шагу алгоритма и рассматриваем следующую строку, пока не доберемся до строки i=n-1, где n - размерность матрицы A
  4. В полученной треугольной матрице расчитываем произведение всех элементов главной диагонали Пa i i , которое и будет являтся определителем;

Другими словами, суть метода можно сформулировать следующим образом. Нам необходимо сделать нулевыми все элементы матрицы ниже главной диагонали. Сначала мы получаем нули в первом столбце. Для этого мы последовательно вычитаем первую строку, домноженную на нужное нам число (такое, чтоб при вычитании мы получили ноль в первом элементе строки), из всех ниже лежащих строк. Затем проделываем то же самое для второй строки, чтобы получить нули во втором столбце ниже главной диагонали матрицы. И так далее пока не доберемся до предпоследней строки.

4. Метод Жордана - Гаусса.

Схема с выбором главного элемента состоит в том, что требование неравенства нулю диагональных элементов akk, на которые происходит деление в процессе исключения, заменятся более жестким: из всех элементов К-го столба выбрать наибольший по модулю и переставить уравнения так, чтобы этот элемент оказался на месте элемента акк. Выбор главного элемента и связанная с ним перестановка строк необходимы в тех случаях, когда на каком-либо i-ом шаге акк=0 либо же акк очень мало по остальными элементами i- го столбца: при делении на такое «малое» акк будут получаться большие числа с большими абсолютными погрешностями, в результате чего решение может сильно исказиться.

Ниже излагается алгоритм полного исключения неизвестных или метод Жордана – Гаусса. Суть метода состоит в том, что, рассмотрев первое уравнение, в нем неизвестное с коеффициэнтом, отличным от нуля (в дальнейшем разрешающий элемент), и разделив первое уравнение на этот коэффициент, с помощью первого уравнения исключают это неизвестное из всех уравнений, кроме первого. Выбрав во втором уравнении неизвестное с коэффициентом, отличным от нуля, и разделив на него второе уравнение, с помощью второго исключают другие неизвестные из всех уравнений, кроме второго и т.д., т.е. с помощью одного уравнения производят полное исключение одного неизвестного. Процесс продолжается до тех пор, пока не будут использованы все уравнения.

Как известно, системы линейных алгебраических уравнений могут имеет одно решение, множество решений или системы несовместны. При элементарных преобразованиях элементов матрицы системы эти случаи выявляются в следующем:

1. В процессе исключений левая часть I –го уравнения системы обращается в нуль, а правая часть равна некоторому числу, отличному от нуля. т.е. 02+=bc0.

Это означает, что система не имеет решений, так как I – му уравнению не могут удовлетворять никакие значения неизвестных;

2. Левая и правая части I – го уравнения обращаются в нуль. Это означает, что I – ое уравнение является линейной комбинацией остальных, ему удовлетворяет любое найденное решение системы, поэтому оно может быть отброшено. В системе количество неизвестных больше количества уравнений и, следовательно, такая система имеет множество решений;

3. После того как все уравнения использованы для исключения неизвестных получено решение системы.

Таким образом, конечной целью преобразований Жордана-Гаусса является получение из заданной линейной системы

a11x1 + a12x2 + … + a1nxn = b1,n+1

a21x1 + a22x2 + … + a2nxn = b2,n+1

am1x1 + am2x2 + … + amnxn = bm.n+1

Здесь x1, x2, …, xn - неизвестные, которые надо определить. a11, a12, …, amn - коэффициенты системы - и b1, b2, … bm - свободные члены - предполагаются известными. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно.

Система (1) называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе - неоднородной.

Система (1) называется квадратной, если число m уравнений равно числу n неизвестных.

Решение системы (1) - совокупность n чисел c1, c2, …, cn, таких что подстановка каждого ci вместо xi в систему (1) обращает все ее уравнения в тождества.

Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у нее нет ни одного решения.

Совместная система вида (1) может иметь одно или более решений.

Решения c1(1), c2(1), …, cn(1) и c1(2), c2(2), …, cn(2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:

c1(1) = c1(2), c2(1) = c2(2), …, cn(1) = cn(2).

Совместная система вида (1) называется определенной, если она имеет единственное решение; если же у нее есть хотя бы два различных решения, то она называется неопределенной. Если уравнений больше, чем неизвестных, она называется переопределённой.

Решим следующую систему уравнений:

Запишем её в виде матрицы 3×4, где последний столбец является свободным членом:

Проведём следующие действия:

· К строке 2 добавим: -4 * Строку 1.

· К строке 3 добавим: -9 * Строку 1.

· К строке 3 добавим: -3 * Строку 2.

· Строку 2 делим на -2

· К строке 1 добавим: -1 * Строку 3.

· К строке 2 добавим: -3/2 * Строку 3.

· К строке 1 добавим: -1 * Строку 2.

В правом столбце получаем решение:

.

В методе Ньютона наблюдается ускорение сходимости процесса приближений. 5. Метод касательных (метод Ньютона) Метод касательных, связанный с именем И. Ньютона, является одним из наиболее эффективных численных методов решения уравнений. Идея метода очень проста. Возьмём производную точку x0 и запишем в ней уравнение касательной к графику функции f(x): y=f(x0)+ f ¢(x) (x-x0) (1.5) Графики...

Решения от численных методов расчёта. Для определения корней уравнения не требуется знания теорий групп Абеля, Галуа, Ли и пр. и применения специальной математической терминологии: колец, полей, идеалов, изоморфизмов и т.д. Для решения алгебраического уравнения n - ой степени нужно только умение решать квадратные уравнения и извлекать корни из комплексного числа. Корни могут быть определены с...



Математики тригонометрической подстановки и проверка эффективности разработанной методики преподавания. Этапы работы: 1. Разработка факультативного курса на тему: «Применение тригонометрической подстановки для решения алгебраических задач» с учащимися классов с углубленным изучением математики. 2. Проведение разработанного факультативного курса. 3. Проведение диагностирующей контрольной...

... «проявляется» лишь в процессе преобразований. Очевидность и «завуалированность» новой переменной мы рассмотрим на конкретных примерах во второй главе данной работы. 2. Возможности применения метода замены неизвестного при решении алгебраических уравнений В этой главе выявим возможности применения метода замены неизвестного при решении алгебраических уравнений в стандартных и нестандартных...



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows