3d принтер с технологией лазерной стереолитографии. Печать нефункциональных прототипов и изделий. Всего три шага к воплощению идеи

3d принтер с технологией лазерной стереолитографии. Печать нефункциональных прототипов и изделий. Всего три шага к воплощению идеи

17.04.2019

Может ли быть колесо, у которого втулка вращается быстрее, чем обод? Посмотрите как вращается автомобильное колесо. Вы увидите, что все точки, расположенные по одному радиусу (на разных расстояниях от оси), поворачиваются на одинаковый угол и делают одно и то же число оборотов. У всего колеса, как говорят, одинаковая угловая скорость. Что же касается линейной скорости каждой точки, то вы ясно увидите, что чем дальше от оси, тем с большей скоростью движется она по своей окружности.

Да иначе и быть не может – ведь за то же время (за каждый оборот) точки пробегают пути по меньшей или по большей окружности. И, казалось бы, не имеет смысла думать, будто втулка колеса может вращаться быстрее, чем его обод, - таких колес, конечно, не бывает. (Добавим, однако, - твердых, сплошных колес.)

  • О скорости движения Солнца в Галактике и Галактики во Вселенной читаем в статье: Скорость движения Солнца и Галактики во Вселенной.

И все-таки подобные «колеса» нашлись – правда, не сплошные и не твердые. Чье внимание не привлекали интересные кольца Сатурна, окружающие огромную необыкновенную планету? Кольца Сатурна громадны – общая ширина их 65 000 км – в пять раз больше поперечника земного шара. Правда, толщина колец очень невелика – всего каких-нибудь 15-20 км. При этом кольца «висят» в пространстве, не прикасаясь к поверхности планеты, - они вращаются вокруг нее от действия огромной силы ее притяжения (по закону тяготения).

Ученых давно интересовал вопрос: какова природа колец Сатурна? Долго шли споры о том, что это: сплошное твердое кольцо или поток отдельных кусков, камней? Гениальная русская женщина-математик Софья Ковалевская теоретически доказала, что кольца Сатурна состоят из отдельных небольших тел и что они не могут быть сплошным твердым кольцом . Иначе такое кольцо разорвалось бы на части от неодинакового действия силы притяжения, которая на внутреннем крае колец (ближе к планете) гораздо больше, чем на внешнем крае (дальше от нее). Чтобы уравновесить это различие в притяжении, внутренний край колец должен вращаться быстрее, чем внешний, а это может быть только в том случае, если кольца не сплошные, а состоят из отдельных кусков – камней или глыб. Каждый из этих кусков самостоятельно движется вокруг планеты по законам небесной механики, как крошечное небесное тело.

Другой выдающийся русский ученый – А. А. Белопольский сложными наблюдениями открыл, что внутренний край колец действительно вращается быстрее, чем внешний. Скорость внутреннего края 20 км/сек, а скорость внешнего – всего 15 км/сек. Значит, перед нами действительно «колесо», у которого «втулка» вращается быстрее, чем «обод».

И таких странных колес во Вселенной оказалось очень много. Еще «законодатель неба» Кеплер открыл, что гигантским «колесом» такого рода является вся наша солнечная система. Посмотрите на ее схему. Получается любопытная картина:

чем ближе к Солнцу находится планета, тем с большей скоростью она движется и делает свой оборот за меньшее время;

Какой-то непреложный закон природы с железной необходимостью управляет движениями этих гигантских космических тел. «Втулкой» этого замечательного «колеса» служит Меркурий, который мчится со скоростью почти 50 км/сек, а «ободом» - Плутон, который в сравнении с ним медленно плывет со скоростью всего 4 км/сек (в 12 с лишним раз медленнее!).

Чем дальше планеты от Солнца, тем за большее время обращаются они вокруг него : Меркурий – за 88 наших дней, Венера – за 224,7 дня, Земля – за 365,25 дня, Марс – за 687 земных дней, Юпитер – почти за 12 наших лет, Сатурн – за 29 лет, а самый дальний от Солнца Плутон – за два с половиной столетия.

Кстати. Сколько бы вам было лет на разных планетах, если на Земле вам, скажем, 12? На Меркурии – около …50, на Венере – 20, на Марсе – лишь 6-7 лет, на Юпитере – 1 год. Ну, а на Плутоне – всего 1/20 года… Конечно, организм ваш развивался бы независимо от того, сколько раз облетели вы вокруг Солнца вместе с той или другой планетой.

Но вернемся к «планетному колесу» и посмотрим, чем объяснить ту строгую правильность, что чем ближе к Солнцу, тем больше скорость планет, а чем дальше, тем она меньше. Разгадку и здесь надо искать в действии притяжения Солнца. Скорость движения каждой планеты по определенной орбите должна строго соответствовать силе притяжения Солнца (на данном расстоянии). Ведь при недостаточной скорости планета будет приближаться к Солнцу и упадет на него, а при слишком большой скорости – улетит от него вдаль.

Вы, конечно, помните, что чем ближе к Солнцу, тем с большей силой оно притягивает. С увеличением же расстояния сила притяжения быстро убывает. Значит, для уравновешенного движения каждой планеты по своей орбите ближе к Солнцу необходима большая скорость, а дальше от него – достаточна скорость меньшая. Вот почему так быстро мчится Меркурий и в 12 раз медленнее «плывет» далекий Плутон.

Весьма советуем с ним познакомиться. Там Вы найдете много новых друзей. Кроме того, это наиболее быстрый и действенный способ связаться с администраторами проекта. Продолжает работать раздел Обновления антивирусов - всегда актуальные бесплатные обновления для Dr Web и NOD. Не успели что-то прочитать? Полное содержание бегущей строки можно найти по этой ссылке .

В данной статье рассматривается скорость движения Солнца и Галактики относительно разных систем отсчета:

Скорость движения Солнца в Галактике относительно ближайших звезд, видимых звезд и центра Млечного Пути;

Скорость движения Галактики относительно местной группы галактик, удаленных звездных скоплений и реликтового излучения.

Краткая характеристика Галактики Млечный Путь.

Описание Галактики.

Прежде чем приступить к изучению скорости движения Солнца и Галактики во Вселенной, познакомимся с нашей Галактикой поближе.

Мы живем как бы в гигантском «звездном городе». Вернее – в нем «живет» наше Солнце. Населением этого «города» являются разнообразные звезды, и «проживает» их в нем более двухсот миллиардов. Несметное множество солнц рождается в нем, переживает свою молодость, средний возраст и старость – проходят долгий и сложный жизненный путь, длящийся миллиарды лет.

Громадны размеры этого «звездного города» - Галактики. Расстояния между соседними звездами в среднем равны тысячам миллиардов километров (6*1013 км). А таких соседей свыше 200 миллиардов.

Если бы мы со скоростью света (300 000 км/сек) мчались от одного конца Галактики до другого, на это ушло бы около 100 тысяч лет.

Вся наша звездная система медленно вращается, как гигантское колесо, состоящее из миллиардов солнц.


Орбита Солнца

В центре Галактики, по всей видимости, располагается сверхмассивная чёрная дыра (Стрелец A*) (около 4,3 миллиона солнечных масс) вокруг которой, предположительно, вращается чёрная дыра средней массы от 1000 до 10 000 масс Солнца и периодом обращения около 100 лет и несколько тысяч сравнительно небольших. Их совместное гравитационное действие на соседние звёзды заставляет последние двигаться по необычным траекториям. Существует предположение, что большинство галактик имеет сверхмассивные чёрные дыры в своем ядре.

Для центральных участков Галактики характерна сильная концентрация звёзд: в каждом кубическом парсеке вблизи центра их содержатся многие тысячи. Расстояния между звёздами в десятки и сотни раз меньше, чем в окрестностях Солнца.

Ядро Галактики с огромной силой притягивает все остальные звезды. Но громадное количество звезд расселено и по всему «звездному городу». А они тоже притягивают друг друга в разных направлениях, и это сложно влияет на движение каждой звезды. Поэтому Солнце и миллиарды других звезд в основном движутся по круговым путям или эллипсам вокруг центра Галактики. Но это лишь «в основном» - присмотревшись, мы увидели бы, что они движутся по более сложным кривым, извивающимся путям среди окружающих звезд.

Характеристика Галактики Млечный Путь:

Место нахождения Солнца в Галактике.

Где в Галактике находится Солнце и движется ли оно (а с ним и Земля, и мы с вами)? Не находимся ли мы в «центре города» или хотя бы где-нибудь недалеко от него? Исследования показали, что Солнце и солнечная система расположены на громадном расстоянии от центра Галактики, ближе к «городским окраинам» (26 000 ± 1 400 св. лет).

Солнце расположено в плоскости нашей Галактики и удалено от ее центра на 8 кпк и от плоскости Галактики примерно на 25 пк (1 пк (парсек) = 3,2616 светового года). В области Галактики, где расположено Солнце, звездная плотность составляет 0,12 звезд на пк3.


Модель нашей Галактики

Скорость движения Солнца в Галактике.

Скорость движения Солнца в Галактике принято рассматривать относительно разных систем отсчета:

Относительно ближайших звезд.

Относительно всех ярких звезд, видимых невооруженным глазом.

Относительно межзвездного газа.

Относительно центра Галактики.

1. Скорость движения Солнца в Галактике относительно ближайших звезд.

Подобно тому, как скорость летящего самолета рассматривается по отношению к Земле, не учитывая полета самой Земли, так и скорость движения Солнца можно определить относительно ближайших к нему звезд. Таким, как звезды системы Сириус, Альфа Центавра и др.

Эта скорость движения Солнца в Галактике сравнительно невелика: всего 20 км/сек или 4 а.е. (1астрономическая единица равна среднему расстоянию от Земли до Солнца – 149,6 млн км.)

Солнце относительно ближайших звезд движется по направлению к точке (апексу), лежащей на границе созвездий Геркулеса и Лиры, примерно под углом 25° к плоскости Галактики. Экваториальные координаты апекса = 270°, = 30°.

2. Скорость движения Солнца в Галактике относительно видимых звезд.

Если рассматривать движение Солнца в Галактике Млечный Путь относительно всех звезд, видимых без телескопа, то его скорость и того меньше.

Скорость движения Солнца в Галактике относительно видимых звезд составляет - 15 км/сек или 3 а.е.

Апекс движения Солнца в данном случае также лежит в созвездии Геркулеса и имеет следующие экваториальные координаты: = 265°, = 21°.


Скорость движения Солнца относительно ближайших звезд и межзвездного газа

3. Скорость движения Солнца в Галактике относительно межзвездного газа.

Следующий объект Галактики, относительно которого мы рассмотрим скорость движения Солнца, - это межзвездный газ.

Вселенские просторы далеко не так пустынны, как считалось долгое время. Хотя и в небольших количествах, но везде присутствует межзвездный газ, наполняя собой все уголки мирозданья. На межзвездный газ, при кажущейся пустоте незаполненного пространства Вселенной, приходится почти 99% от совокупной массы всех космических объектов. Плотные и холодные формы межзвездного газа, содержащие водород, гелий и минимальные объемы тяжелых элементов (железо, алюминий, никель, титан, кальций), находятся в молекулярном состоянии, соединяясь в обширные облачные поля. Обычно в составе межзвездного газа элементы распределены следующим образом: водород – 89%, гелий – 9%, углерод, кислород, азот – около 0,2-0,3%.


Газопылевое облако IRAS 20324+4057 из межзвездного газа и пыли длиной в 1 световой год, похожее на головастика, в котором скрывается растущая звезда

Облака межзвездного газа могут не только упорядоченно вращаться вокруг галактических центров, но и обладать нестабильным ускорением. В течение нескольких десятков миллионов лет они догоняют друг друга и сталкиваются, образуя комплексы из пыли и газа.

В нашей Галактике основной объем межзвездного газа сосредоточен в спиральных рукавах, один из коридоров которых расположен рядом с Солнечной системой.

Скорость движения Солнца в Галактике относительно межзвездного газа: 22-25 км/сек.

Межзвездный газ в ближайших окрестностях Солнца имеет значительную собственную скорость (20-25 км/с) относительно ближайших звезд. Под его влиянием апекс движения Солнца смещается в сторону созвездия Змееносца (= 258°, = -17°). Разница в направлении движения около 45°.

4. Скорость движения Солнца в Галактике относительно центра Галактики.

В трех рассмотренных выше пунктах речь идет о так называемой пекулярной, относительной скорости движения Солнца. Иными словами, пекулярная скорость - это скорость относительно космической системы отсчета.

Но Солнце, ближайшие к нему звезды, местное межзвездное облако все вместе участвуют в более масштабном движении – движении вокруг центра Галактики.

И здесь речь идет уже о совсем других скоростях.

Скорость движения Солнца вокруг центра Галактики огромна по земным меркам - 200-220 км/сек (около 850 000 км/час) или больше 40 а.е. / год.

Точную скорость Солнца вокруг центра Галактики определить невозможно, ведь центр Галактики скрыт от нас за плотными облаками межзвездной пыли. Однако все новые и новые открытия в этой области все уменьшают расчетную скорость нашего солнца. Еще совсем недавно говорили о 230-240 км/сек.

Солнечная система в Галактике движется по направлению к созвездию Лебедя.

Движение Солнца в Галактике происходит перпендикулярно направлению на центр Галактики. Отсюда галактические координаты апекса: l = 90°, b = 0° или в более привычных экваториальных координатах - = 318°, = 48°. Поскольку это движение обращения, апекс смещается и совершает полный круг за "галактический год", примерно 250 миллионов лет; угловая его скорость ~5" / 1000 лет, т.е. координаты апекса смещаются на полтора градуса за миллион лет.

Нашей Земле от роду около 30 таких «галактических лет».


Скорость движения Солнца в Галактике относительно центра Галактики

Кстати, интересный факт на тему скорости движения Солнца в Галактике:

Скорость вращения Солнца вокруг центра Галактики почти совпадает со скоростью волны уплотнения, образующей спиральный рукав. Такая ситуация является нетипичной для Галактики в целом: спиральные рукава вращаются с постоянной угловой скоростью, как спицы в колесах, а движение звёзд происходит с другой закономерностью, поэтому почти всё звёздное население диска то попадает внутрь спиральных рукавов, то выпадает из них. Единственное место, где скорости звёзд и спиральных рукавов совпадают - это так называемый коротационный круг, и именно на нём расположено Солнце.

Для Земли это обстоятельство чрезвычайно важно, поскольку в спиральных рукавах происходят бурные процессы, образующие мощное излучение, губительное для всего живого. И никакая атмосфера не смогла бы от него защитить. Но наша планета существует в сравнительно спокойном месте Галактики и в течение сотен миллионов (или даже миллиардов) лет не подвергалась воздействию этих космических катаклизмов. Возможно, именно поэтому на Земле смогла зародиться и сохраниться жизнь.

Скорость движения Галактики во Вселенной.

Скорость движения Галактики во Вселенной принято рассматривать относительно разных систем отсчета:

Относительно Местной группы галактик (скорость сближения с галактикой Андромеда).

Относительно удаленных галактик и скоплений галактик (скорость движения Галактики в составе местной группы галактик к созвездию Девы).

Относительно реликтового излучения (скорость движения всех галактик в ближайшей к нам части Вселенной к Великому Аттрактору – скоплению огромных сверхгалактик).

Остановимся подробнее на каждом из пунктов.

1. Скорость движения Галактики Млечный Путь к Андромеде.

Наша Галактика Млечный Путь также не стоит на месте, а гравитационно притягивается и сближается с галактикой Андромеда со скоростью 100-150 км/с. Основной компонент скорости сближения галактик принадлежит Млечному Пути.

Поперечная составляющая движения точно не известна, и беспокойства о столкновении преждевременны. Дополнительный вклад в это движение вносит и массивная галактика M33, находящаяся примерно в том же направлении, что и галактика Андромеды. В целом скорость движения нашей Галактики относительно барицентра Местной группы галактик около 100 км / сек примерно в направлении Андромеда/Ящерица (l = 100, b = -4, = 333, = 52), однако эти данные еще весьма приблизительны. Это весьма скромная относительная скорость: Галактика смещается на собственный диаметр за две-три сотни миллионов лет или, очень примерно, за галактический год.

2. Скорость движения Галактики Млечный Путь к скоплению Девы.

В свою очередь, группа галактик, в которую входит и наш Млечный путь, как некое единое целое, движется к большому скоплению Девы со скоростью 400 км/с. Это движение также обусловлено гравитационными силами и осуществляется относительно удаленных скоплений галактик.


Скорость движения Галактики Млечный Путь к скоплению Девы

3. Скорость движения Галактики во Вселенной. На Великий Аттрактор!

Реликтовое излучение.

Согласно теории Большого Взрыва, ранняя Вселенная представляла собой горячую плазму, состоящую из электронов, барионов и постоянно излучающихся, поглощающихся и вновь переизлучающихся фотонов.

По мере расширения Вселенной плазма остывала и на определённом этапе замедлившиеся электроны получили возможность соединяться с замедлившимися протонами (ядрами водорода) и альфа-частицами (ядрами гелия), образуя атомы (этот процесс называется рекомбинацией).

Это случилось при температуре плазмы около 3000 К и примерном возрасте Вселенной 400 000 лет. Свободного пространства между частицами стало больше, заряженных частиц стало меньше, фотоны перестали так часто рассеиваться и теперь могли свободно перемещаться в пространстве, практически не взаимодействуя с веществом.

Те фотоны, которые были в то время излучены плазмой в сторону будущего расположения Земли, до сих пор достигают нашей планеты через пространство продолжающей расширяться вселенной. Эти фотоны составляют реликтовое излучение, представляющее собой равномерно заполняющее Вселенную тепловое излучение.

Существование реликтового излучения было предсказано теоретически Г. Гамовым в рамках теории Большого взрыва. Экспериментально его существование было подтверждено в 1965 году.

Скорость движения Галактики относительно реликтового излучения.

Позже началось изучение скорости движения Галактик относительно реликтового излучения. Определяется это движение измерением неравномерности температуры реликтового излучения в разных направлениях.

Температура излучения имеет максимум в направлении движения и минимум в противоположном направлении. Степень отклонения распределения температуры от изотропного (2,7 К) зависит от величины скорости. Из анализа наблюдательных данных следует, что Солнце движется относительно реликтового излучения со скоростью 400 км/с в направлении =11,6, =-12 .

Такие измерения показали также и другую важную вещь: все галактики в ближайшей к нам части Вселенной, включая не только нашу Местную группу , но и скопление Девы и другие скопления, движутся относительно фонового реликтового излучения с неожиданно большой скоростью.

Для Местной группы галактик она составляет 600-650 км / сек с апексом в созвездии Гидра (=166, =-27). Выглядит это так, что где-то в глубинах Вселенной существует огромный кластер многих сверхскоплений, притягивающий материю нашей части Вселенной. Этот кластер был назван Великим Аттрактором - от английского слова «attract» - притягивать.

Поскольку галактики, входящие в состав Великого Аттрактора, скрыты межзвездной пылью, входящей в состав Млечного Пути, картографирование Аттрактора удалось выполнить только в последние годы с помощью радиотелескопов.

Великий Аттрактор находится на пересечении нескольких сверхскоплений галактик. Средняя плотность вещества в этом районе ненамного больше средней плотности Вселенной. Но за счет гигантских размеров его масса оказывается настолько велика и сила притяжения столь огромна, что не только наша звездная система, но и другие галактики и их скопления поблизости движутся в направлении Великого Аттрактора, формируя огромный поток галактик.


Скорость движения Галактики во Вселенной. На Великий Аттрактор!

Итак, подведем итоги.

Скорость движения Солнца в Галактике и Галактики во Вселенной. Сводная таблица.

Иерархия движений, в которых принимает участие наша планета:

Вращение Земли вокруг Солнца;

Вращение вместе с Солнцем вокруг центра нашей Галактики;

Движение относительно центра Местной группы галактик вместе со всей Галактикой под действием гравитационного притяжения созвездия Андромеда (галактики М31);

Движение к скоплению галактик в созвездии Девы;

Движение к Великому Аттрактору.

Скорость движения Солнца в Галактике и скорость движения Галактики Млечный Путь во Вселенной. Сводная таблица.

Сложно себе представить, а еще сложнее рассчитать, как далеко мы перемещаемся каждую секунду. Расстояния эти - огромны, а погрешности в таких расчетах пока еще достаточно велики. Вот какими данными располагает наука на сегодняшний день.

Местоположение орбиты, орбитальное движение, а также период вращения вокруг оси и её наклон − важные характеристики, которые в некоторых случаях могут полностью определять условия на поверхности планеты. В данной статье я проведу обзор указанных выше характеристик применимо к планетам Солнечной системы и опишу отличительные особенности планет, обусловленные их движением и расположением.

Меркурий

Ближайшая к Солнцу планета является, пожалуй, самой особенной в рамках темы, рассматриваемой в этой статье. А обусловлена эта исключительность Меркурия сразу несколькими причинами. Во-первых – орбита Меркурия самая вытянутая среди всех планет Солнечной системы (эксцентриситет составляет 0,205). Во-вторых − у планеты самый маленький наклон оси к плоскости своей орбиты (всего несколько сотых градуса). В-третьих – соотношение между периодами осевого вращения и орбитального обращения составляет 2/3.

Из-за сильной вытянутости орбиты, разница в расстоянии от Меркурия до Солнца в разных точках орбиты может составлять более чем до полутора раз – от 46 млн. км в перигелии, до 70 млн в афелии. Во столько же раз меняется орбитальная скорость планеты – от 39 км/с в афелии и до 59 км/с в перигелии. В результате такого движения, всего за 88 земных суток (один меркурианский год) угловой размер Солнца при наблюдении с поверхности Меркурия меняется от 104-х угловых минут (что в 3 раза больше, чем на Земле) в перигелии, до 68-ми угловых минут (в 2 раза больше, чем на Земле) в афелии. После чего начинается сближение с Солнцем, и оно снова увеличивается в диаметре до 104-х минут при приближении к перигелию. А разница в орбитальной скорости сказывается на скорости видимого перемещения Солнца на фоне звёзд. Значительно быстрее в перигелии, чем в афелии.

Особенности планеты

Существует и ещё одна особенность видимого движения Солнца на небе Меркурия. В ней, помимо его орбитального движения, замешано ещё и очень медленное осевое вращение (один оборот вокруг оси относительно звёзд занимает почти 59 земных суток). Суть в том, что на небольшом участке орбиты вблизи перигелия угловая скорость орбитального движения планеты больше, чем угловая скорость осевого вращения. В результате этого Солнце, перемещаясь с востока на запад за счёт осевого вращения, начинает замедлять свой ход, останавливается и некоторое время двигается с запада на восток. Поскольку в это время направление и скорость орбитального движения являются преобладающими факторами. При удалении от перигелия видимое движение Солнца относительно горизонта снова становится зависимым от осевого вращения планеты и продолжается с востока на запад.

Соотношение 2/3 периодов обращения вокруг оси и вокруг Солнца приводит к тому, что солнечные сутки на Меркурии длятся 176 земных суток (по 88 суток день и ночь). Т.е. в течение одного меркурианского года, Солнце находится над горизонтом и столько же под ним. Вследствие чего, на 2-х долготах в течение солнечных суток можно наблюдать тройной восход Солнца.

Как это происходит

Солнце сначала медленно выползает из-за горизонта, двигаясь с востока на запад. Затем Меркурий проходит перигелий, и Солнце начинает двигаться на восток, опускаясь обратно за горизонт. После прохождения перигелия Солнце снова двигается с востока на запад относительно горизонта, теперь уже взойдя окончательно, и при этом будет быстро уменьшаться в размерах. Когда Солнце будет близко к точке зенита, Меркурий пройдёт афелий и Солнце начнёт склоняться к западу, увеличиваясь в размерах. Затем, в момент когда Солнце уже практически зайдёт за западный горизонт, Меркурий по орбите снова подойдёт к перигелию, и Солнце взойдёт обратно из-за западного горизонта. По прохождении перигелия Солнце сядет за горизонт окончательно. После чего взойдёт на востоке только через меркурианский год (88 суток) и весь цикл движений повторится. На остальных долготах Меркурий будет проходить перигелий в тот момент, когда Солнце будет уже не у горизонта. И, следовательно, тройного восхода за счёт обратного движения в этих местах происходить не будет.

Разница температур

Из-за медленного вращения и в крайней степени разреженной атмосферы, поверхность Меркурия с солнечной стороны очень сильно нагревается. Особенно это касается так называемых «горячих долгот» (меридианы, на которых Солнце находится в зените при прохождении планетой перигелия). В таких местах температура поверхности может достичь 430 °C. При этом вблизи полярных регионов, из-за незначительно наклона оси планеты, есть места, куда вообще не попадают солнечные лучи. Там температура держится в районе -200 °C.

Подводя итог по Меркурию, видим, что результатом сочетания его отличительного орбитального движения, медленного вращения, уникального соотношения периодов вращения вокруг оси и обращения вокруг Солнца, а также малого наклона оси − является весьма необычное движение Солнца по небу, причём с заметным изменением размеров и самые большие температурные перепады в Солнечной системе.

Венера

В противоположность орбите Меркурия, орбита Венеры наоборот наиболее круглая среди орбит всех остальных планет. В её случае разница в расстоянии до Солнца в перигелии и афелии различается всего на 1,5 млн. км (107,5 млн. км и 109 млн. км соответственно). Но ещё интересней тот факт, что планета обладает ретроградным вращением вокруг оси, так что если бы можно было увидеть Солнце с поверхности Венеры, то в течение дня оно бы всё время двигалось с запада на восток. Причём двигалось бы очень медленно, поскольку скорость осевого вращения Венеры ещё меньше, чем у Меркурия и относительно звёзд, планета завершает оборот за 243 земных суток, что больше, чем длительность года (оборот вокруг Солнца занимает 225 земных суток).

Сочетание периодов орбитального движения и осевого вращения делает продолжительность солнечных суток равной приблизительно 117 земным суткам. Сам по себе наклон оси к плоскости орбиты невелик и составляет 2,7 градуса. Однако с учётом того, что планета вращается ретроградно, она оказывается фактически полностью перевёрнута. В этом случае величина наклона оси к плоскости орбиты составляет 177,3 градуса. Впрочем, на условия на поверхности планеты все указанные выше параметры практически не влияют. Плотная атмосфера очень хорошо удерживает тепло, за счёт чего температура почти не меняется. И неважно в какое время суток, и на какой широте при этом находиться.

Земля

Земная орбита весьма близка по форме к круговой, хотя её эксцентриситет чуть больше, чем у орбиты Венеры. Но разница в расстоянии до Солнца, которая составляет 5 млн. км в перигелии и афелии (147,1 млн. км и 152,1 млн. км до Солнца соответственно), не оказывает существенного влияния на климат. Наклон оси к плоскости орбиты в 23 градуса благоприятен, поскольку обеспечивает привычную для нас смену времён года. Это не допускает столь суровых условий в полярных регионах, которые могли бы быть при нулевом наклоне как у Меркурия. Ведь атмосфера Земли не столь хорошо задерживает тепло, как атмосфера Венеры. Относительно высокая скорость осевого вращения тоже благоприятна. Это не позволяет поверхности сильно нагреться в течение дня и остыть в течение ночи. В противном случае при периодах вращения как у Меркурия и тем более Венеры, температурные перепады на Земле были бы схожими с теми, что на Луне.

Марс

Марс обладает почти такими же периодом обращения вокруг оси и её наклоном к плоскости орбиты, как и Земля. Так что смена времён года происходит по схожему принципу, вот только сезоны длятся почти вдвое дольше, чем на Земле. Ведь на оборот вокруг Солнца требуется опять же почти вдвое большее время. Но есть тут и существенное отличие − орбита Марса имеет довольно заметный эксцентриситет. За счёт чего расстояние до Солнца меняется от 206,5 млн. км до 249,2 млн. км, а этого уже достаточно, чтобы заметно повлиять на климат планеты. Вследствие этого, лето в южном полушарии жарче, чем в северном, однако при этом и зима холоднее, чем в северном.

Планеты–гиганты

У планет-гигантов довольно небольшие эксцентриситеты орбит (от 0,011 у Нептуна, до 0,057 у Сатурна), однако расположены гиганты очень далеко. Следовательно, орбиты длинные, а планеты оборачиваются по ним весьма неторопливо. Юпитеру для полного оборота необходимо 12 земных лет; Сатурну – 29,5; Урану − 84, а Нептуну − 165. Для всех гигантов характерна высокая, по сравнению с планетами земной группы, скорость осевого вращения − 10 часов у Юпитера; 10,5 у Сатурна; 16 у Нептуна и 17 у Урана, за счёт этого планеты заметно сплюснуты у полюсов.

Сильнее всего сплюснут Сатурн, его экваториальный и полярный радиус различаются на 6 тыс. км. Наклоны осей у гигантов различны: совсем небольшой наклон у Юпитера (3 градуса); у Сатурна и Нептуна наклоны составляют 27 и 28 градусов соответственно, что близко к земному и марсианскому, соответственно там есть смена времён года, только в зависимости от удаления от Солнца, различается и длительность сезонов; выбивается в этом плане Уран – его ось, кольца и орбиты всех спутников наклонены на 98 градусов к плоскости орбиты планеты, так что в процессе оборота вокруг Солнца Уран поочерёдно обращён к Солнцу то одним полюсом, то другим.

Несмотря на разнообразие приведённых выше орбитальных и физических характеристик планет-гигантов, условия в их атмосферах в большей степени определяются процессами в недрах, которые в настоящий момент ещё толком не изучены.

В. Грибков

Ининский сад камней расположен в Баргузинской долине. Огромные камни как будто кто-то специально разбросал или расставил с умыслом. А в местах, где расставлены мегалиты, всегда происходит что-то таинственное.

Одной из достопримечательностей Бурятии является Ининский сад камней в Баргузинской долине. Он производит удивительное впечатление – огромные камни, разбросанные в беспорядке на совершенно ровной поверхности. Как будто кто-то специально то ли разбросал их, то ли расставил с умыслом. А в местах, где расставлены мегалиты, всегда происходит что-то таинственное.

Сила природы

Вообще «сад камней» - это японское название искусственного ландшафта, в котором ключевую роль играют камни, расставленные по строгим правилам. «Карэсансуй» (сухой пейзаж) в Японии культивируется с 14-го века, и появился он не просто так. Считалось, что в местах с большим скоплением камней обитают боги, вследствие этого и самим камням стали придавать божественное значение. Конечно, сейчас японцы используют сады камней как место для медитации, где удобно предаваться философским размышлениям.

А философия здесь вот при чём. Хаотичное, на первый взгляд, расположение камней, на самом деле строго подчинено определённым законам. Во-первых, должна соблюдаться асимметрия и разность размеров камней. В саду есть определённые точки наблюдения – в зависимости от времени, когда вы собираетесь созерцать устройство своего микромира. И главная хитрость – с любой точки наблюдения всегда должен быть один камень, который… не виден.

Самый известный в Японии сад камней находится в Киото – древнейшей столице страны самураев, в храме Рёандзи. Это пристанище буддийских монахов. А у нас в Бурятии «сад камней» появился без усилий человека – его автором является сама Природа.

В юго-западной части Баргузинской долины, в 15 километрах от посёлка Суво, где река Ина выходит из Икатского хребта, расположено это место площадью более 10 квадратных километров. Значительно больше, чем любой японский сад камней – в той же пропорции, как японский бонсаи меньше бурятского кедра. Здесь из ровной земли выступают крупные глыбы камня, достигающего 4-5 метров в поперечнике, а в глубину эти валуны уходят до 10 метров!

Удаление этих мегалитов от горного хребта достигает 5 километров и более. Какая же сила могла разметать эти огромные камни на такие расстояния? То, что это сделал не человек, стало ясно из недавней истории: для гидромелиоративных целей здесь был прорыт 3-километровый канал. И в русле канала там и сям лежат огромные глыбы, уходящие на глубину до 10 метров. С ними бились, конечно, но безуспешно. В результате все работы на канале были остановлены.

Учёные выдвигали разные версии происхождения Ининского сада камней. Многие считают эти глыбы мореными валунами, то есть ледниковыми отложениями. Возраст учёными называется разный (Э. И. Муравский считает, что им 40-50 тысяч лет, а В. В. Ламакин - более 100 тысяч лет!), в зависимости от какого оледенения отсчитывать.

По предположениям геологов, в древности Баргузинская котловина представляла собой пресноводное неглубокое озеро, которое было отделено от Байкала неширокой и невысокой горной перемычкой, соединяющей Баргузинский и Икатский хребты. При повышении уровня воды образовался сток, превратившийся в русло реки, которая все глубже и глубже врезалась в твёрдые кристаллические породы. Известно, как ливневые потоки воды весной или после сильного дождя размывают крутые склоны, оставляя глубокие борозды балок и оврагов. Со временем уровень воды упал, и площадь озера из-за обилия взвешенного материала, приносимого в него реками, уменьшилась. В результате озеро исчезло, а на его месте осталась широкая долина с валунами, которые отнесли позже к памятникам природы.

А вот недавно доктор геолого-минералогических наук Г.Ф. Уфимцев предложил очень оригинальную идею, никак не связанную с оледенениями. По его мнению, Ининский сад камней образовался в результате сравнительно недавнего, имевшего катастрофический характер гигантского выброса крупно-глыбового материала.

По его наблюдениям, ледниковая деятельность на Икатском хребте проявилась только лишь на небольшой площади в верховьях рек Турокчи и Богунды, в средней же части этих рек следов оледенения не наблюдается. Таким образом, по мнению ученого, произошёл прорыв плотины подпрудного озера в течении реки Ины и её притоков. В результате прорыва с верховья Ины селем или грунтовой лавиной в Баргузинскую долину был выброшен большой объем глыбового материала. В пользу этой версии говорит факт сильного разрушения коренных бортов долины реки Ины на месте слияния с Турокчей, что может свидетельствовать о снесении селем большого объема горных пород.

На этом же участке реки Ины Уфимцевым отмечены два крупных «амфитеатра» (напоминают огромную воронку) размерами 2,0 на 1,3 километра и 1,2 на 0,8 километра, которые, вероятно, могли быть ложем крупных подпрудных озер. Прорыв плотины и спуск воды, по мнению Уфимцева, мог произойти в результате проявлений сейсмических процессов, поскольку оба склоновых «амфитеатра» приурочены к зоне молодого разлома с выходами термальных вод.

Здесь шалили боги

Удивительное место издавна интересовало местных жителей. И для «сада камней» люди придумали легенду, уходящую корнями в седую древность. Начало нехитрое. Поспорили как-то две реки, Ина и Баргузин, кто из них первым (первой) добежит до Байкала. Баргузин схитрил и отправился в дорогу тем же вечером, а утром рассерженная Ина помчалась следом, в гневе отбрасывая огромные валуны со своего пути. Так и лежат они до сих пор по обоим берегам реки. Не правда ли, это просто поэтическое описание мощного селя, предложенного для объяснения доктором Уфимцевым?

Камни всё ещё хранят тайну своего образования. Они ведь не только разного размера и цвета, они вообще из разных пород. То есть выломаны были не из одного места. А глубина залегания говорит о многих тысячах лет, за которые вокруг валунов наросли метры грунта.

Тем, кто видел фильм «Аватар», туманным утром камни Ины напомнят висячие горы, вокруг которых летают крылатые драконы. Вершины гор выступают из облаков тумана, как отдельные крепости или головы великанов в шлемах. Впечатления от созерцания сада камней удивительные, и люди не случайно наделили камни магической силой: считается, если прикоснуться к валунам руками, они будут забирать отрицательную энергию, взамен одаряя положительной.

В этих удивительных местах есть ещё одно место, где шалили боги. Это место прозвали «Сувинским саксонским замком». Это природное образование находится недалеко от группы солёных Алгинских озёр возле села Суво, на степных склонах сопки у подножья Икатского хребта. Живописные скалы очень напоминают развалины древнего замка. Эти места служили для эвенкийских шаманов особо почитаемым и священным местом. На эвенкийском языке «сувойя», или «суво» означает «вихрь».

Считалось, что именно здесь обитают духи - хозяева местных ветров. Главным и самым известным из которых был легендарный ветер Байкала «Баргузин». По легенде, в этих местах жил злой правитель. Он отличался свирепым нравом, ему доставало удовольствие приносить несчастья бедным и неимущим людям.

У него был единственный и любимый сын, которого заколдовали духи в наказание жестокому отцу. После осознания своего жестокого и несправедливого отношения к людям правитель пал на колени, стал умолять и слёзно просить вернуть здоровье сыну и сделать его счастливым. А все свои богатства он раздал людям.

И духи освободили из власти недуга сына правителя! Считается, что по этой причине скалы разделены на несколько частей. Среди бурят есть поверье, что в скалах живут хозяева Суво - Тумуржи-Нойон и его жена Тутужиг-Хатан. В честь сувинских владык были установлены бурханы. В особые дни в этих местах проводят целые ритуалы.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows