Чем отличается переменный электрический ток от постоянного. В чем разница между постоянным и переменным током. Постоянный и переменный ток

Чем отличается переменный электрический ток от постоянного. В чем разница между постоянным и переменным током. Постоянный и переменный ток

01.02.2019

Несмотря на то, что электричество прочно вошло в нашу жизнь, подавляющее большинство пользователей этого блага цивилизации не имеют даже поверхностного понимания, что такое ток, не говоря о том, чем отличается постоянный ток от переменного, какая между ними разница, и что такое ток вообще. Первым, кого ударило током, стал Алессандро Вольта, после чего он посвятил этой теме всю жизнь. Давайте и мы уделим внимание этой теме, чтобы иметь общее представление о природе электричества.

Томас Эдисон немного освежился в Нью-Йорке с уличными фонарями и его постоянным током. Переменный ток периодически меняется взад и вперед. Через секунду электричество в нашей электрической сети движется в 50 раз! После того, как были изобретены постоянный ток и переменный ток, оба изобретателя гарантировали друг друга. Не с оружием, а со словами. У них даже есть собаки, подключенные к электрической сети, чтобы показать, насколько опасно другое электричество.

Нам нужны оба типа электроэнергии, потому что оба имеют свои преимущества и недостатки. Он идеально подходит для зарядки аккумуляторов и аккумуляторных батарей. Им нужен постоянный ток для зарядки, потому что ток всегда должен чередоваться в одном направлении. Это также относится к некоторым бытовым приборам. Просто все, что связано с батареями и перезаряжаемыми батареями, требует постоянного тока для зарядки. Например, фонарик или ноутбук, в котором есть батареи. И такие устройства нуждаются в постоянном токе, т.е. постоянном токе.

Откуда берётся ток и почему он разный?

Мы попробуем избежать сложной физики, и будем использовать для рассмотрения этого вопроса метод аналогий и упрощений. Но перед этим напомним старый анекдот про экзамен, когда честный студент вытащил билет «Что такое электрический ток».

Извините профессор, я готовился, но забыл - ответил честный студент. - Как Вы могли! Упрекнул его профессор, Вы же единственный человек на Земле, который это знал! (с)

Но и телевидение или радио нуждаются в постоянном токе. Они не могут запускаться с переменным напряжением, которое всегда требует постоянного тока. Опять же, есть устройства, которые не имеют значения, что вы используете. Лампочки, например, просматривают этот сайт. Лампочка - это только провод, который нагревается, и текущее направление не имеет значения. Переменный ток используется с электродвигателями, то есть со всеми вращающимися устройствами. Например, блендер вращается. Или плита плиты также может работать с переменным током, который не поворачивается, однако он должен быть нагрет, а затем он как с лампочкой, в нем есть провод и тепло.

Это конечно шутка, но в ней огромное количество правды. Поэтому не станем искать Нобелевских лавров, а просто разберёмся, переменный ток и постоянный, в чём разница, и что принято считать источниками тока.

За основу мы примем допущение, что ток - это не движение частиц (хотя движение заряженных частиц тоже переносит заряд, а значит, создаёт токи), а движение (передача) избыточного заряда в проводнике от точки большого заряда (потенциала) к точке меньшего заряда. Аналогия - водохранилище, вода всегда стремится занять один уровень (уравнять потенциалы). Если открыть в плотине отверстие, вода начнёт течь под уклон, возникнет постоянный ток. Чем больше отверстие - тем больше воды будет протекать, сила тока вырастет, как и мощность, и количество работы, которую способен выполнить этот ток. Если не управлять процессом, вода разрушит плотину и немедленно создаст зону затопления с поверхностью одного уровня. Это короткое замыкание с выравниваем потенциалов, сопровождающееся большими разрушениями.

Но переменный ток имеет решающее преимущество, его можно производить в больших количествах на электростанциях, и его можно транспортировать намного лучше, чем постоянный ток, поскольку потери на больших расстояниях намного меньше. Таким образом, вне электростанции, перемените переменный ток в больших количествах на сухопутную линию, затем в распределительные коробки . Оттуда переменный ток распространяется на домашние хозяйства, и то, что мы тогда использовали, решает это устройство. Миксер будет напрямую использовать переменный ток.

Компьютер или телевизор сначала преобразуют переменный ток в постоянный ток. Это работает с так называемым преобразователем напряжения без проблем. Только благодаря преобразователю напряжения мы можем подключить телевизор к обычным источникам питания. Трансформатор напряжения уже установлен для всех устройств, которые требуют постоянного тока.

Таким образом, постоянный ток появляется в источнике(как правило, за счёт химических реакций), в котором возникает разница потенциалов в двух точках. Движение заряда от более высокого значения «+» к низкому «-» выравнивает потенциал, пока длится химическая реакция. Итог полного выравнивая потенциала, мы знаем - «батарейка села». Отсюда следует понимание, почему постоянное и переменное напряжение значительно отличаются по стабильности характеристик . Батарейка (аккумулятор) расходуют заряд, поэтому напряжение постоянного тока снижается со временем. Для поддержания его на одном уровне используют дополнительные преобразователи. Изначально человечество долго решало, чем отличается постоянный ток от переменного для повсеместного использования, т.н. «Война токов». Она закончилась победой переменного тока не только потому, что меньше потери при передаче на расстояние, но и генерация постоянного тока из тока переменного оказалась проще. Очевидно, что постоянный ток, получаемый таким образом (без расходуемого источника) имеет куда более стабильные характеристики. Фактически в этом случае переменное и постоянное напряжение жёстко связаны, и по времени зависят только от генерации энергии и количества расхода.

Электрическое сопротивление является мерой того, какое напряжение требуется для прохождения определенного тока через проводник. Это также означает, что определенное напряжение падает на каждый резистор в цепи. На практике существует три типа резисторов.

Резисторы сопротивления сопротивления в системах переменного тока. . На данный момент нас интересует только первый. Когда мы используем резистор как компонент, мы обычно говорим о омическом сопротивлении, т.е. о сопротивлении, которое не зависит от температуры, тока или напряжения. Таким образом, мы имеем постоянное сопротивление, и это позволяет использовать следующие примеры приложений.

Таким образом, постоянный ток по своей природе - это возникновение неравномерного заряда в объёме (химическая реакция), который можно перераспределить при помощи проводов, соединив точку высокого и низкого заряда (потенциала).

Остановимся на таком определении как общепринятом. Все остальные постоянные токи (не батарейки и аккумуляторы) являются производными от источника переменного тока. Например, на этой картинке синяя волнистая линия наш постоянный ток, как итог преобразования переменного.

Если бы мы подключили его непосредственно к источнику напряжения, он был бы сломан. Мы только что рассмотрели понижающую регуляцию напряженности, а также нашли решение. Только это решение имеет серьезную слабость: текущий. Если он изменяется, напряжение, которое падает через резистор, также изменяется. Но есть и решение для этого: делитель напряжения. Вот как это выглядит.

Почему высоковольтные кабели работают на 300 кВ?

Это вопрос, который задавал себе каждый раз или должен был ставить. Ответ следует из закона Ома и формулы для власти. Мощность определяет, сколько энергии требуется за время. Это означает, что для нашего источника питания 220 В используется ток. Теперь мы подключаем наше устройство с очень длинным силовым кабелем с этим разъемом. Мы включаем его, и это происходит: ничего. Здесь стоит упомянуть вышеупомянутую «внутреннюю реставрацию». Длинная линия подключения к источнику питания имеет такое высокое сопротивление, скажем так, что из-за падения напряжения на выходе для потребителя нет напряжения.

Обратите внимание на комментарии к картинке, «большое количество контуров и коллекторных пластин». Если преобразователь будет другим, картинка будет другой. Та же синяя линия ток почти постоянный, но пульсирующий, запомним это слово. Здесь, кстати, чистый постоянный ток - красная линия.

Поскольку мощность не изменяется из-за более высокого напряжения на линии соединения, это означает, что ток протекает там, поэтому это наше падение напряжения и, следовательно, предельное. И это также является причиной того, что высоковольтные кабели также ведут 100 кВ - 300 кВ. Из-за высокого напряжения и связанного с ним более низкого тока влияние иногда очень высоких внутренних сопротивлений кабелей сводится к минимуму. Общее: Определение - это количество, указывающее, сколько работы или энергии необходимо для перемещения носителя заряда с определенным электрическим зарядом в электрическом поле.

Взаимосвязь магнетизма и электричества

Теперь посмотрим, чем отличается переменный ток от постоянного тока, который зависит от материала. Самое главное - возникновение переменного тока не зависит от реакций в материале . Работая с гальваническим (постоянным током), быстро было установлено, что проводники притягиваются друг к другу как магниты. Следствием стало открытие, что магнитное поле при определённых условиях генерирует электрический ток. То есть, магнетизм и электричество оказались взаимосвязанным явлением с обратным преобразованием. Магнит мог дать ток в проводник, а проводник с током мог быть магнитом. На этой картинке моделирование опытов Фарадея, который, собственно говоря, и обнаружил это явление.

Это определение также легче представить. Для того, чтобы «ток» протекал в замкнутой системе, в качестве предпосылки требуется напряжение. Под этим электрическим напряжением понимается движущая сила, которая допускает или вызывает движение заряда. Резюме до настоящего времени: если ток или источник напряжения не загружается нагрузкой, ток не течет, и поэтому нет падения напряжения. Напряжение разомкнутой цепи можно измерить на контактах источника тока. Если к источнику тока или напряжения подключена нагрузка, то ток течет, а исходное напряжение разомкнутой цепи разделяется между сопротивлением нагрузки и внутренним сопротивлением источника напряжения.

Теперь аналогия для переменного тока. Магнитом у нас будет сила притяжения, а генератором тока - песочные часы с водой. На одной половине часов напишем «верх», на другой «низ». Переворачиваем наши часы и видим, как вода течёт «вниз», когда вся вода перетекла, переворачиваем ещё раз и вода у нас течёт «вверх». Притом, что ток у нас имеется в наличии, он меняет направление два раза за полный цикл. По науке это будет выглядеть так: частота тока зависит от частоты вращения генератора в магнитном поле. При определённых условиях мы получим чистую синусоиду, или просто переменный ток с разными амплитудами.

В этой главе теперь будут рассмотрены термины «источник напряжения» и источник тока. Источник напряжения: термины «источник тока» и «источник напряжения» не следует путать друг с другом. В принципе, источники тока и напряжения имеют противоположные свойства. Источник напряжения служит источником электрической энергии , который подает электрический ток в зависимости от подключенной нагрузки, но не может быть путано с источником тока. Важной характеристикой источника напряжения является то, что напряжение только низкое, или, в случае модели идеального источника напряжения, не зависит от принимаемого электрического тока.

Ещё раз! Это очень важно для понимания, чем отличается постоянный ток от переменного тока. В обеих аналогиях вода течёт «под уклон». Но в случае постоянного тока водохранилище опустеет рано, или поздно, а для тока переменного часы будут переливать воду очень долго, она в замкнутом объёме. Но при этом в обоих случаях вода течёт под уклон. Правда в случае переменного тока, она половину времени течёт под уклон, но вверх. Иначе говоря, направление движения переменного тока величина алгебраическая, то есть «+» и «-» непрерывно меняются местами, при неизменности направления движения тока. Постарайтесь обдумать и понять это отличие. Как модно говорить в сети: «Ты понял это, теперь ты знаешь всё».

Поскольку существенным свойством источника тока является то, что ток только низкий, или в модели идеального источника тока в кадре не зависит от электрического напряжения. Примерами источников напряжения являются батареи, солнечные элементы и генераторы и, в отличие от источников тока, не подают постоянный ток, а постоянное напряжение. Как правило, источники тока создаются с использованием источника напряжения и преобразования его в источник тока с помощью подходящей схемы.

В рамках термина «источник напряжения» все еще можно подразделить на идеальный и реальный источник напряжения. Идеальный источник напряжения - источник, который генерирует постоянное напряжение, не зависящее от тока и подключенных нагрузок. Реальные источники напряжения можно рассматривать как идеальный источник напряжения, который подает напряжение без нагрузки и зависит от внутреннего сопротивления, так что профиль напряжения на реальном источнике напряжения зависит от тока, который берется.

Чем обусловлено большое разнообразие токов

Если понимать в чем разница постоянного и переменного токов, возникает естественный вопрос - а зачем их так много, токов? Выбрали бы один ток как стандарт, и всё было бы одинаково.

Но, как говорится, «не все токи одинаково полезны», кстати, давайте подумаем, какой ток опаснее: постоянный или переменный, если мы примерно представили себе не природу тока, а скорее его особенности. Человек - это хорошо проводящий электричество коллодиум. Набор разных элементов в воде (мы на 70% из воды, если кто не в курсе). Если на такой коллодиум подать напряжение - ударить током, то частицы внутри нас начнут передавать заряд. Как и положено от точки высокого потенциала к точке с низким потенциалом. Опаснее всего стоять на земле, которая вообще является точкой с бесконечно нулевым потенциалом. Иначе говоря, мы передадим в землю весь ток, то есть разницу зарядов. Так вот при постоянном направлении движения заряда, процесс выравнивания потенциала в нашем организме происходит плавно. Мы словно песок пропускаем через себя воду. И можем безопасно «поглотить» много воды. При переменном токе картина немного другая - все наши частицы будет «дёргать» то туда то сюда. Песок не сможет спокойно пропускать воду, и весь будет взбаламучен. Поэтому ответ на вопрос, какой ток опаснее постоянный или переменный ответ однозначен - переменный. Для справки, опасная для жизни пороговая сила постоянного тока 300мА. Для переменного тока эти значения зависят от частоты и начинаются со значения 35мА. При токе в 50 герц 100мА. Согласитесь, разница в 3-10 раз сама по себе отвечает на вопрос: что опаснее? Но это не главный аргумент в выборе стандарта тока. Давайте упорядочим всё, что принимается во внимание при выборе вида тока:

Визуализация двух терминов: сначала снова выяснение тока и напряжения. Чем сильнее две стороны, тем сильнее сила, которая действует между ними и сильнее напряжение. Два источника тока и источника напряжения могут быть объяснены с помощью легкомысленного примера. Представляется горное озеро, представляющее собой напряжение в транспонированном смысле. Чем выше озеро, тем выше напряжение. Теперь вода из горного озера сворачивается в долину через трубы. Существует трубопровод от горного озера до долины.

Вода можно рассматривать как электроны. Если труба открыта в верхней части горного озера, вода течет вниз по трубе, которая является током в транспонированном смысле. Это означает, что чем больше воды в озере, тем больше воды будет «течь» вниз. Конечно, есть сопротивление на источнике напряжения или источнике тока. Это также можно представить. В представленном примере диаметр трубы будет сопротивлением. Чем более узкая трубка, тем меньше может течь вода. Узкая трубка обеспечивает устойчивость к потоку воды.

  • Доставка тока на большие расстояния . Постоянный ток будет потерян почти весь;
  • Преобразование в разнородных электрических цепях с неопределённым уровнем потребления. Для постоянного тока практически не решаемая задача;
  • Поддерживать постоянное напряжение для переменного тока на два порядка дешевле, чем для тока постоянного;
  • Преобразование электрической энергии в механическую силу гораздо дешевле в двигателях и механизмах переменного тока. Такие двигатели имеют свои недостатки и в ряде областей не могут заменить двигатели постоянного тока;
  • Для массового использования, таким образом, постоянный ток имеет одно преимущество - он безопаснее для человека.

Отсюда и разумный компромисс, который выбрало человечество. Не один какой-то ток, а вся совокупность доступных преобразований от генерации, доставки потребителю, распределения и использования. Перечислять все мы не будем, но считаем главным ответом на вопрос статьи, «чем отличается постоянный ток от переменного» одно слово - характеристиками. Наверное, это самый правильный ответ для любых бытовых целей. А для понимания стандартов, предлагаем рассмотреть основные характеристики этих токов.

Математически можно объединить два термина. Горное озеро: толщина трубы = расход воды. Постоянный ток, переменный ток, постоянное напряжение, переменное напряжение - электрические переменные кратко объясняются. С осциллографом. Батареи как источники прямого напряжения.

Передача электрической энергии линиями с переменным током. Диаграмма напряжения постоянного напряжения. Диаграмма напряжения переменного напряжения . Электрический ток ненадолго Электрический ток перемещает носители заряда, они могут иметь как отрицательный заряд, так и положительный. В металле электроны могут свободно двигаться. Они перемещаются, потому что их возбуждает электрическое поле . Мерой интенсивности тока является электрический ток. Он измеряется в «Ампере», сокращенно А.

Основные характеристики применяемых сегодня токов

Если для постоянного тока с момента открытия характеристики остались в целом без изменений, то с переменными токами всё обстоит куда сложнее. Посмотрите на эту картинку - модель движения тока в трёхфазной системе от генерации до потребления

Электрическое напряжение коротко объяснено. Если в какой-то момент у нас много положительных зарядов, их электрическое поле привлекательно для электронов, они хотят перейти на положительные заряды. Чем больше положительных зарядов, тем сильнее сила, которая управляет электронами. Для количества электрических зарядов определена мера, это «электрическое напряжение». Это просто указывает на разницу в электрических зарядах между двумя точками.

Чтобы ток мог течь, должно быть напряжение. Что такое Полярность? Электрическое напряжение имеет два полюса - положительный положительный полюс и отрицательный отрицательный полюс. На плюсовом полюсе наблюдается электронный дефицит, электроны хотят мигрировать на этот положительный полюс. На минусовом полюсе наблюдается избыток электронов, электроны отталкиваются от минус-полюса. Вместо полярности иногда используется полярность. Что такое источник напряжения? Источник напряжения представляет собой двухполюсную составляющую, между двумя полюсами которой существует электрическое напряжение.

С нашей точки зрения очень наглядная модель, на которой понятно как снять одну фазу, две или три. Заодно видно как тот попадает к потребителю.

В итоге мы имеем цепочку генерации, переменное и постоянное напряжение (токи) на этапе потребителя. Соответственно чем дальше от потребителя, тем выше токи и напряжение. Фактически в нашей розетке самый простой и слабый - переменный однофазный ток, 220В с фиксированной частотой в 50 Гц. Только повышение частоты способно при этом напряжении сделать ток высокочастотным. Простейший пример стоит у Вас на кухне. СВЧ печать преобразует простой ток в высокочастотный, который собственно и помогает готовить. Кстати ответим на вопрос о мощности СВЧ - это как раз сколько «обычного» тока она преобразует в токи высокой частоты.

Стоит помнить о том, что любое преобразование токов не обходится «даром». Чтобы получить переменный ток, надо чем-то вращать вал. Чтобы получить из него ток постоянный, придётся часть энергии рассеять как тепло. Даже токи передачи энергии придётся рассеять в виде тепла при доставке в квартиру при помощи трансформатора. То есть любое изменение параметров тока сопровождается потерями. И конечно потерями сопровождается доставка тока потребителю. Это, казалось бы, теоретическое знание, позволяет понять, откуда возникают наши переплаты за энергию, снимая половину вопросов, почему на счетчике 100 рублей, а в квитанции 115.

Вернёмся к токам. Мы упомянули вроде бы все, и даже знаем, чем отличается постоянный ток от переменного, поэтому давайте, напомним какие токи, вообще есть.

  • Постоянный ток , источником является физика химических реакций с изменением заряда, может быть получен преобразованием тока переменного. Разновидность - импульсный ток, который меняет свои параметры, в широком диапазоне, но не меняет направления движения.
  • Переменный ток . Может быть однофазным, двухфазным или трёхфазным. Стандартным или высокочастотным. Такая простая классификация вполне достаточна.

Заключение или каждому току свой прибор

На фото генератор тока на Саяно-Шушенской ГЭС. А на этом фото место его установки.

А это обычная лампочка.

Не правда ли разница масштабов поражает, хотя первое создано, в том числе и для работы второго? Если обдумать эту статью, то становится понятно, что чем ближе прибор к человеку, тем чаще в нём применяется постоянный ток. За исключением двигателей постоянного тока и промышленного применения это действительно стандарт, основанный именно на том, что какой ток опаснее постоянный или переменный мы выяснили. На этом же принципе основаны характеристики бытовых токов, так как переменный ток 220В 50Гц является компромиссом между опасностью и потерями. Цена компромисса - защитная автоматика: от предохранителя до УЗО. Отойдя от человека, мы попадаем в зону переходных характеристик, где и токи и напряжения выше, и где опасность для человека не принимается во внимание, а уделяется внимание технике безопасности - зона промышленного использования тока. Дальше всего от человека, даже в промышленности находится передача энергии и генерация. Простому смертному тут делать нечего - это зона профессионалов и специалистов, которые умеют управлять этой мощью. Но даже при бытовом использовании электричества, и конечно при работах с электрикой, понимание основ природы токов никогда не будет лишним.

Постоянный ток (direct current) это упорядоченное движение заряженных частиц в одном направлении. Другими словами
величины характеризующие электрический ток, такие как напряжение или сила тока, постоянны как по значению, так и по направлению.

В источнике постоянного тока, например в обычной пальчиковой батарейке, электроны движутся от минуса к плюсу. Но исторически сложилось так, что за техническое направление тока считается направление от плюса к минусу.

Для постоянного тока применимы все основные законы электротехники, такие как закон Ома и законы Кирхгофа.

История

Изначально постоянный ток назывался – гальваническим током, так как впервые был получен с помощью гальванической реакции. Затем, в конце девятнадцатого века, Томас Эдисон, предпринимал попытки организовать передачу постоянного тока по линиям электропередачи. При этом даже разыгралась так называемая “война токов” , в которой шел выбор в качестве основного тока между переменным и постоянным. К сожалению, постоянный ток “проиграл” эту “войну”, потому что в отличие от переменного тока, постоянный, несет большие потери в мощности при передаче на расстояния. Переменный ток легко трансформировать и благодаря этому передавать на огромные расстояния.

Источники постоянного тока

Источниками постоянного тока могут быть аккумуляторы, либо другие источники в которых ток появляется благодаря химической реакции (например, пальчиковая батарейка).

Также источниками постоянного тока может быть генератор постоянного тока, в котором ток вырабатывается благодаря
явлению электромагнитной индукции, а затем выпрямляется с помощью коллектора.

Постоянный ток может быть получен с помощью выпрямления переменного тока. Для этого существуют различные выпрямители и преобразователи.

Применение

Постоянный ток, достаточно широко применяется в электрических схемах и устройствах. К примеру, дома, большинство приборов, таких как модем или зарядное устройство для мобильного, работают на постоянном токе. Генератор автомобиля, вырабатывает и преобразует постоянный ток, для зарядки аккумулятора. Любое портативное устройство питается от источника постоянного тока.

В промышленности постоянный ток используется в машинах постоянного тока, например в двигателях, или генераторах. В некоторых странах существуют высоковольтные линии электропередачи постоянного тока.

Постоянный ток также нашел свое применение и в медицине, например в электрофорезе – процедуре лечения с помощью электрического тока.

В железнодорожном транспорте, кроме переменного, используется и постоянный ток. Это связано с тем, что тяговые двигатели, которые имеют более жесткие механические характеристики , чем асинхронные, являются двигателями постоянного тока.

Влияние на организм человека

Постоянный ток в отличие от переменного является более безопасным для человека. Например, смертельным током для человека является 300 мА если это ток постоянный, а если переменный с частотой 50 Гц, то 50-100 мА.

Электрическим током называется перенос заряда или движение заряженных частиц между точками, с разными электрическими потенциалами. Переносить электрический заряд могут ионы, протоны и/или электроны. В повседневной жизни практически везде применяется движение электронов по проводникам. Обычно встречаются две разновидности электричества - переменное и постоянное. Важно знать, чем постоянный ток отличается от переменного.

Постоянный и переменный ток

Любое явление, которое нельзя увидеть или «пощупать» непосредственно, легче понять с помощью аналогий. В случае с электричеством можно рассмотреть воду в трубе как самый близкий пример. Вода и электричество текут по своим проводникам - проводам и трубам.

  • Объём протекающей воды - сила тока.
  • Давление в трубе - напряжение.
  • Диаметр трубы - проводимость, обратная сопротивлению.
  • Объём на давление - мощность.

Давление в трубе создаётся насосом - сильнее насос качает, давление выше, воды течёт больше. Диаметр трубы больше - сопротивление меньше, воды протекает больше. Источник выдаёт напряжение больше - электричества протекает больше. Провода толще - сопротивление меньше, ток выше.

Для примера можно взять любой химический источник питания - батарейку или аккумулятор. На его клеммах имеются обозначения полюсов: плюс или минус. Если к батарейке, через провода и выключатель подключить соответствующую лампочку, то она загорится. Что при этом происходит? Минусовая клемма источника испускает электроны - элементарные частицы, несущие отрицательный заряд. По проводам, через разъёмы выключателя и спираль лампы они движутся к положительной клемме, стремясь уровнять потенциал клемм. Пока цепь замкнута по разъёмам выключателя и батарейка не села - по спирали бегут электроны и лампочка горит.

Направление движения зарядов остаётся неизменным всё время - от минуса к плюсу. Это и есть постоянный ток, он может быть пульсирующим - слабеть или увеличиваться.

По многим причинам применение только постоянного напряжения нецелесообразно : взять хотя бы невозможность использовать трансформаторы. Поэтому к настоящему времени сложилась система подачи и потребления переменного напряжения питания, под которую и создаются бытовые приборы.

Существует простой ответ, какова разница между постоянным и переменным током. В этом примере с лампочкой на одной клемме источника питания напряжение всегда будет равно нулю. Это нулевой провод, а вот на другом - фазном, напряжение изменяется. И не только по величине, но и по направлению - с плюса на минус. Электроны не текут стройными рядами в одну сторону, наоборот мечутся вперёд-назад, одни и те же частицы пробегают по спирали накаливания туда-сюда и производят всю работу. Изменение направления движения электричества и даёт само понятие «переменный».

Дополнительные параметры сети

Помимо напряжения, силы, мощности и сопротивления/проводимости появляются два новых признака, описывающих процессы. Эти параметры являются обязательными, как и первые четыре. При изменении любого из них изменяются свойства всей цепи.

  • Форма.
  • Частота.

Большую роль играет вид графика изменения напряжения. В идеале он имеет вид синусоиды с плавными переходами от значения к значению. Отклонения от синусоидальной формы могут привести к снижению качества энергии.

Частота - это количество переходов из одного крайнего состояния в другое за определённое время. Европейский стандарт в 50 Гц (герц) означает, что напряжение меняет плюс на минус 50 раз за секунду, а электроны сто раз поменяют направление движения. Для справки: увеличение частоты в два раза приводит к четырёхкратному уменьшению габаритов устройств .

Если в розетке переменный ток 50 Гц и 220 В (вольт), то это значит, что максимальное напряжение питания в сети достигает 380 В. Откуда это? В постоянной сети значение напряжения неизменно, а при переменке оно то падает, то растёт. Вот эти 220 В и являются значением действующего напряжения синусоидального тока с амплитудой в 380 В. Потому так важна форма изменения значений, что при сильном отличии от синусоиды сильно изменится и действующее напряжение.

Практическое значение различий

Вот такой он, переменный и постоянный ток. В чем разница, разобраться не так уж сложно. Различие есть и очень большое. Источник постоянного тока не позволит подключить сварочный, да и любой другой, трансформатор. При расчёте изоляции или конденсаторов на пробой берётся не действующее, а максимальное значение напряжения. Ведь наверняка может возникнуть мысль: «а зачем в сети 220 вольт конденсаторы на 400?». Вот и ответ, в сети 220 В напряжение доходит и до 380 В при нормальной работе, а при небольшом сбое и 400 В не предел.

Ещё один «парадокс». Конденсатор имеет бесконечное сопротивление в сети постоянного тока, и проводимость в сети переменного, чем выше частота, тем меньше сопротивление конденсатора. С катушками иначе - увеличение частоты вызывает рост индуктивного сопротивления. Это их свойство используется в колебательном контуре - основе всей связи.

В самом начале, давайте дадим короткое определение электрическому току. Электрическим током называют упорядоченное (направленное) движение заряженных частиц. Ток - это движение электронов в проводнике, напряжение - это то, что приводит их (электроны) в движение.

Теперь рассмотрим такие понятия, как постоянный и переменный ток и выявим их принципиальные отличия.

Отличие постоянного тока от переменного

Основная особенность постоянного напряжения в том, что оно постоянно как по своей величине, так и по знаку. Постоянный ток, "течет" в все время одну сторону. Например, по металлическим проводам от плюсового зажима источника напряжения к минусовому (в электролитах его создают положительные и отрицательные ионы). Сами же электроны движутся от минуса к плюсу, но ещё до открытия электрона договорились считать, что ток течет от плюса к минусу и до сих пор при расчетах придерживаются этого правила.

Чем же от постоянного отличается переменный ток (напряжение)? Из самого названия следует, что он меняется. Но - как именно? Переменный ток меняет за период как свою величину, так и направление движения электронов. В наших бытовых розетках - это ток с синусоидальными (гармоническими) колебаниями частотой 50 герц (50 колебаний в секунду).

Если рассмотреть замкнутую цепь на примере лампочки, то мы получим следующее:

  • при постоянном токе электроны будут течь через лампочку всегда в одном направлении от (-) минуса к (+) плюсу
  • при переменном направление движения электронов будет меняться в зависимости от частоты генератора. т. е. если в нашей сети частота переменного тока 50 герц (Hz), то направление движения электронов за 1 секунду поменяется 100 раз. Таким образом + и - в нашей розетке меняются местами сто раз в секунду относительно ноля . Именно поэтому мы можем воткнуть электрическую вилку в розетку "вверх ногами" и все будет работать.

Переменное напряжение в нашей бытовой розетке изменяется по синусоидальному закону. Что это значит? Напряжение от нуля увеличивается до положительного амплитудного значения (положительный максимум), потом уменьшается до нуля и продолжает уменьшаться дальше - до отрицательного амплитудного значения (отрицательный максимум), затем снова увеличивается, переходя через ноль и возвращается к положительному амплитудному значению.

Говоря другими словами, при переменном токе постоянно меняется его заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Получается, что за секунду электроны 100 раз меняют направление своего движения и свою полярность, с положительной на отрицательную (помните, что их частота составляет 50 герц - 50 периодов или колебаний в секунду?).



Первые электрические сети были постоянного тока. С этим было связано несколько проблем, одна из них - сложность конструкции самого генератора. А генератор переменного тока обладает более простой конструкцией, а потому прост и дешев в эксплуатации.

Дело в том, что одинаковую мощность можно передать высоким напряжением и маленьким током или наоборот: низким напряжением и большим током. Чем больше ток, тем больше нужно сечение провода, т.е. провод должен быть толще. Для напряжения толщина провода не важна, были бы изоляторы хорошие. Переменный ток (в отличие от постоянного) просто легче преобразовывать.

И это - удобно. Так по проводу относительно небольшого сечения электростанция может отправить пятьсот тысяч (а иногда и до полутора миллионов) вольт энергии при токе в 100 ампер практически без потерь. Потом, например, трансформатор городской подстанции "заберет" 500 000 вольт при токе в 10 ампер и "отдаст" в городскую сеть 10 000 вольт при 500 амперах. А районные подстанции уже преобразуют это напряжение в 220/380 вольт при токе порядка 10 000 ампер, для нужд жилых и промышленных кварталов города.

Разумеется схема упрощена и имеется в виду вся совокупность районных подстанций в городе, а не какая-то конкретно.

Персональный компьютер (ПК) работает по схожему принципу, но - в обратную сторону. Он преобразует переменный ток в постоянный а затем, при помощи , понижает его напряжение до значений, необходимых для работы всех компонентов внутри .

В конце 19-го века всемирная электрификация вполне могла пойти и другим путем. Томас Эдисон (считается, что именно он изобрел одну из первых коммерчески успешных ламп накаливания) активно продвигал свою идею постоянного тока. И если бы не исследования другого выдающегося человека, доказавшего эффективность тока переменного, то все могло бы быть по другому.

Гениальный серб Никола Тесла (некоторое время работавший у Эдисона), первым спроектировал и построил генератор многофазного переменного тока, доказав его эффективность и преимущество по сравнению с аналогичными разработками, работавшими с постоянным источником энергии.

Сейчас давайте рассмотрим "места обитания" постоянного и переменного тока. Постоянный, например, находится в нашем телефонном аккумуляторе или батарейках. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в местах его хранения (аккумуляторах).

Источники постоянного напряжения это:

  1. обычные батарейки применяемые в различных приборах (фонарики, плееры, часы, тестеры и т.д.)
  2. различные аккумуляторы (щелочные, кислотные и т. п.)
  3. генераторы постоянного тока
  4. другие специальные устройства, например: выпрямители, преобразователи
  5. аварийные источники энергии (освещение)

Например, городской электротранспорт работает на постоянном токе напряжением в 600 Вольт (трамваи, троллейбусы). Для метрополитена оно выше - 750-825 Вольт.

Источники переменного напряжения:

  1. генераторы
  2. различные преобразователи (трансформаторы)
  3. бытовые электросети (домашние розетки)

О том, как и чем измерять постоянное и переменное напряжение мы с Вами говорили вот , а напоследок (всем тем кто дочитал статью до конца) хочу рассказать небольшую историю. Озвучил ее мне мой шеф, а я перескажу с его слов. Уж больно она к нашей сегодняшней теме подходит!

Поехал он как-то в служебную командировку с нашими директорами в соседний город. Налаживать дружественные отношения с тамошними IT-шниками:) А сразу возле трассы там такое замечательное местечко есть: родник с чистой водой. Возле все обязательно останавливаются и воду набирают. Это, своего рода, уже традиция.

Местные власти, решив облагородить данное место, сделали все по последнему слову техники: вырыли сразу под родничком большую прямоугольную яму, обложили ее ярким кафелем, перелив сделали, подсветку светодиодную, бассейн получился. Дальше - больше! Сам родник "упаковали" в крапленую гранитную крошку, придали ему благородную форму, иконку над жерлом под стекло вмуровали - святое место, значится!

И последний штрих - поставили систему подачи воды на фотоэлементе. Получается, что бассейн всегда наполнен и в нем "булькает", а чтобы набрать воду непосредственно из родничка, нужно поднести руки с сосудом к фотоэлементу и оттуда - "проистекает" :)

Надо сказать, что по дороге к источнику наш шеф рассказывал одному из директоров, как это круто: новые технологии, вайфай, фотоэлементы, сканирование по сетчатке глаза и т.д. Директор был классическим технофобом, поэтому придерживался противоположного мнения. И вот, подъезжают они к родничку, подносят руки куда следует, а вода не течет!

Они и так, и сяк, а результата - ноль! Оказалось, что тупо не было напряжения в электрической сети, которая питала эту шайтан-систему:) Директор был "на коне"! Отпустил несколько "контрольных" фраз по поводу всех этих п...х технологий, таких же п...х элементов, всех машин вообще и данной конкретной в частности. Зачерпнул канистрой прямо из бассейна и пошел в машину!

Вот и получается, мы можем настроить все что угодно, "поднять" навороченный сервер, предоставить лучший и востребованный сервис, но, все равно, самый главный человек - это дядя Вася-электрик в ватнике, который одним движением руки может организовать полный skipped всей этой технической мощи и изяществу:)

Так что помните: главное - качественное электропитание. Хороший (источник бесперебойного питания) и стабильное напряжение в розетках, а все остальное - приложится:)

На сегодня у нас - все и до следующих статей. Берегите себя! Ниже - небольшое видео по теме статьи.

Сейчас невозможно представить себе человеческую цивилизацию без электричества. Телевизоры, компьютеры, холодильники, фены, стиральные машины - вся бытовая техника работает на нем. Не говоря уже о промышленности и больших корпорациях. Основным источником энергии для электроприемников является переменный ток. А что это такое? Каковы его параметры и характеристики? Чем отличаются постоянный и переменный ток? Мало кто из людей знает ответы на эти вопросы.

Переменный против постоянного

В конце девятнадцатого века, благодаря открытиям в области электромагнетизма, возник спор по поводу того, какой же ток лучше применять, чтобы удовлетворить человеческие потребности. Как же все начиналось? Томас Эдисон в 1878 году основал свою компанию, которая в будущем стала знаменитой General Electric. Компания быстро разбогатела и завоевала доверие инвесторов и простых граждан Соединенных Штатов Америки, так как было построено по всей стране несколько сотен электростанций, работающих на постоянном токе. Заслуга Эдисона - в изобретении трехпроводной системы. Постоянный ток замечательно работал с первыми электрическими двигателями и лампами накаливания. Это были фактически единственные приемники энергии на то время. Счетчик, который также был изобретен Эдисоном, работал исключительно на постоянном токе. Однако в противовес развивающейся компании Эдисона выступили конкурентные корпорации и изобретатели, которые хотели противопоставить постоянному току переменный.

Недостатки изобретения Эдисона

Джордж Вестингауз, инженер и бизнесмен, заметил в патенте Эдисона слабое звено - огромные потери в проводниках. Однако ему не удалось разработать конструкцию, которая могла бы конкурировать с этим изобретением. В чем же недостаток Эдисоновского постоянного тока? Основная проблема - передача электроэнергии на расстояния. А так как при его увеличении растет и сопротивление проводников, то это значит, что будут увеличиваться и потери мощности. Для понижения этого уровня необходимо либо повышать напряжение, а это приведет к понижению силы самого тока, либо утолщать провод (то есть снижать сопротивление проводника). Способов эффективного повышения напряжения постоянного тока в то время не было, поэтому электростанции Эдисона держали напряжение, близкое к двум сотням вольт. К сожалению, передаваемые таким образом потоки мощности не могли обеспечить нужды промышленных предприятий. Постоянный ток не мог гарантировать генерацию электроэнергии мощным потребителям, которые находились на значительном расстоянии от электростанции. А повышать толщину проводов или строить больше станций было слишком дорого.

Переменный ток против постоянного

Благодаря разработанному в 1876 году инженером Павлом Яблочковым трансформатору, изменять напряжение у переменного тока было очень просто, что давало потрясающую возможность передавать его на сотни и тысячи километров. Однако на тот момент не существовало двигателей, которые работали бы на переменном токе. Соответственно, не было и генерирующих станций, и сетей для передачи.

Изобретения Николы Теслы

Несомненное преимущество постоянного длилось недолго. Никола Тесла, работая инженером в фирме Эдисона, понял, что постоянный ток не может обеспечить человечество электроэнергией. Уже в 1887 году Тесла получил сразу несколько патентов на аппараты переменного тока. Началась целая борьба за более эффективные системы. Основными конкурентами Теслы были Томсон и Стенли. А 1888 году однозначную победу получил сербский инженер, который предоставил систему, способную транспортировать электрическую энергию на расстояния в сотни миль. Молодого изобретателя быстро взял к себе Вестингауз. Однако сразу же началось противостояние между компаниями Эдисона и Вестингауза. Уже в 1891 году была разработана Теслой система трехфазного переменного тока, что позволило выиграть тендер по строительству огромной электрической станции. С тех пор однозначно позицию лидера занял переменный ток. Постоянный же сдавал свои позиции по всем фронтам. Особенно когда появились выпрямители, способные преобразовывать переменный ток в постоянный, что стало удобно для всех приемников.

Определение переменного тока

Пример простейшего генератора

В качестве самого простого источника используют прямоугольную рамку, изготовленную из меди, которая закреплена на оси и вращается в магнитном поле при помощи ременной передачи. Концы этой рамки припаяны контактными кольцами к медным, которые скользят по щеткам. Магнит создает равномерно распределенное в пространстве магнитное поле. Плотность силовых магнитных линий здесь одинакова в любой части. Вращающаяся рамка пересекает эти линии, и на ее сторонах индуцируется переменная электродвижущая сила (ЭДС). С каждым поворотом направление суммарной ЭДС меняется на обратное, так как рабочие стороны рамки за оборот проходят через разные полюса магнита. Так как меняется скорость пересечения силовых линий, то становится другой и величина электродвижущей силы. Поэтому если равномерно вращать рамку, то индуктированная электродвижущая сила периодически будет меняться как по направлению, так и по величине, ее можно измерить при помощи внешних приборов и, как следствие, использовать для того, чтобы создавать переменный ток во внешних цепях.

Синусоидальность

Что это такое? Переменный ток графически характеризуется волнообразной кривой - синусоидой. Соответственно, ЭДС, ток и напряжение, которые изменяются по этому закону, называются параметрами синусоидальными. Кривая так названа потому, что является изображением тригонометрической переменной величины - синуса. Именно синусоидальный характер переменного тока - наиболее распространенный во всей электротехнике.

Параметры и характеристики

Переменный ток - это явление, которое характеризуется определенными параметрами. К ним относят амплитуду, частоту и период. Последний (обозначается буквой Т) - это промежуток времени, в течение которого напряжение, ток или ЭДС совершает цикл полного изменения. Чем быстрее будет вращение ротора у генератора, тем период будет меньше. Частотой (f) называют количество полных периодов тока, напряжения или ЭДС. Она измеряется в Гц (герцах) и обозначает количество периодов за одну секунду. Соответственно, чем больше период, тем меньше частоты. Амплитудой такого явления, как переменный ток, называют наибольшее его значение. Записывается амплитуда напряжения, тока или электродвижущей силы буквами с индексом «т» - U т I т, Е т соответственно. Часто к параметрам и характеристикам переменного тока относят действующее значение. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени - мгновенное значение (помечают строчными буквами - і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.

Переменный ток , в отличие от , непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.

Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению. Такие источники называются генераторами переменного тока.

На рис. 1 показана схема устройства (модель) простейшего .

Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле . Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам).

Рисунок 1. Схема простейшего генератора переменного тока

Убедимся в том, что такое устройство действительно является источником переменной ЭДС.

Предположим, что магнит создает между своими полюсами , т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая. вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б .

Стороны же в и г рамки - нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС.

В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой.

В этом нетрудно убедиться, если использовать для определения направления ЭДС известное нам правило правой руки .

Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки.

Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита.

Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется.

Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению.

ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи.

Используя , можно получить переменную ЭДС и, следовательно, переменный ток.

Переменный ток для промышленных целей и вырабатывается мощными генераторами, приводимыми во вращение паровыми или водяными турбинами и двигателями внутреннего сгорания.

Графическое изображение постоянного и переменного токов

Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.

Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, - значения той величины, график которой собираются построить (ЭДС, напряжения или тока).

На рис. 2 графически изображены постоянный и переменный токи . В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки - противоположного направления, которое принято называть отрицательным.

Рисунок 2. Графическое изображение постоянного и переменного тока

Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.

Убедимся в правильности построенного на рис. 2, а графика постоянного тока величиной 50 мА.

Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока, т. е. 50 мА. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.

То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика.

Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением постоянного тока величиной 50 мА.

Перейдем теперь к изучению графика переменной ЭДС . На рис. 3 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС.


Рисунок 3. Построение графика переменной ЭДС

Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.

В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1.

При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).

По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой.

Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).

При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.

График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение.

Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5)

На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.

Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.

Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.

Полученная нами волнообразная кривая называется синусоидой , а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными .

Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.

Синусоидальный характер изменения тока - самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.

Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока .

Период, амплитуда и частота - параметры переменного тока

Переменный ток характеризуется двумя параметрами - периодом и амплитудо й, зная которые мы можем судить, какой это переменный ток, и построить график тока.



Рисунок 4. Кривая синусоидального тока

Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах.

Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.

Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения.

Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.

Im, Em и Um - общепринятые обозначения амплитуд тока, ЭДС и напряжения.

Мы прежде всего обратили внимание на , однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного.

Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением.

i, е и u - общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.

Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока; полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение.

Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени - T/4 его амплитудному значению. Ток также достигает своего амплитудного значения; но уже в обратном на правлении, по истечении времени, равного 3/4 Т.

Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.

Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f.

Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды , необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f

Измеряется единицей, называемой герцем.

Если мы имеем переменный ток , частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу.

Итак, мы определили параметры переменного тока - период, амплитуду и частоту , - которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики.

При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту .

Круговая частота обозначается связана с частотой f соотношением 2пиf

Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается рамка в 1 секунду, и выражает собой скорость вращения рамки, которую принято называть угловой или круговой скоростью.

Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна 360°f.

Итак, мы пришли к выводу, что 360°f. Однако для удобства пользования круговой частотой при всевозможных расчетах угол 360°, соответствующий одному обороту, заменяют его радиальным выражением, равным 2пи радиан, где пи=3,14. Таким образом, окончательно получим 2пиf. Следовательно, чтобы определить круговую частоту переменного тока (), надо частоту в герцах умножить на посто янное число 6,28.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows