Метод комплексных чисел в электротехнике. Формулы, законы, правила, примеры по тоэ. Параллельное подключение – параллельная цепь

Метод комплексных чисел в электротехнике. Формулы, законы, правила, примеры по тоэ. Параллельное подключение – параллельная цепь

Формулы Обозначение и единицы измерения
Закон Ома для участка цепи постоянного тока
1. Напряжение на участке цепи, В U=ІR I - сила тока на этом участке, А; R - сопротивление участке цепи, Ом; U - напряжение на участке цепи, В;
2. Ток на участке цепи, А I=U/R
3. Сопротивление на участке цепи, Ом R=U/I
4. Сопротивление проводника постоянному току, Ом R 0 =ρ ρ - удельное сопротивление, 10 -6 Ом∙м; l - длина, м; S - сечение, мм 2 ;
5. Зависимость активного сопротивления проводника от температуры R=R 1 ∙ R, R 1 - сопротивления проводника соответственно при температурах t и t 1 , 0 С, Ом; α -температурный коэффициент, 1/ 0 С;
6. Общее сопротивление электрической цепи при последовательном соединении сопротивлений R=R 1 +R 2 +R 3 +…+R n R - общее сопротивление цепи, Ом; R 1 ,R 2 ,R 3 …R n - сопротивления n резисторов, Ом;
7. Сопротивление цепи из двух параллельных резисторов R=R 1 ∙R 2 /R 1 +R 2
С - общая емкость конденсаторов, Гн; С 1 ,С 2 ,С 3 … Сn - емкость отдельных конденсаторов цепи, Гн;
10. Мощность постоянного тока, Вт P=UI=I 2 R=U 2 /R I - сила тока в цепи, А; U - напряжение в цепи, В; R - сопротивление, Ом;
11. Энергия электрической цепи, Дж W=Pt P - мощность в цепи, Вт; t - время, с;
12. Тепловой эффект A=0,24∙I 2 ∙R∙t= 0,24∙U∙I∙t A - количество выделяемого тепла, кал; t - время протекания тока; R - сопротивление, Ом;
Закон Ома при переменном токе
13. Ток, А I=U/Z I - ток, А; U - напряжение, В; Z - полное сопротивление в цепи, Ом; - индуктивное сопротивление цепи, Ом; Z= = X L =ωL – индуктивное сопротивление цепи, Ом X C =1/ωC – емкостное сопротивление цепи, Ом ω - угловая частота сети, с -1 ; f - частота переменного тока, Гц; L - индуктивность, Гн; C - емкость, Ф;
14. Напряжение, Вт U=I∙Z
15. Закон Кирхгофа для узла (1-й закон): для замкнутого контура (2-й закон): E= = I i - токи в отдельных ветвях цепи, сходящихся в одной точке, А i=(1,2,3,…); E - ЭДС, действующая в контуре, В; U - напряжение на участке контура, В; Z - полное сопротивление участка, Ом;
16. Распределение тока в двух параллельных ветвях цепи переменного тока I 1 /I 2 = Z 2 /Z 1 I 1 - ток первой цепи, А; I 2 - ток второй цепи, А; Z 1 - сопротивление первой ветви, Ом; Z 2 - сопротивление второй ветви, Ом;
17. Полное сопротивление, Ом Z= R - активное сопротивление, Ом; X L - индуктивное сопротивление, Ом; X C - емкостное сопротивление, Ом;
18. Реактивное (индуктивное) сопротивление, Ом X L =ωL=2 ∙f∙L ω- угловая частота, рад/с; f - частота колебаний, Гц; L - индуктивность, Гн; C - емкость, Ф; X - полное реактивное сопротивление, Ом;
19. Реактивное (емкостное) сопротивление, Ом X C =1/ωL= 1/2 ∙f∙L
20. Полное реактивное сопротивление X= X L - X C
21. Индуктивность катушки, Гн без стального сердечника: L= 10 -8 со стальным сердечником: L= μ 10 -8 n- число витков катушки; S - площадь среднего сечения обмотки, составляющей катушку, см 2 ; l - длина катушки, см; μ - магнитная проницаемость материала сердечника, Гн/м;
22. Закон электромагнитной индукции для синусоидального тока E= 4,44∙f∙ω∙B∙S∙10 -4 E - наведенная ЭДС, В; f - частота, Гц; ω- число витков обмотки; B -индукция магнитная, Тл; S - сечение магнитопровода, см 2 ;
23. Электродинамический эффект тока для двух параллельно расположенных проводников F=I m 1 ∙ I m 2 ∙ ∙10 -7 F - сила, действующая на проводниках, Н; I m 1 , I m 2 - амплитудные значения токов в параллельных проводниках, А; l - длина проводника, см; α - расстояние между проводниками, см;
24. Зависимости для цепи переменного тока ток в цепи: I= I R =I∙cosω I X =I∙ sinω напряжение в цепи: U= U R =U∙ cosω U X =U∙ sinω I - ток в цепи, А; I R - активная составляющая тока, А; I X - реактивная составляющая тока, А; U - напряжение в цепи, В; U R - активная составляющая напряжения, В; U X - реактивная составляющая напряжения, В;
25. Соотношение токов и напряжений в трехфазной системе а) соединение «звезда»: I Л =I Ф, U Л =1,73∙U Ф; б) соединение «треугольник»: U Л = U Ф, I Л =1,73∙I Ф; I Л - ток линейный, А; I Ф - ток фазный, А; U Л - напряжение линейной, В; U Ф - напряжение фазное, В;
26. Коэффициент мощности cos P - реактивная мощность, Вт; S - полная мощность, В∙А; R - активное сопротивление, Ом; Z - полное сопротивление, Ом;
27. Мощность и энергия тока в цепи переменного тока а) цепь однофазного тока: P=I∙U∙ cos , Q=I∙U∙sin , S=IU= ; W R =I∙U∙ cos ∙t; W X = I∙U∙sin ∙t; б) цепь трехфазного тока: P= ∙I∙U∙ cos ; Q= ∙I∙U∙sin ; W R = ∙I∙U∙ cos ∙t; W X = ∙I∙U∙sin ∙t; Q - реактивная мощность, вар; W R - активная энергия, Вт∙ч; W X - реактивная энергия, вар∙ч; t - время протекания тока, ч; S - полная мощность, В∙А;
28. Реактивная мощность конденсатора, Вар Q C =U 2 ∙ω∙C=U 2 ∙2П∙f∙C, где конденсатора, Ф С= I C - ток, протекающий через конденсатор, А; U - напряжение, приложенное к конденсатору, В;
29. Синхронная частота вращения электрической машины, об./мин n= f - частота питающей сети, Гц; p - число пар полюсов машины;
30. Вращающий момент электрической машины, Н∙м M=9,555∙ P - мощность, Вт; n - частота вращения, об./мин;

Приложение 13

Расчёт сложных электрических цепей

В сложных электрических цепях может содержаться несколько замкнутых контуров с любым размещением в них источников энергии и потребителей. Поэтому такие сложные цепи нельзя свести к сочетанию последовательных и параллельных соединений.

Используя законы Ома и Кирхгофа, можно найти распределение токов и напряжений на всех участках любой сложной цепи.

Одним из методов расчёта сложных электрических цепей является метод наложение токов, сущность которого заключается в том, что ток в какой-либо ветви представляет собой алгебраическую сумму токов, создаваемых в ней каждой из ЭДС цепи в отдельности. На рис. изображена цепь, содержащая три источника с ЭДС E 1 , E 2 , E 3 и четыре последовательно соединенных резистора R 1 , R 2 , R 3 , R 4 . Если пренебречь внутренним сопротивлением источников энергии, то общее сопротивление цепи R =R 1 +R 2 +R 3 +R 4 . Допустим сначала, что ЭДС первого источника E 1 0, а второго и третьего E 2 = 0 и E 3 = 0. Затем положим E 2 ≠ 0, а E 1 = 0 и E 3 = 0. И наконец, полагаем E 3 ≠ 0, а E 1 = 0 и E 2 = 0. В первом случаи ток в цепи, совпадающий по направлению с ЭДС E 1 , равен I 1 = E 1 /R; во втором случаи ток в цепи, совпадающий по направлению с ЭДС E 2, равен I 2 = E 2 /R ; в третьем случаи ток равен I 3 = E 3 / R и совпадает по направлению с ЭДС E 3. Так как ЭДС E 1 и E 3 совпадает по направлению в контуре, то и токи I 1 и I 3 также совпадают, а ток I 2 имеет противоположное направление, так как ЭДС E 2 направлена встречно по отношению к ЭДС E 1 и E 3 . Следовательно, ток в цеп равен

I = I 1 I 2 + I 3 = E 1 / R E 2 / R + E 3 / R =

= (E 1 E 2 + E 3 ) / (R 1 + R 2 + R 3 ).

Электрическая цепь с тремя источниками энергии

Направление на любом участке цепи, например между точками а и б ,равно U аб = IR 4 .

При расчёте сложных цепей для определения токов во всех ветвях цепи необходимо знать сопротивления ветвей, а также значение и направление всех ЭДС.

Перед составлением уравнений по законам Кирхгофа следует произвольно задаться направлениями токов в ветвях, показав их на схеме стрелками. Если действительное направления тока в какой-либо ветви противоположно выбранному, то после решения уравнений этот ток получится со знаком « - ». Число необходимых уравнений равно числу неизвестных токов, причём число уравнений, составляемых по первому закону Кирхгофа, должно быть на единицу меньше числа узлов цепи; остальные уравнения составляются по второму закону Кирхгофа, причем следует выбрать наиболее простые контуры и так, чтобы каждый из них содержал хотя бы одну ветвь, не входившую в ранее составленные уравнения.

Расчет сложной цепи с применением уравнений по законам Кирхгофа рассмотрим на примере двух параллельно включенных источников, замкнутых на сопротивление. Пусть ЭДС источников E 1 = E 2 =120B, их внутренние сопротивления R 1 = 3 Ом и R 2 = 6 Ом, сопротивление нагрузки R = 18 Ом.

Так как число неизвестных токов 3, то необходимо составить три уравнения. При двух узловых точках необходимо одно узловое уравнение по первому закону Кирхгофа: I = I 1 + I 2 . Второе уравнение запишем при обходе контура, состоящего из первого источника и сопротивление нагрузки: E 1 = I 1 R 1 + IR . Аналогично запишем третье уравнение: E 2 = I 2 R 2 + IR . Подставляя числовые значения, получим 120 В = 3I 1 + 18I и 120 В = 6I 2 + 18I . ТаккакE 1 E 2 = I 1 R 1 I 2 R 2 = 3I 1 – 6I 2 = 0, тоI 1 = 2I 2 иI = 3I 2 . Подставляя эти значения в выражение для ЭДС E 1 , получим 120 =

2I 2 × 3 + 18 × 3I 2 = 60I 2 , откуда I 2 = 120 / 60 = 2A, I 1 = 2I 2 = 4A, I = I 1 ++ I 2 = 6A.

В сложных электрических цепях, имеющих две узловые точки а и б и состоящих из нескольких параллельно соединенных источников энергии, работающих на общий приемник, удобно использовать метод узловых напряжений. Обозначив потенциалы в узловых точках φа – φб, напряжение между этими точками U можно выразить разностью этих потенциалов, т.е.

U = φа – φб.

а б

Схема к расчету сложно электрической цепи:

а – по методу узловых напряжений;

б – по методу контурных токов

Приняв за положительное направление ЭДС и токов в ветвях от узла, а к узлу б для каждой из ветвей, можно записать равенства: I 1 = (φа – φб – E 1 )/

/ R 1 = (U E 1 )g 1 ; I 2 = (φа – φб – E 2 ) / R 2 = (U E 2 )g 2 ; I 3 = (φа – φб – E 3 ) / / R 3 = (U E 3 )g 3; I = (φа – φб) / R = Ug .

На основании первого закона Кирхгофа для узловой точки имеем I 1 + I 2 + + I 3 +I = 0. Подставим в эту сумму значения токов, найдем

(U E 1 )g 1 + (U + E 2 )g 2 + (U E 3 )g 3 + Ug = 0,

U = (E 1 g 1 E 2 g 2 + E 3 g 3 ) / (g 1 + g 2 + g 3 + g ) =

= Σ Eg / Σ g ,

т.е. узловое напряжение равно алгебраической сумме произведений ЭДС и проводимостей всех параллельных ветвей, деленной на сумму проводимостей всех ветвей. Вычислив по этой формуле узловое напряжение и воспользовавшись выражениями для оков в ветвях, легко определить эти токи.

Для определения токов в сложных цепях, содержащих несколько узловых точек и ЭДС, применяют метод контурных токов. Который дает возможность сократить число уравнений, подлежащих решению. Предполагают, что в ветвях, входящих в состав двух смежных контуров, протекают два контурных тока, первый из которых представляет собой ток одного из смежных контуров, а второй – другого контура. Действительный ток в рассматриваемом участке цепи определяется суммой или разностью этих двух токов в зависимости от взаимного относительного направления.

При использовании метода контурных токов составляют уравнения, исходя из суммы сопротивлений, входящих в состав данного контура, и суммы сопротивлений, входящих в состав ветви, общей для смежных контуров. Первую сумму условно обозначают двойным индексом, например R 11 , R 22 и т.д., а вторую – индексом, содержащим номера контуров, для которых данный участок цепи является общим, например R 12 , R 13 и т.д.

Из письма клиента:
Подскажите, ради Бога, почему мощность ИБП указывается в Вольт-Амперах, а не в привычных для всех киловаттах. Это сильно напрягает. Ведь все уже давно привыкли к киловаттам. Да и мощность всех приборов в основном указана в кВт.
Алексей. 21 июнь 2007

В технических характеристиках любого ИБП указаны полная мощность [кВА] и активная мощность [кВт] – они характеризуют нагрузочную способность ИБП. Пример, см. фотографии ниже:

Мощность не всех приборов указана в Вт, например:

  • Мощность трансформаторов указывается в ВА:
    http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП: см приложение)
    http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ: см приложение)
  • Мощность конденсаторов указывается в Варах:
    http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39: см приложение)
    http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК: см приложение)
  • Примеры других нагрузок - см. приложения ниже.

Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.

Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.

Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:

  1. Активная мощность: обозначение P , единица измерения: Ватт
  2. Реактивная мощность: обозначение Q , единица измерения: ВАр (Вольт Ампер реактивный)
  3. Полная мощность: обозначение S , единица измерения: ВА (Вольт Ампер)
  4. Коэффициент мощности: обозначение k или cosФ , единица измерения: безразмерная величина

Эти параметры связаны соотношениями: S*S=P*P+Q*Q, cosФ=k=P/S

Также cosФ называется коэффициентом мощности (Power Factor PF )

Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.

Например, электромоторы, лампы (разрядные) - в тех. данных указаны P[кВт] и cosФ:
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР: см. приложение)
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ: см. приложение)
(примеры технических данных разных нагрузок см. приложение ниже)

То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.

Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. – при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.

См. учебники по электротехнике, например:

1. Евдокимов Ф. Е. Теоретические основы электротехники. - М.: Издательский центр "Академия", 2004.

2. Немцов М. В. Электротехника и электроника. - М.: Издательский центр "Академия", 2007.

3. Частоедов Л. А. Электротехника. - М.: Высшая школа, 1989.

Так же см. AC power, Power factor, Electrical resistance, Reactance http://en.wikipedia.org
(перевод: http://electron287.narod.ru/pages/page1.html)

Приложение

Пример 1: мощность трансформаторов и автотрансформаторов указывается в ВА (Вольт·Амперах)

http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ)

Однофазные автотрансформаторы

TDGC2-0.5 kVa, 2A
АОСН-2-220-82
TDGC2-1.0 kVa, 4A Латр 1.25 АОСН-4-220-82
TDGC2-2.0 kVa, 8A Латр 2.5 АОСН-8-220-82
TDGC2-3.0 kVa, 12A

TDGC2-4.0 kVa, 16A

TDGC2-5.0 kVa, 20A
АОСН-20-220
TDGC2-7.0 kVa, 28A

TDGC2-10 kVa, 40A
АОМН-40-220
TDGC2-15 kVa, 60A

TDGC2-20 kVa, 80A

http://www.gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)

Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)

http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)


http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)

Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ

Для таких нагрузок как электромоторы, лампы (разрядные), компьютерные блоки питания, комбинированные нагрузки и др. - в технических данных указаны P [кВт] и cosФ (активная мощность и коэффициент мощности) или S [кВА] и cosФ (полная мощность и коэффициент мощности) .

http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
(комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)

http://www.silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)

Дополнение 1

Если нагрузка имеет высокий коэффициент мощности (0.8 ... 1.0), то её свойства приближаются к активной нагрузке. Такая нагрузка является идеальной как для сетевой линии, так и для источников электроэнергии, т.к. не порождает реактивных токов и мощностей в системе.

Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.

Дополнение 2

Оборудование однонагрузочное (например, БП ПК) и многосоставное комбинированное (например, фрезерный промышленный станок, имеющий в составе несколько моторов, ПК, освещение и др.) имеют низкие коэффициенты мощности (менее 0.8) внутренних агрегатов (например, выпрямитель БП ПК или электромотор имеют коэффициент мощности 0.6 .. 0.8). Поэтому в настоящее время большинство оборудования имеет входной блок корректора коэффициента мощности. В этом случае входной коэффициент мощности равен 0.9 ... 1.0, что соответствует нормативным стандартам.

Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения

Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.

В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.

Дополнение 4

Наглядные примеры чистой активной и чистой реактивных нагрузок:

  • К сети переменного тока 220 VAC подключена лампа накаливания 100 Вт – везде в цепи есть ток проводимости (через проводники проводов и вольфрамовый волосок лампы). Характеристики нагрузки (лампы): мощность S=P~=100 ВА=100 Вт, PF=1 => вся электрическая мощность активная, а значит она целиком поглащается в лампе и превращается в мощность тепла и света.
  • К сети переменного тока 220 VAC подключен неполярный конденсатор 7 мкФ – в цепи проводов есть ток проводимости, внутри конденсатора идёт ток смещения (через диэлектрик). Характеристики нагрузки (конденсатора): мощность S=Q~=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.
Дополнение 5

Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:

+ (плюс) – если суммарное реактивное сопротивление является индуктивным (пример: PF=+0.5). Фаза тока отстаёт от фазы напряжения на угол Ф.

- (минус) – если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.

Дополнение 6

Дополнительные вопросы

Вопрос 1:
Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др.), которые не существуют в реальности?

Ответ:
Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т.д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными .

Замечание:
Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др.). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:

  1. Полное сопротивление (импеданс) Z=R+iX
  2. Полная мощность S=P+iQ
  3. Диэлектрическая проницаемость e=e"+ie"
  4. Магнитная проницаемость m=m"+im"
  5. и др.

Вопрос 2:

На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?

Ответ:
Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.

Вопрос 3:
Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.

Ответ:
Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:

См. дополнительную литературу, например:

Евдокимов Ф. Е. Теоретические основы электротехники. - М.: Издательский центр "Академия", 2004.

Немцов М. В. Электротехника и электроника. - М.: Издательский центр "Академия", 2007.

Частоедов Л. А. Электротехника. - М.: Высшая школа, 1989.

AC power, Power factor, Electrical resistance, Reactance
http://en.wikipedia.org (перевод: http://electron287.narod.ru/pages/page1.html)

Теория и расчёт трансформаторов малой мощности Ю.Н.Стародубцев / РадиоСофт Москва 2005 г. / rev d25d5r4feb2013

Как известно, для решения некоторых типичных задач электротехники применяют комплексные числа. Но для чего их используют и почему это делают именно так? В этом мы и постараемся разобраться по ходу данной статьи. Дело в том, что комплексный метод, или метод комплексных амплитуд, удобен при расчетах сложных цепей переменного тока. И для начала вспомним немного математических основ:

Как видите, комплексное число z включает в себя мнимую и действительную части, которые между собой различаются и обозначаются в тексте по разному. Само же комплексное число z может быть записано в алгебраической, тригонометрической или показательной форме:



Исторические предпосылки

Считается, что представление о мнимых числах начало зарождаться в 1545 году, когда итальянский математик, инженер, философ, медик и астролог Джироламо Кардано в своем трактате «Великое искусство» опубликовал данный метод решения уравнений, где, кстати, признался, что идею ему передал Никколо Тарталья (итальянский математик) за 6 лет до публикации этой работы. В работе Крадано решал уравнения вида:

В процессе решения данных уравнений ученый вынужден был допустить существование некого «нереального» числа, квадрат которого был бы равен минус единице «-1», то есть будто бы существует квадратный корень из отрицательного числа, и если его теперь возвести в квадрат, то получится, соответственно, отрицательное число, стоящее под корнем. Кардано указал правило умножения, согласно которому:

На протяжении трех веков математическое сообщество пребывало в процессе привыкания к новому подходу, предложенному Кардано. Мнимые числа постепенно приживались, однако принимались математиками неохотно. И лишь с публикациями работ Гаусса по алгебре, где он доказывал основную теорему алгебры, комплексные числа наконец-то основательно приняли, на дворе был 19 век.

Мнимые числа стали настоящей палочкой - выручалочкой для математиков, ведь сложнейшие задачи стали решаться гораздо проще с приятием существования мнимых чисел.

Так вскоре дело дошло и до электротехники. Электрические цепи переменного тока порой оказывались очень сложными, и для их расчета приходилось вычислять множество интегралов, что зачастую весьма неудобно.

Наконец, в 1893 году гениальный электротехник Карл Август Штейнмец выступает в Чикаго на Международном электротехническом конгрессе с докладом «Комплексные числа и их применение в электротехнике», чем фактически знаменует начало практического применения инженерами комплексного метода расчетов электрических цепей переменного тока.


Из курса физики нам известно, что - это такой ток, который изменяется во времени как по величине, так и по направлению.

В технике встречаются различные формы переменного тока, однако наиболее распространен сегодня ток переменный синусоидальный, именно такой используется всюду, при помощи него электроэнергия передается, в виде переменного тока она генерируется, преобразуется трансформаторами и потребляется нагрузками. Синусоидальный ток периодически изменяется по синусоидальному (гармоническому) закону.



В комплексном методе действующие значения токов и напряжений записывают так:


Обратите внимание, что в электротехнике мнимая единица обозначается буквой «j», поскольку буква «i» уже занята здесь для обозначения тока.

Из определяют комплексное значение сопротивления:


Сложение и вычитание комплексных значений осуществляется в алгебраической форме, а умножение и деление - в показательной форме.

Давайте разберем метод комплексных амплитуд на примере конкретной схемы с определенными значениями основных параметров.


Дано:

    напряжение на катушке 50 В,

    сопротивление резистора 25 Ом,

    индуктивность катушки 500 мГн,

    электроемкость конденсатора 30 мкф,

    сопротивление провода катушки 10 Ом,

    частота сети 50 Гц.

Найти: показания амперметра и вольтметра, а также ваттметра.

Решение:

Для начала запишем комплексное сопротивление последовательно соединенных элементов, которое состоит из действительной и мнимой частей, затем найдем комплексное сопротивление активно-индуктивного элемента.

Вспоминаем! Для получения показательной формы находят модуль z, равный корню квадратному из суммы квадратов действительной и мнимой частей, а также фи, равное арктангенсу частного от деления мнимой части на действительную.



Термином комплексного числа (далее в тексте - КЧ) пользуются для обозначения выражений виды: ċ=а+jb , в которых индекс "ċ" используется для обозначения КЧ, а "а" и "b" отображают действительную и мнимую части. Значение "j" обозначает мнимую единицу и равно √(-1) .

В английском языке словом Real принято характеризовать действительность, а термином Imaginary - мнимые свойства. От этих слов были созданы обозначения Re и Im , которые используются для выражения величин "а" и "b" следующим способом:

а=Re(с), b=Im(с).

Для геометрического отображения КЧ в векторной форме применяется комплексная плоскость. У нее горизонтальная ось помечается знаком +1 , а вертикальная – символом +j . Термин действительной (реже вещественной) части используется для наименования горизонтальной оси, а для вертикальной - мнимой.

Обе составляющие (действительная и мнимая) КЧ являются прямоугольными проекциями вектора на соответствующие оси.

В представленном графике значение с=|ċ| именуется модулем КЧ и равно длине вектора. Другим параметром, определяющим положение радиус-вектора, является его угол поворота α от оси +1 до текущего положения ċ , считающийся аргументом. α=arqċ .

Катеты треугольника представляются через соотношения:

a=cosα, b=csinα .

Используя тригонометрическую форму для выражения КЧ можно представить его видом:

ċ=с(cosα+jsinα) .

Используя формулу Эйлера e jα = cosα+jbsinα , можно получить значение модуля в показательной форме ċ=сe jα .

В полярной форме выражение имеет вид:

ċ=с∠α.

Положение единичного вектора можно изобразить на комплексной плоскости:

Мнимая единица имеет свойства:

j=e j90° , j 2 =-1=e j180° , j 3 =jj 2 =-j=e j270° =e -j90° ,
j 4 =j 2 j 2 =1=e j0 =e j2Π , 1/J=1j/Jj=J/-1=-j.

К КЧ применимо понятие сопряжения. Им называют те числа, которые равны по величине модулей и аргументов, но имеют разные знаки у аргументов.

ċ=a+jb=ce jα , ĉ=a-jb=ce jα .

Из графика видно, что изображенные векторами КЧ симметричны по отношению к горизонтальной оси.

КЧ и математические действия. Для их сложения или вычитания делается запись в алгебраическом выражении:

ċ=ċ 1 +ċ 2 =(a 1 +jb 1)+(a 2 +jb 2)=(a 1 +a 2)+j(b 1 +b 2)=a+jb .

В этом соотношении отдельно суммируются мнимые и вещественные составляющие: а=а 1 +а 2 , b=b 1 +b 2 .

Данные алгебраические сложения чисел выражают выполнение сложения соответствующих им векторов.

Выполняя сложение сопряженных чисел можно заметить, что их сумма выражается удвоенным значением вещественной составляющей:

ċ+ĉ=(а+jb)+(а-jb)=2а.

Выражения КЧ в показательной форме удобны для выполнения умножения или деления. При этом у них модули перемножают или делят, значения аргументов складывают либо вычитают.

ċ=ċ 1 ċ 2 =c 1 e jα1 c 2 e jα2 =c 1 c 2 e j(α1+α2) =ce jα ;
ċ=ċ 1 /ċ 2 =c 1 e jα1 /c 2 e jα2 =c 1 e j(α1-α2) /c 2 =ce jα .

В выражении с=с 1 /с 2 , α= α 1 -α 2 .

Нетрудно заметить, что при действии умножения длина вектора увеличивается в величину с 2 , а аргумент - на значение а 2 . При представлении КЧ векторами соблюдается закономерность: для умножения вектора на КЧ вида aе jα достаточно растянуть вектор в а раз и довернуть на угол α .

Для вычисления произведения сопряженных чисел достаточно взять квадрат их модуля:

ċĉ=(а+jb)(а-jb)=а 2 +b 2 , или ċĉ=сe jα сe -jα =с 2 .

Для перемножения и деления КЧ при определенных условиях удобно пользоваться их алгебраическим выражением. В таком виде действия проводятся по законам умножения многочленов и учете значения j 2 =-1 .

ċ=ċ 1 ċ 2 =(a 1 +jb 1)(a 2 +jb 2)=(a 1 a 2 -b 1 b 2)+j(b 1 a 2 +a 1 b 2) .

Для деления чисел достаточно избавиться от значения j в выражении знаменателя методом перемножения знаменателя и числителя на одно и то же выражение сопряженного знаменателя:

ċ=ċ 1 /ċ 2 =((a 1 +jb 1)/(a 2 +jb 2))((a 2 -jb 2)/(a 2 -jb 2))=((a 1 a 2 +b 1 b 2)+(b 1 a 2 -a 1 b 2))/(a 2 2 +b 2 2)=a+jb;
a=(a 1 a 2 +b 1 b 2)/(a 2 2 +b 2 2);
b=(b 1 a 2 -a 1 b 2)/(a 2 2 +b 2 2).

Графики построенных векторных диаграмм могут иметь изображение:



Для выражения значения тока с синусоидальной формой пользуются соотношением i=Imsin(ωt+ψ) , которым изображают на комплексной плоскости вектор с длиной Im и углом наклона ψ к горизонту. Его выражение Im=Imejψ считают комплексной амплитудой для тока. представляют графиком:

Чтобы получить действующую величину для тока требуется комплексную амплитуду разделить на √2 .

İ=İm/√2=e jψ Im/√2 =Ie jψ .

В электротехнике заглавные буквы с расположенными над ними точками (E, U, I) используются для обозначения КЧ, выражающих синусоидальные зависимости от времени ЭДС, напряжения и тока.

Обозначение комплексной проводимости и сопротивления делается прописными буквами Y и Z , для показа их модулей используется строчное написание у и z . Обозначение комплексной мощности выполняется символом S со значком тильда "҇" над ним.




© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows