Из чего состоит квантовый компьютер. Квантовые компьютеры - что это такое? Принцип работы и фото квантового компьютера. Принцип суперпозиции - единственное, на чём будут основаны квантовые компьютеры

Из чего состоит квантовый компьютер. Квантовые компьютеры - что это такое? Принцип работы и фото квантового компьютера. Принцип суперпозиции - единственное, на чём будут основаны квантовые компьютеры

О квантовых вычислениях, по крайней мере в теории, говорят уже несколько десятилетий. Современные типы машин, использующие неклассическую механику для обработки потенциально немыслимых объемов данных, стали большим прорывом. По мнению разработчиков, их реализация оказалась, пожалуй, самой сложной технологией из когда-либо созданных. Квантовые процессоры работают на уровнях материи, о которых человечество узнало всего 100 лет назад. Потенциал таких вычислений огромен. Использование причудливых свойств квантов позволит ускорить расчеты, поэтому многие задачи, которые в настоящее время классическим компьютерам не по силам, будут решены. И не только в области химии и материаловедения. Уолл-стрит также проявляет заинтересованность.

Инвестиции в будущее

CME Group проинвестировала ванкуверскую компанию 1QB Information Technologies Inc., разрабатывающую программное обеспечение для процессоров квантового типа. По мнению инвесторов, такие вычисления, вероятно, окажут наибольшее влияние на отрасли, которые работают с большими объемами чувствительных ко времени данных. Примером таких потребителей являются финансовые учреждения. Goldman Sachs инвестировал в D-Wave Systems, а компания In-Q-Tel финансируется ЦРУ. Первая производит машины, которые делают то, что называется «квантовым отжигом», т. е. решает низкоуровневые задачи оптимизации с помощью квантового процессора. Intel тоже занимается инвестированием в данную технологию, хотя считает ее реализацию делом будущего.

Зачем это нужно?

Причина, по которой квантовые вычисления являются столь захватывающими, кроется в их идеальном сочетании с машинным обучением. В настоящее время это основное приложение для подобных расчетов. Отчасти самой идеи квантового компьютера - использование физического устройства для поиска решений. Иногда данную концепцию объясняют на примере игры Angry Birds. Для имитации гравитации и взаимодействия сталкивающихся объектов ЦПУ планшета использует математические уравнения. Квантовые процессоры ставят такой подход с ног на голову. Они «бросают» несколько птиц и смотрят, что происходит. В микрочип записывается птицы, их бросают, какова оптимальная траектория? Затем проверяются все возможные решения или, по крайней мере, очень большое их сочетание, и выдается ответ. В квантовом компьютере не математик, вместо него работают законы физики.

Как это функционирует?

Основные строительные блоки нашего мира - квантово-механические. Если посмотреть на молекулы, то причина, по которой они образуются и остаются стабильными - взаимодействие их электронных орбиталей. Все квантово-механические расчеты содержатся в каждой из них. Их количество растет экспоненциально росту числа моделируемых электронов. Например, для 50 электронов существует 2 в 50-й степени возможных вариантов. Это феноменально поэтому рассчитать его сегодня нельзя. Подключение теории информации к физике может указать путь к решению таких задач. 50-кубитовному компьютеру это по силам.

Заря новой эры

Согласно Лэндону Даунсу, президенту и соучредителю компании 1QBit, квантовый процессор - это возможность использовать вычислительные мощности субатомного мира, что имеет огромное значение для получения новых материалов или создания новых лекарств. Происходит переход от парадигмы открытий к новой эре дизайна. Например, квантовые вычисления можно использовать для моделирования катализаторов, которые позволяют извлекать углерод и азот из атмосферы, и тем самым помочь остановить глобальное потепление.

На передовой прогресса

Сообщество разработчиков данной технологии чрезвычайно взволновано и занято активной деятельностью. Команды по всему миру в стартапах, корпорациях, университетах и правительственных лабораториях наперегонки строят машины, в которых используются различные подходы к обработке квантовой информации. Созданы сверхпроводящие кубитовые чипы и кубиты на захваченных ионах, которыми занимаются исследователи из Университета штата Мэриленд и Национального института стандартов и технологий США. Microsoft разрабатывает топологический подход под названием Station Q, целью которого является применение неабелева аниона, существование которого еще окончательно не доказано.

Год вероятного прорыва

И это только начало. По состоянию на конец мая 2017 г. количество процессоров квантового типа, которые однозначно делают что-то быстрее или лучше, чем классический компьютер, равно нулю. Такое событие установит «квантовое превосходство», но пока оно не произошло. Хотя вероятно, что это может свершиться еще в этом году. Большинство инсайдеров говорит, что явным фаворитом является группа Google во главе с профессором физики Калифорнийского университета в Санта-Барбаре Джоном Мартини. Ее цель - достижение вычислительного превосходства с помощью 49-кубитного процессора. К концу мая 2017 г. команда успешно тестировала 22-кубитный чип в качестве промежуточного шага к разборке классического суперкомпьютера.

С чего все началось?

Идее использования квантовой механики для обработки информации уже десятки лет. Одно из ключевых событий произошло в 1981 году, когда IBM и MIT совместно организовали конференцию по физике вычислений. Знаменитый физик предложил построить квантовый компьютер. По его словам, для моделирования следует воспользоваться средствами квантовой механики. И это прекрасная задача, поскольку не выглядит такой простой. У квантового процессора принцип действия основан на нескольких странных свойствах атомов - суперпозиции и запутанности. Частица может находиться в двух состояниях одновременно. Однако при измерении она окажется только в одном их них. И невозможно предугадать, в каком, кроме как с позиции теории вероятности. Этот эффект лежит в основе мысленного эксперимента с котом Шредингера, который находится в коробке одновременно живым и мертвым до тех пор, пока наблюдатель украдкой туда не заглянет. Ничто в повседневной жизни не работает подобным образом. Тем не менее, около 1 млн экспериментов, проведенных с начала ХХ века, показывают, что суперпозиция действительно существует. И следующим шагом будет выяснение того, как использовать эту концепцию.

Квантовый процессор: описание работы

Классические биты могут принимать значение 0 или 1. Если пропустить их строку через «логические вентили» (И, ИЛИ, НЕ и т. д.), то можно умножать числа, рисовать изображения и т. п. Кубит же может принимать значения 0, 1 или оба одновременно. Если, скажем, 2 кубита запутаны, то это делает их совершенно коррелированными. Процессор квантового типа может использовать логические вентили. Т. н. вентиль Адамара, например, помещает кубит в состояние совершенной суперпозиции. Если суперпозицию и запутанность совместить с умно расположенными квантовыми вентилями, то начинает раскрываться потенциал субатомных вычислений. 2 кубита позволяют исследовать 4 состояния: 00, 01, 10 и 11. Принцип работы квантового процессора таков, что выполнение логической операции дает возможность работать со всеми положениями сразу. И число доступных состояний равно 2 в степени количества кубитов. Так что, если сделать 50-кубитный универсальный квантовый компьютер, то теоретически можно исследовать все 1,125 квадриллиона комбинаций одновременно.

Кудиты

Квантовый процессор в России видят несколько иначе. Ученые из МФТИ и Российского квантового центра создали «кудиты», представляющие собой несколько «виртуальных» кубитов с различными «энергетическими» уровнями.

Амплитуды

Процессор квантового типа обладает тем преимуществом, что квантовая механика базируется на амплитудах. Амплитуды подобны вероятности, но они также могут быть отрицательными и комплексными числами. Так что, если необходимо рассчитать вероятность события, можно сложить амплитуды всевозможных вариантов их развития. Идея квантовых вычислений заключается в попытке настройки таким образом, чтобы некоторые пути к неправильным ответам имели положительную амплитуду, а некоторые - отрицательную, и поэтому они бы компенсировали друг друга. А пути, ведущие к правильному ответу, имели бы амплитуды, которые находятся в фазе друг с другом. Хитрость в том, что необходимо все организовать, не зная заранее, какой ответ правильный. Так что экспоненциальность квантовых состояний в сочетании с потенциалом интерференции между положительными и отрицательными амплитудами является преимуществом вычислений данного типа.

Алгоритм Шора

Есть много задач, которые компьютер не в состоянии решить. Например, шифрование. Проблема заключается в том, что не так легко найти простые множители 200-значного числа. Даже если ноутбук работает с отличным ПО, то, возможно, придется ждать годы, чтобы найти ответ. Поэтому еще одной вехой в квантовых вычислениях стал алгоритм, опубликованный в 1994 г. Питером Шором, теперь профессором математики в MIT. Его метод заключается в поиске множителей большого числа с помощью квантового компьютера, которого тогда еще не существовало. По сути, алгоритм выполняет операции, которые указывают на области с правильным ответом. В следующем году Шор открыл способ квантовой коррекции ошибок. Тогда многие поняли, что это - альтернативный способ вычислений, который в некоторых случаях может быть более мощным. Тогда последовал всплеск интереса со стороны физиков к созданию кубитов и логических вентилей между ними. И вот, два десятилетия спустя, человечество стоит на пороге создания полноценного квантового компьютера.

Квантовый компьютер - вычислительное устройство, которое использует явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных. Полноценный универсальный квантовый компьютер является пока гипотетическим устройством, сама возможность построения которого связана с серьёзным развитием квантовой теории в области многих частиц и сложных экспериментов; разработки в данной области связаны с новейшими открытиями и достижениями современной физики. На настоящий момент были практически реализованы лишь единичные экспериментальные системы, исполняющие фиксированный алгоритм небольшой сложности.

Ученые из Московского физико-технического института, вместе с коллегами из и Швейцарии провели эксперименты, в которых успешно заставили квантовый компьютер вернуться в состояние прошлого. Краткие выводы исследования, в которых описывается возможность проявления этого эффекта, сообщает пресс-релиз, опубликованный на сайте Phys.org. Подробности исследования международной команды физиков в журнале Scientific Reports.

Многие эксперты уверены, что с появлением полноценных квантовых компьютеров эра криптовалют и блокчейна подойдёт к своему логическому концу — системы криптографии, на которых основаны криптовалюты, будут моментально взломаны, а сами криптовалюты обесценятся, ведь первое, что сделает владелец квантового компьютера, — намайнит оставшиеся Биткоины, Эфиры и другие популярные «монеты». Именно так считает Алекс Бит, канадский физик, предсказавший безрадостное криптовалютное будущее в квантовой эре.

Квантовые компьютеры обещают настоящую революцию, причем не только в вычислениях, но и в реальной жизни. Медиа пестрят заголовками про то, как квантовые компьютеры уничтожат современную криптографию, а мощность искусственного интеллекта, благодаря им возрастет на порядки.

За последние 10 лет квантовые компьютеры прошли путь от чистой теории до первых работающих образцов. Правда, до обещанной революции предстоит пройти еще немалый путь, да и ее влияние в итоге может оказаться не таким всеобъемлющим, как представляется сейчас.

Как работает квантовый компьютер

Квантовый компьютер – устройство, которое использует явления квантовой суперпозиции и квантовой запутанности. Основным элементом в таких вычислениях является кубит, или квантовый бит. За всеми этими словам кроется довольно сложная математика и физика, но если их максимально упростить, то получится примерно следующее.

В обычных компьютерах мы имеем дело с битами. Бит - единица измерения информации в двоичной системе. Он может принимать значение 0 и 1, что очень удобно не только для математических операций, но и для логических, так как нулю можно сопоставить значение «ложно», а единице – «истинно».


Современные процессоры построены на базе транзисторов, полупроводниковых элементов, которые могут пропускать, либо не пропускать электрический ток. Иначе говоря, выдавать два значения 0 и 1. Точно также во флеш-памяти транзистор с плавающим затвором может хранить заряд. Если он есть, мы получаем единицу, если его нет – ноль. Аналогичным образом работает и магнитная цифровая запись, только носителем информации там является магнитная частичка, либо имеющая, либо не имеющая заряд.

При вычислениях мы считываем из памяти значение бита (0 или 1) и затем пропускаем ток через транзистор и в зависимости о того, пропускает он его или нет, получаем на выходе новый бит, возможно, имеющий другое значение.

Что такое кубиты для квантовых компьютеров? В квантовом компьютере основным элементом является кубит – квантовый бит. В отличие от обычного бита он находится в состоянии квантовой суперпозиции, то есть имеет значение и 0, и 1, и любые их сочетания в любой момент времени. Если в системе находится несколько кубитов, то изменение одного также влечет за собой изменение всех остальных кубитов.


Это позволяет одновременно просчитывать все возможные варианты. Обычный процессор с его бинарными вычислениями, фактически просчитывает варианты последовательно. Сначала один сценарий, потом другой, потом третий и т.д. Чтобы ускорить, начали применять многопоточность, запуская вычисления параллельно, предвыборку, чтобы предугадывать возможные варианты ветвления и просчитывать их заранее. В квантовом компьютере это все делается параллельно.

Отличается и принцип вычислений. В каком-то смысле квантовый компьютер уже содержит все возможные варианты решения задачи, нашей задачей только является считать состояние кубитов и... выбрать из них правильный вариант. И вот тут начинаются сложности. В этом и заключается принцип работы квантового компьютера.

Создание квантового компьютера

Какой будет физическая природа квантового компьютера? Добиться квантового состояния можно только у частиц. Кубит не построишь из нескольких атомов, как транзистор. Пока эта проблема до конца не решена. Есть несколько вариантов. Используются зарядовые состояния атомов, например, присутствие или отсутствие электрона в обычной точке, сверхпроводящие элементы, фотоны и т.д.


Столь «тонкие материи» накладывают ограничения и на измерения состояния кубитов. Энергии крайне малые, необходимы усилители, чтобы прочитать данные. Но усилители могут оказывать воздействия на квантовую систему и менять ее состояния, впрочем, не только они, но даже сам факт наблюдения может иметь значение.

Квантовые вычисления предполагают последовательность операций, которые совершаются с одним или несколькими кубитами. Те в свою очередь ведут за собой изменения всей системы. Задача выбрать из ее состояний правильное, дающее результат вычислений. При этом может быть сколь угодно много состояний, максимальное приближенных к таковому. Соответственно, точность таких вычислений почти всего будет отличаться от единицы.

Таким образом, для полноценного квантового компьютера нужны значительные достижения в физике. Кроме того, программирование для квантового компьютера будет отличаться от существующего сейчас. Наконец, квантовые компьютеры не смогут решить задачи, которые не под силу обычным, но в состоянии ускорить решения тех, с которыми они справляются. Правда, опять же не все.

Счет на кубиты, кубитный квантовый компьютер

Постепенно проблемы на пути к квантовому компьютеру снимаются. Первые кубиты были построены еще в начале века. Процесс ускорился в начале десятилетия. Сегодня разработчики уже в состоянии произвести процессоры с десятками кубитов.


Последним по времени прорывом стало создание процессора Bristlecone в недрах Google. В марте 2018 года компания заявила, что смогла построить 72-кубитный процессор. На каких физических принципах построен Bristlecone Google не сообщает. Однако считается, что для достижения «квантового превосходства», когда квантовый компьютер начинает превосходить обычный, достаточно 49 кубитов. Google удалось выполнить это условие, но уровень ошибок в 0,6% пока выше требуемого в 0,5%.

Осенью 2017 года IBM объявила о создании прототипа 50-кубитового квантового процессора. Он проходит тестирование. Но в 2017 году IBM открыла свой 20-кубитовый процессор для облачных вычислений. В марте 2018 года была запущена меньшая версия IBM Q. Ставить эксперименты на таком компьютере могут все желающие. По их результатам уже вышло 35 научных работ.


Еще в начале 10-летия на рынке появилась шведская компания D-Wave, которая позиционировала свои компьютеры как квантовые. Она породила множество споров, так как объявляла о создании 1000-кубитных машин, в то время как признанные лидеры «ковырялись» всего лишь с парой кубитов. Компьютеры шведских разработчиков продавались по цене в $10-15 миллионов, так что проверить их было не так просто.


Компьютеры D-Wave не являются квантовыми в прямом смысле этого слова, но используют некоторые квантовые эффекты, которые можно применять для решения некоторых задач оптимизации. Иначе говоря, не все алгоритмы, которые могут быть выполнены на квантовом компьютере, получают на D-Wave квантовое ускорение. Google приобрела одну из систем шведов. В результате ее исследователи признали компьютеры «ограниченно квантовыми». При этом выяснилось, что кубиты сгруппированы кластерами по восемь, то есть их реальное число заметно меньше, чем декларируемое.

Квантовый компьютер в России

Традиционно сильная школа физики позволяет внести существенный вклад в решение физических проблем для создания квантового компьютера. В январе 2018 года россияне создали усилитель сигнала для квантового компьютера. Учитывая, что своей работой усилитель сам по себе способен влиять на состояние кубитов, уровень генерируемого им шума должен мало отличаться от «вакуумного». Это и удалось российским ученым из лаборатории «Сверхпроводящие метаматериалы» НИТУ «МИСиС» и двух институтов РАН. Для создания усилителя использовались сверхпроводники.


В России также создан квантовый центр. Это негосударственная исследовательская организация, занимающаяся исследованиями в области квантовой физики. В том числе она занимается проблемой создания кубитов. За центром стоит бизнесмен Сергей Белоусов и профессор Гарвардского университета Михаил Лукин. Под его руководством в Гарварде уже был создан 51-кубитовый процессор, который некоторое время до анонса Bristlecon был самым мощнейшим квантовым компьютером устройством в мире.

Развитие квантовых вычислений стало частью госпрограммы «Цифровая экономика». В 2018-20 года на работы в этой сфере будет выделяться господдержка. Планом мероприятий предусмотрено создание квантового симулятора на восьми сверхпроводниковых кубитах. После этого будет решаться вопрос дальнейшего масштабирования данной технологии.

Кроме того, до 2020 года в России собираются опробовать еще одну квантовую технологию: построение кубитов на нейтральных атомах и заряженных ионах в ловушках.

Одной из целей программы является создание устройств квантовой криптографики и квантовых коммуникаций. Будут созданы центры распределения квантовых ключей, которые будут их раздавать потребителям – банкам, дата-центрам, отраслевым предприятиям. Считается, что полноценный квантовый компьютер может за считанные минуты сломать любой современный алгоритм шифрования.

В итоге

Итак, квантовые компьютеры пока все еще остаются экспериментальными. Маловероятно, что полноценный квантовый компьютер, обеспечивающий действительно высокую вычислительную мощность, появится раньше следующего десятилетия. Производство кубитов и построение из них стабильных системы все еще далеко от совершенства.

Судя по тому, что на физическом уровне квантовые компьютеры имеют несколько решений, которые отличаются технологиями и, вероятно, стоимостью, они не будут унифицированы еще лет 10. Процесс стандартизации может растянуться надолго.

Кроме того, уже сейчас понятно, что квантовые компьютеры и в течение следующего десятилетия, скорее всего, будут «штучными» и очень дорогими устройствами. Вряд ли они окажутся в кармане у простого пользователя, но списке суперкомпьютеров можно ожидать их появления.

Вероятно, что квантовые компьютеры будут предлагаться в «облачной» модели, когда их ресурсы смогут задействовать заинтересованные исследователи и организации.

На прошлой неделе появилась новость о том, что Google совершили прорыв в разработке квантового компьютера -
в компании поняли, как такой компьютер будет справляться
с собственными ошибками. О квантовых компьютерах говорят уже несколько лет: его, например, на обложку журнала Time. Если такие компьютеры появятся, это будет прорыв сродни появлению классических компьютеров - а то и серьёзнее. Look At Me объясняет, чем хороши квантовые компьютеры и что именно сделали в Google.

Что такое квантовый компьютер?


Квантовый компьютер - это механизм на стыке компьютерных наук и квантовой физики, самого сложного раздела теоретической физики. Ричард Фейнман, один из крупнейших физиков XX века, как-то сказал: «Если вы думаете, что понимаете квантовую физику, значит, вы её не понимаете». Поэтому учтите, что последующие объяснения - невероятно упрощённые. На то, чтобы разобраться в квантовой физике, люди тратят долгие годы.

Квантовая физика занимается элементарными частицами меньше атома. То, как эти частицы устроены и как они себя ведут, противоречит многим нашим представлениям о Вселенной. Квантовая частица может находиться в нескольких местах одновременно - и в нескольких состояниях одновременно. Представьте, что вы подкинули монету: пока она находится в воздухе, вы не можете сказать, выпадет орёл или решка; эта монета - как бы орёл и решка одновременно. Примерно так ведут себя квантовые частицы. Это называется принципом суперпозиции.

Квантовый компьютер - это пока ещё гипотетическое устройство, которое будет использовать принцип суперпозиции (и другие квантовые свойства)
для вычислений. Обычный компьютер работает с помощью транзисторов,
которые воспринимают любую информацию как нули и единицы. Бинарным кодом можно описать весь мир - и решать любые задачи внутри него. Квантовый аналог классического бита называется кьюбит (qubit, qu - от слова quantum, квантовый) . Используя принцип суперпозиции, кьюбит может одновременно находиться
в состоянии 0 и 1 - и это не только значительно увеличит мощность по сравнению с традиционными компьютерами, но и позволит решать неожиданные задачи,
на которые обычные компьютеры не способны.

Принцип суперпозиции - единственное,
на чём будут основаны квантовые компьютеры?


Нет. Из-за того, что квантовые компьютеры существуют только в теории, учёные пока только предполагают, как именно они будут работать. Например, считается, что в квантовых компьютерах также будут применять квантовую запутанность.
Это феномен, который Альберт Эйнштейн называл «жутким» (он вообще был против квантовой теории, потому что она не сочетается с его теорией относительности) . Смысл феномена в том, что две частицы во Вселенной могут оказаться взаимосвязанными, причём обратно: скажем, если спиральность
(есть такая характеристика состояния элементарных частиц, не будем вдаваться в подробности) первой частицы положительная, то спиральность второй всегда будет отрицательной, и наоборот. «Жутким» этот феномен называют по двум причинам. Во-первых, эта связь работает моментально, быстрее скорости света. Во-вторых, запутанные частицы могут находиться на любом расстоянии друг
от друга: например, на разных концах Млечного Пути.

Как можно использовать квантовый компьютер?


Учёные ищут квантовым компьютерам применение и одновременно разбираются, как их построить. Главное - то, что квантовый компьютер сможет очень быстро оптимизировать информацию и вообще работать с большими данными, которые мы накапливаем, но пока не понимаем, как использовать.

Давайте представим такой вариант (сильно упрощённый, конечно) : вы собираетесь стрелять из лука в мишень и вам нужно высчитать, насколько высоко целиться, чтобы попасть. Скажем, нужно просчитать высоту от 0 до 100 см. Обычный компьютер будет высчитывать каждую траекторию по очереди: сначала 0 см, потом 1 см, потом 2 см и так далее. Квантовый же компьютер просчитает все варианты одновременно - и моментально выдаст тот, который позволит вам попасть ровно в цель. Таким образом можно оптимизировать много процессов:
от медицины (скажем, раньше диагностировать рак) до авиации (например, делать более сложные автопилоты) .

Ещё есть версия, что такой компьютер сможет решать задачи, на которые обычный компьютер просто не способен - или которые заняли бы у него тысячи лет вычислений. Квантовый компьютер сможет работать со сложнейшими симуляциями: например, высчитать, есть ли во Вселенной разумные существа, кроме людей. Не исключено, что создание квантовых компьютеров приведёт
к появлению искусственного интеллекта. Представьте, что с нашим миром сделало появление обычных компьютеров - квантовые компьютеры могут стать примерно таким же прорывом.

Кто занимается разработкой квантовых компьютеров?


Все. Правительства, военные, технологические компании. Создать квантовый компьютер будет выгодно практически кому угодно. Скажем, среди документов, обнародованных Эдвардом Сноуденом, была информация о том, что у АНБ есть проект «Внедрение в сложные цели», куда входит создание квантового компьютера для шифрования информации. Microsoft всерьёз занимаются квантовыми компьютерами - первые исследования в этой области они начали ещё в 2007 году. IBM ведут разработки и несколько лет назад заявили , что создали чип с тремя кьюбитами. Наконец, Google и NASA сотрудничают
с компанией D-Wave, которая заявляет, что уже сейчас выпускает
«первый коммерческий квантовый процессор» (а точнее уже второй, сейчас их модель называется D-Wave Two) , но он пока не работает как квантовый -
их, напомним, не существует.

Насколько мы близки к созданию
квантового компьютера?


Никто не может сказать точно. Новости о прорывах в технологиях (как недавняя новость о Google) появляются постоянно, но мы можем быть как очень далеки
от полноценного квантового компьютера, так и очень близки к нему. Скажем, есть исследования , говорящие о том, что достаточно создать компьютер всего
c несколькими сотнями кьюбитов, чтобы он работал как полноценный квантовый компьютер. D-Wave заявляют, что создали процессор с 84 кьюбитами -
но критики, проанализировавшие их процессор, заявляют, что он работает,
как классический компьютер, а не как квантовый. Google, сотрудничающие
с D-Wave, считают , что их процессор просто находится на самых ранних стадиях развития и в конце концов будет работать, как квантовый. Так или иначе, сейчас
у квантовых компьютеров существует одна главная проблема - ошибки. Любые компьютеры совершают ошибки, но классические умеют с ними легко справляться - а вот квантовые ещё нет. Как только исследователи разберутся с ошибками, до появления квантового компьютера останется всего несколько лет.

Что затрудняет исправление ошибок
в квантовых компьютерах?


Если упрощать, ошибки в квантовых компьютерах можно разделить на два уровня. Первый - это ошибки, которые совершают любые компьютеры, в том числе классические. В памяти компьютера может появиться ошибка, когда 0 непроизвольно меняется на 1 из-за внешнего шума - например, космических лучей или радиации. Эти ошибки решить легко, все данные проверяют на предмет таких перемен. И с этой проблемой в квантовых компьютерах как раз недавно справились в Google: они стабилизировали цепочку из девяти кьюбитов
и избавили её от ошибок. В этом прорыве есть, впрочем, один нюанс: Google справились с классическими ошибками в классических вычислениях. Есть второй уровень ошибок в квантовых компьютерах, и его гораздо сложнее понять и объяснить.

Кьюбиты крайне нестабильны, они подвержены квантовой декогеренции - это нарушение связи внутри квантовой системы под воздействием окружающей среды. Квантовый процессор нужно максимально изолировать от окружающего воздействия (хотя декогеренция происходит иногда и в результате внутренних процессов) , чтобы свести ошибки к минимуму. При этом от квантовых ошибок невозможно избавиться полностью, - но если сделать их достаточно редкими, квантовый компьютер сможет работать. При этом некоторые исследователи считают , что 99% мощности такого компьютера как раз направят
на устранение ошибок, но и оставшегося 1% хватит для решения любых задач.
По мнению физика Скотта Ааронсона, достижение Google можно считать третьим
с половиной шагом из семи, необходимых для создания квантового компьютера, - иначе говоря, мы прошли половину пути.

Мир на пороге очередной квантовой революции. Первый квантовый компьютер будет мгновенно решать задачи, на которые самое мощное современное устройство сейчас тратит годы. Какие это задачи? Кому выгодно, а кому угрожает массовое использование квантовых алгоритмов? Что такое суперпозиция кубитов, как люди научились находить оптимальное решение, не перебирая триллионы вариантов? Отвечаем на эти вопросы в рамках рубрики «Просто о сложном».

До квантовой в ходу была классическая теория электромагнитного излучения. В 1900 году немецкий ученый Макс Планк, который сам в кванты не верил, считал их вымышленной и чисто теоретической конструкцией, был вынужден признать, что энергия нагретого тела излучается порциями - квантами; таким образом, предположения теории совпали с экспериментальными наблюдениями. А пять лет спустя великий Альберт Эйнштейн прибегнул к этому же подходу при объяснении фотоэффекта: при облучении светом в металлах возникал электрический ток! Вряд ли Планк с Эйнштейном могли предположить, что своими работами закладывают основы новой науки - квантовой механики, которой будет суждено до неузнаваемости преобразить наш мир, и что в XXI веке ученые вплотную приблизятся к созданию квантового компьютера.

Вначале квантовая механика позволила объяснить структуру атома и помогла понять происходящие внутри него процессы. По большому счету сбылась давняя мечта алхимиков о превращении атомов одних элементов в атомы других (да, даже в золото). А знаменитая формула Эйнштейна E=mc2 привела к появлению атомной энергетики и, как следствие, атомной бомбы.

Квантовый процессор на пяти кубитах от IBM

Дальше - больше. Благодаря работам Эйнштейна и английского физика Поля Дирака во второй половине XX века был создан лазер - тоже квантовый источник сверхчистого света, собранного в узкий пучок. Исследования лазеров принесли Нобелевскую премию не одному десятку ученых, а сами лазеры нашли свое применение почти во всех сферах человеческой деятельности - от промышленных резаков и лазерных пушек до сканеров штрихкодов и коррекции зрения. Примерно в то же время шли активные исследования полупроводников - материалов, с помощью которых можно легко управлять протеканием электрического тока. На их основе были созданы первые транзисторы - они в дальнейшем стали главными строительными элементами современной электроники, без которой сейчас мы уже не представляем свою жизнь.

Быстро и эффективно решать многие задачи позволило развитие электронных вычислительных машин - компьютеров. А постепенное уменьшение их размеров и стоимости (в связи с массовым производством) проложило компьютерам дорогу в каждый дом. С появлением интернета наша зависимость от компьютерных систем, в том числе и для коммуникации, стала еще сильнее.

Ричард Фейнман

Зависимость растет, постоянно растут вычислительные мощности, но настала пора признать, что, несмотря на свои впечатляющие возможности, компьютеры оказались не в состоянии решить все задачи, которые мы готовы перед ними ставить. Одним из первых об этом начал говорить знаменитый физик Ричард Фейнман: еще в 1981 году на конференции он заявил, что на обычных компьютерах принципиально невозможно точно рассчитать реальную физическую систему. Все дело в ее квантовой природе! Эффекты микромасштаба легко объясняются квантовой механикой и из рук вон плохо - привычной нам классической механикой: она описывает поведение больших объектов. Тогда-то в качестве альтернативы Фейнман предложил использовать для расчетов физических систем квантовые компьютеры.

Что же такое квантовый компьютер и в чем его отличие от компьютеров, к которым мы привыкли? Все дело в том, как мы представляем себе информацию.

Если в обычных компьютерах за эту функцию отвечают биты - нули и единички, - то в квантовых компьютерах им на смену приходят квантовые биты (сокращенно - кубиты). Сам кубит - вещь довольно простая. У него по-прежнему два основных значения (или состояния, как любят говорить в квантовой механике), которые он может принимать: 0 и 1. Однако благодаря свойству квантовых объектов под названием «суперпозиция» кубит может принимать все значения, которые являются комбинацией основных. При этом его квантовая природа позволяет ему находиться во всех этих состояниях одновременно.

В этом и заключается параллельность квантовых вычислений с кубитами. Все случается сразу - уже не нужно перебирать все возможные варианты состояний системы, а это именно то, чем занимается обычный компьютер. Поиск по большим базам данных, составление оптимального маршрута, разработка новых лекарств - лишь несколько примеров задач, решение которых способны ускорить во множество раз квантовые алгоритмы. Это те задачи, где для поиска правильного ответа нужно перебрать огромное количество вариантов.

Кроме того, для описания точного состояния системы теперь не нужны огромные вычислительные мощности и объемы оперативной памяти, ведь для расчета системы из 100 частиц достаточно 100 кубитов, а не триллионов триллионов бит. Более того, с ростом числа частиц (как в реальных сложных системах) эта разница становится еще существеннее.

Одна из переборных задач выделялась своей кажущейся бесполезностью - разложение больших чисел на простые множители (то есть делящиеся нацело только на самих себя и единицу). Это называется «факторизация». Дело в том, что обычные компьютеры умеют довольно быстро перемножать числа, пусть даже и весьма большие. Однако с обратной задачей разложения большого числа, получившегося в результате перемножения двух простых чисел, на исходные множители обычные компьютеры справляются очень плохо. Например, чтобы разложить на два сомножителя число из 256 цифр, даже самому мощному компьютеру понадобится не один десяток лет. А вот квантовый алгоритм, который может решить эту задачу за несколько минут, придумал в 1997 году английский математик Питер Шор.

С появлением алгоритма Шора перед научным сообществом встала серьезная проблема. Еще в конце 1970-х годов, основываясь на сложности задачи факторизации, ученые-криптографы создали алгоритм шифрования данных, получивший повсеместное распространение. В частности, с помощью этого алгоритма стали защищать данные в интернете - пароли, личную переписку, банковские и финансовые транзакции. И после многолетнего успешного использования вдруг оказалось, что зашифрованная таким способом информация становится легкой мишенью для алгоритма Шора, запущенного на квантовом компьютере. Дешифровка с его помощью становится минутным делом. Радовало одно: квантовый компьютер, на котором можно было бы запустить смертоносный алгоритм, еще не был создан.

Тем временем по всему миру десятки научных групп и лабораторий стали заниматься экспериментальными исследованиями кубитов и возможностями создания из них квантового компьютера. Ведь одно дело - теоретически придумать кубит, и совсем другое - воплотить его в реальность. Для этого было необходимо найти подходящую физическую систему с двумя квантовыми уровнями, которые можно использовать в качестве базовых состояний кубита - нуля и единицы. Сам Фейнман в своей пионерской статье предлагал использовать для этих целей закрученные в разные стороны фотоны, но первыми экспериментально созданными кубитами стали в 1995 году захваченные в специальные ловушки ионы. За ионами последовали многие другие физические реализации: ядра атомов, электроны, фотоны, дефекты в кристаллах, сверхпроводящие цепи - все они отвечали поставленным требованиям.

Такое разнообразие имело свои достоинства. Подгоняемые острой конкуренцией, различные научные группы создавали все более совершенные кубиты и строили из них все более сложные схемы. Основных соревновательных параметров у кубитов было два: время их жизни и количество кубитов, которые можно было заставить работать сообща.

Сотрудники лаборатории искусственных квантовых систем

Время жизни кубитов задавало то, как долго в них хранилось хрупкое квантовое состояние. Это, в свою очередь, определяло, сколько вычислительных операций можно было выполнить с кубитом, пока он не «умер».

Для эффективной работы квантовых алгоритмов нужен был не один кубит, а хотя бы сотня, причем работающая вместе. Проблема заключалась в том, что кубиты не очень любили соседствовать друг с другом и выражали протест драматическим уменьшением своего времени жизни. Чтобы обойти эту неуживчивость кубитов, ученым приходилось идти на всяческие ухищрения. И все же на сегодняшний день ученым удалось заставить работать вместе максимум один-два десятка кубитов.

Так что, на радость криптографам, квантовый компьютер - все еще дело будущего. Хотя уже совсем не такого далекого, как могло когда-то казаться, ведь к его созданию активно подключаются как крупнейшие корпорации вроде Intel, IBM и Google, так и отдельные государства, для которых создание квантового компьютера - вопрос стратегической важности.

Не пропустите лекцию:



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows