Первый квантовый компьютер. Квантовый компьютер: как он устроен. Заря новой эры

Первый квантовый компьютер. Квантовый компьютер: как он устроен. Заря новой эры

Последние десятилетия компьютеры развивались очень быстро. Фактически на памяти одного поколения они прошли путь от громоздких ламповых, занимающих огромные помещения до миниатюрных планшетов. Стремительно увеличивалась память и скорость. Но наступил момент, когда появились задачи, неподвластные даже сверхмощным современным компьютерам.

Что такое квантовый компьютер?

Появление новых задач, неподвластных обычным компьютерам, заставило искать новые возможности. И, как альтернатива обычным компьютерам, появился квантовый. Квантовый компьютер - это вычислительная техника, в основу действия, которой положены элементы квантовой механики. Основные положения квантовой механики были сформулированы в начале прошлого века. Ее появление позволило решить многие задачи физики, которые не находили решения в классической физике.

Хотя теория квантов уже насчитывает второе столетие, она по-прежнему остается понятной только узкому кругу специалистов. Но есть и реальные результаты квантовой механики, к которым мы уже привыкли – лазерная техника, томография. А в конце прошлого века была разработана теория квантовых вычислений советским физиком Ю. Маниным. Через пять лет Дэвид Дойч обнародовал идею квантовой машины.

Существует ли квантовый компьютер?

Но воплощение идей оказалось не столь простым. Периодически появляются сообщения о то, что создан очередной квантовый компьютер. Над разработкой такой вычислительной техники работают гиганты в области информационных технологий:

  1. D-Wave – компания из Канады, которая первой начала выпуск действующих квантовых компьютеров. Тем не менее идут споры специалистов, насколько реально являются квантовыми эти компьютеры и какие преимущества они дают.
  2. IBM – создала квантовый компьютер, причем открыла к нему доступ для пользователей интернета для экспериментов с квантовыми алгоритмами. К 2025 году компания планирует создать модель, способную решать уже практические задачи.
  3. Google – анонсировала выпуск в этом году компьютера, способного доказать превосходство квантовых на обычными компьютерами.
  4. В мае 2017 г. Китайские ученые в Шанхае заявили, что создан самый мощный квантовый компьютер в мире, превосходящий аналоги по частоте обработки сигналов в 24 раза.
  5. В июле 2017 г. На Московской конференции по квантовым технологиям было заявлено о том, что был создан 51-кубитный квантовый компьютер.

Чем отличается квантовый компьютер от обычного?

Принципиальное отличие квантового компьютера в подходе к процессу вычисления.

  1. В обычном процессоре все вычисления строятся на основе битов, бывающих в двух состояний 1 либо 0. То есть, вся работа сводится к анализу огромного количества данных на предмет соответствия заданным условиям. В основу квантового компьютера положены кубиты (квантовые биты). Их особенностью является возможность быть в состоянии 1, 0, а также одновременно 1 и 0.
  2. Возможности квантового компьютера значительно возрастают, так как нет необходимости искать нужный ответ среди множества. В этом случае ответ выбирается из уже имеющихся вариантов с определенной долей вероятности соответствия.

Для чего нужен квантовый компьютер?

Принцип квантового компьютера, выстроенный на выборе решения с достаточной долей вероятности и способность находить такое решение в разы быстрее, чем современные компьютеры, определяет и цели его использования. Прежде всего, появление такого вида вычислительной техники беспокоит криптографов. Это связано со способностями квантового компьютера с легкостью вычислять пароли. Так, самый мощный квантовый компьютер, созданный российско-американскими учеными, способен получить ключи к существующим системам шифрования.

Есть и более полезные прикладные задачи для квантовых компьютеров, они связаны с поведением элементарных частиц, генетикой, здравоохранением, финансовыми рынками, защитой сетей от вирусов, искусственным интеллектом и множеством других, решить которые пока не могут обычные компьютеры.

Как устроен квантовый компьютер?

Устройство квантового компьютера базируется на применении кубитов. В качестве физического исполнения кубитов в настоящее время используются:

  • кольца из сверхпроводников с перемычками, с разнонаправленным током;
  • отдельные атомы, под воздействием лазерных лучей;
  • ионы;
  • фотоны;
  • разрабатываются варианты использования нанокристалов полупроводников.

Квантовый компьютер - принцип работы

Если с классическим компьютером в работе есть определенность, то на вопрос, как работает квантовый компьютер, ответить непросто. Описание работы квантового компьютера основывается на двух малопонятных для большинства словосочетаниях:

  • принцип суперпозиции – речь о кубитах, способных находиться одновременно в позиции 1 и 0. Это позволяет вести одновременно несколько вычислений, а не перебирать варианты, что дает большой выигрыш во времени;
  • квантовая запутанность – феномен, отмеченный еще А. Эйнштейном, заключающийся во взаимосвязи двух частиц. Говоря простыми словами, если одна из частиц имеет положительную спиральность, то вторая моментально принимает положительную. Такая взаимосвязь происходит вне зависимости от расстояния.

Кто изобрел квантовый компьютер?

Основа квантовой механики была изложена еще в самом начале прошлого века, как гипотеза. Развитие ее связано с такими гениальными физиками, как Макс Планк, А. Эйнштейн, Поль Дирак. В 1980 г. Ю.Антонов предложил идею о возможности квантовых вычислений. А уже через год Ричард Фейнеман в теории смоделировал первый квантовый компьютер.

Сейчас создание квантовых компьютеров в стадии разработок и даже трудно предположить, на что способен квантовый компьютер. Но абсолютно ясно, освоение этого направления принесет людям много новых открытий во всех областях науки, позволит заглянуть в микро и макромир, узнать больше о природе разума, генетики.

Для того чтобы более или менее полноценно раскрыть суть квантовых компьютерных технологий, коснемся сперва истории квантовой теории.
Зародилась она благодаря двум ученым, чьи результаты исследования были удостоены Нобелевских премий: открытие М. Планком кванта в 1918 г. и А. Эйнштейном фотона в 1921 г.
Годом зарождения идеи квантового компьютера стал 1980 г., когда Беньофу удалось успешно продемонстрировать на практике правоту квантовой теории.
Ну а первый прототип квантового компьютера был создан Гершенфельдом и Чуангом в 1998 г. в Массачусетском технологическом институте (MTI). Этой же группой исследователей созданы в два последующих года более совершенные модели.

Для неспециалиста квантовый компьютер – это что-то совершенно фантастическое по масштабам, это вычислительная машина, перед которой обычный компьютер все равно что счеты перед компьютером. И, разумеется, это что-то очень далекое от воплощения.
Для человека, который связан с квантовыми компьютерами, – это устройство, общие принципы действия которого более или менее понятны, однако существует масса проблем, которые следует решить, прежде чем можно будет воплотить его «в железе», и сейчас множество лабораторий по всему миру эти препятствия пытаются преодолеть.
В области квантовых технологий в прошлом уже были достигнуты успехи и частными компаниями, в том числе IBM и DWays.
О новейших достижениях в этой области они регулярно сообщают и сегодня. В основном исследования выполняются японскими и американскими учеными. Япония в стремлении к мировому лидерству в области аппаратного и программного обеспечения расходует огромные средства на разработки в данной области. По сообщениям вице-президента Hewlett-Packard, до 70% всех исследований выполнены в стране восходящего солнца. Квантовые компьютеры являются одним из шагов их целенаправленной компании по завладению лидерством на мировом рынке.

Чем объясняется стремление к овладению этими технологиями? Их бесспорными весомыми преимуществами над полупроводниковыми компьютерами!

ЧТО ЖЕ ЭТО ТАКОЕ?


Квантовый компьютер – это устройство для вычислений, которое работает на основе квантовой механики.
На сегодняшний день полномасштабный квантовый компьютер – это гипотетическое устройство, которое невозможно создать с учетом имеющихся данных в квантовой теории.

Квантовый компьютер, для вычисления использует не классические алгоритмы, а более сложные процессы квантовой природы, которые еще называют квантовыми алгоритмами. Эти алгоритмы используют квантовомеханические эффекты:квантовую запутанность и квантовый параллелизм.

Чтобы понять, зачем вообще необходим квантовый компьютер, необходимо представить принцип его действия.
Если обычный компьютер работает за счет проведения последовательных операций с нулями и единицами, то квантовый компьютер использует кольца из сверхпроводящей пленки. Ток может течь по этим кольцам в разных направлениях, поэтому цепочка таких колец может реализовывать одновременно намного больше операций с нулями и единицами.
Именно большая мощность является основным преимуществом квантового компьютера. К сожалению, эти кольца подвержены даже самым малейшим внешним воздействиям, в результате чего направление тока может меняться, и расчеты оказываются в таком случае неверными.

ОТЛИЧИЕ КВАНТОВОГО КОМПЬЮТЕРА ОТ ОБЫЧНОГО

    главным отличием квантовых компьютеров от обычных является то, что сохранение, обработка и передача данных происходит не с помощью «битов», а «кубитов» – попросту говоря «квантовых битов». Как и обычный бит, кубит может находиться в привычных нам состояниях «|0>» и «|1>», а кроме этого – в состоянии суперпозиции A·|0> + B·|1>, где A и B – любые комплексные числа, удовлетворяющие условию | A |2 + | B |2 = 1.

ТИПЫ КВАНТОВЫХ КОМПЬЮТЕРОВ

Можно выделить два типа квантовых компьютеров. И те, и другие основаны на квантовых явлениях, только разного порядка.

    компьютеры, в основе которых лежит квантование магнитного потока на нарушениях сверхпроводимости- Джозефсоновских переходах. На эффекте Джозефсона уже сейчас делают линейные усилители, аналого-цифровые преобразователи, СКВИДы и корреляторы.Эта же элементная база используется в проекте создания петафлопного (1015 оп./с) компьютера. Экспериментально достигнута тактовая частота 370 ГГц, которая в перспективе может быть доведена до 700 ГГц.Однако время расфазировки волновых функций в этих устройствах сопоставимо со временем переключения отдельных вентилей, и фактически на новых, квантовых принципах реализуется уже привычная нам элементная база - триггеры, регистры и другие логические элементы.

    Другой тип квантовых компьютеров, называемых еще квантовыми когерентными компьютерами, требует поддержания когерентности волновых функций используемых кубитов в течение всего времени вычислений - от начала и до конца (кубитом может быть любая квантомеханическая система с двумя выделенными энергетическими уровнями). В результате, для некоторых задач вычислительная мощность когерентных квантовых компьютеров пропорциональна2N, где N - число кубитов в компьютере. Именно последний тип устройств имеется в виду, когда говорят о квантовых компьютерах.

КВАНТОВЫЕ КОМПЬЮТЕРЫ СЕЙЧАС

Но небольшие квантовые компьютеры создаются уже сегодня. Особенно активно в этом направлении работает компания D-Wave Systems, которая еще в 2007 году создала квантовый компьютер из 16 кубитов. Этот компьютер успешно справлялся с задачей рассаживания за столом гостей, исходя из того, что некоторые из них друг друга недолюбливали. Сейчас компания D-Wave Systems продолжает развитие квантовых компьютеров.

Группе физиков из Японии, Китая и США впервые удалось построить на практике квантовый компьютер по архитектуре фон Неймана - то есть с физическим разделением квантового процессора и квантовой памяти. В настоящий момент для практической реализации квантовых компьютеров (вычислительных машин, в основу которых положены необычные свойства объектов квантовой механики) физики используют разного рода экзотические объекты и явления - захваченные в оптическую ловушку ионы, ядерный магнитный резонанс. В рамках новой работы ученые полагались на миниатюрные сверхпроводящие схемы - возможность реализации квантового компьютера с помощью таких схем была описана в Nature в 2008 году.

Собранная учеными вычислительная машина состояла из квантовой памяти, роль которой выполняли два микроволновых резонатора, процессора из двух кубит, соединенных шиной (ее роль тоже играл резонатор, а кубиты представляли собой сверхпроводящие схемы), и устройств для стирания данных. При помощи этого компьютера ученые реализовали два основных алгоритма - так называемое квантовое преобразование Фурье, и конъюнкцию при помощи квантовых логических элементов Тоффоли:

    Первый алгоритм представляет собой квантовый аналог дискретного преобразования Фурье. Его отличительной особенностью является гораздо меньшее (порядка n2) количество функциональных элементов при реализации алгоритма по сравнению с аналогом (порядка n 2n). Дискретное преобразование Фурье применяется в самых разных областях человеческой деятельности - от исследования дифференциальных уравнений в частных производных до сжатия данных.

    В свою очередь квантовые логические элементы Тоффоли представляют собой базовые элементы, из которых, с некоторыми дополнительными требованиями, можно получить любую булеву функцию (программу). Отличительной особенностью этих элементов является обратимость, что, с точки зрения физики, среди прочего позволяет минимизировать тепловыделения устройства.

По словам ученых, созданная ими система обладает одним замечательным плюсом - она легко масштабируется. Таким образом, она может служить своего рода строительным блоком для будущих компьютеров. По словам исследователей, новые результаты наглядно демонстрируют перспективность новой технологии.

О квантовых вычислениях, по крайней мере в теории, говорят уже несколько десятилетий. Современные типы машин, использующие неклассическую механику для обработки потенциально немыслимых объемов данных, стали большим прорывом. По мнению разработчиков, их реализация оказалась, пожалуй, самой сложной технологией из когда-либо созданных. Квантовые процессоры работают на уровнях материи, о которых человечество узнало всего 100 лет назад. Потенциал таких вычислений огромен. Использование причудливых свойств квантов позволит ускорить расчеты, поэтому многие задачи, которые в настоящее время классическим компьютерам не по силам, будут решены. И не только в области химии и материаловедения. Уолл-стрит также проявляет заинтересованность.

Инвестиции в будущее

CME Group проинвестировала ванкуверскую компанию 1QB Information Technologies Inc., разрабатывающую программное обеспечение для процессоров квантового типа. По мнению инвесторов, такие вычисления, вероятно, окажут наибольшее влияние на отрасли, которые работают с большими объемами чувствительных ко времени данных. Примером таких потребителей являются финансовые учреждения. Goldman Sachs инвестировал в D-Wave Systems, а компания In-Q-Tel финансируется ЦРУ. Первая производит машины, которые делают то, что называется «квантовым отжигом», т. е. решает низкоуровневые задачи оптимизации с помощью квантового процессора. Intel тоже занимается инвестированием в данную технологию, хотя считает ее реализацию делом будущего.

Зачем это нужно?

Причина, по которой квантовые вычисления являются столь захватывающими, кроется в их идеальном сочетании с машинным обучением. В настоящее время это основное приложение для подобных расчетов. Отчасти самой идеи квантового компьютера - использование физического устройства для поиска решений. Иногда данную концепцию объясняют на примере игры Angry Birds. Для имитации гравитации и взаимодействия сталкивающихся объектов ЦПУ планшета использует математические уравнения. Квантовые процессоры ставят такой подход с ног на голову. Они «бросают» несколько птиц и смотрят, что происходит. В микрочип записывается птицы, их бросают, какова оптимальная траектория? Затем проверяются все возможные решения или, по крайней мере, очень большое их сочетание, и выдается ответ. В квантовом компьютере не математик, вместо него работают законы физики.

Как это функционирует?

Основные строительные блоки нашего мира - квантово-механические. Если посмотреть на молекулы, то причина, по которой они образуются и остаются стабильными - взаимодействие их электронных орбиталей. Все квантово-механические расчеты содержатся в каждой из них. Их количество растет экспоненциально росту числа моделируемых электронов. Например, для 50 электронов существует 2 в 50-й степени возможных вариантов. Это феноменально поэтому рассчитать его сегодня нельзя. Подключение теории информации к физике может указать путь к решению таких задач. 50-кубитовному компьютеру это по силам.

Заря новой эры

Согласно Лэндону Даунсу, президенту и соучредителю компании 1QBit, квантовый процессор - это возможность использовать вычислительные мощности субатомного мира, что имеет огромное значение для получения новых материалов или создания новых лекарств. Происходит переход от парадигмы открытий к новой эре дизайна. Например, квантовые вычисления можно использовать для моделирования катализаторов, которые позволяют извлекать углерод и азот из атмосферы, и тем самым помочь остановить глобальное потепление.

На передовой прогресса

Сообщество разработчиков данной технологии чрезвычайно взволновано и занято активной деятельностью. Команды по всему миру в стартапах, корпорациях, университетах и правительственных лабораториях наперегонки строят машины, в которых используются различные подходы к обработке квантовой информации. Созданы сверхпроводящие кубитовые чипы и кубиты на захваченных ионах, которыми занимаются исследователи из Университета штата Мэриленд и Национального института стандартов и технологий США. Microsoft разрабатывает топологический подход под названием Station Q, целью которого является применение неабелева аниона, существование которого еще окончательно не доказано.

Год вероятного прорыва

И это только начало. По состоянию на конец мая 2017 г. количество процессоров квантового типа, которые однозначно делают что-то быстрее или лучше, чем классический компьютер, равно нулю. Такое событие установит «квантовое превосходство», но пока оно не произошло. Хотя вероятно, что это может свершиться еще в этом году. Большинство инсайдеров говорит, что явным фаворитом является группа Google во главе с профессором физики Калифорнийского университета в Санта-Барбаре Джоном Мартини. Ее цель - достижение вычислительного превосходства с помощью 49-кубитного процессора. К концу мая 2017 г. команда успешно тестировала 22-кубитный чип в качестве промежуточного шага к разборке классического суперкомпьютера.

С чего все началось?

Идее использования квантовой механики для обработки информации уже десятки лет. Одно из ключевых событий произошло в 1981 году, когда IBM и MIT совместно организовали конференцию по физике вычислений. Знаменитый физик предложил построить квантовый компьютер. По его словам, для моделирования следует воспользоваться средствами квантовой механики. И это прекрасная задача, поскольку не выглядит такой простой. У квантового процессора принцип действия основан на нескольких странных свойствах атомов - суперпозиции и запутанности. Частица может находиться в двух состояниях одновременно. Однако при измерении она окажется только в одном их них. И невозможно предугадать, в каком, кроме как с позиции теории вероятности. Этот эффект лежит в основе мысленного эксперимента с котом Шредингера, который находится в коробке одновременно живым и мертвым до тех пор, пока наблюдатель украдкой туда не заглянет. Ничто в повседневной жизни не работает подобным образом. Тем не менее, около 1 млн экспериментов, проведенных с начала ХХ века, показывают, что суперпозиция действительно существует. И следующим шагом будет выяснение того, как использовать эту концепцию.

Квантовый процессор: описание работы

Классические биты могут принимать значение 0 или 1. Если пропустить их строку через «логические вентили» (И, ИЛИ, НЕ и т. д.), то можно умножать числа, рисовать изображения и т. п. Кубит же может принимать значения 0, 1 или оба одновременно. Если, скажем, 2 кубита запутаны, то это делает их совершенно коррелированными. Процессор квантового типа может использовать логические вентили. Т. н. вентиль Адамара, например, помещает кубит в состояние совершенной суперпозиции. Если суперпозицию и запутанность совместить с умно расположенными квантовыми вентилями, то начинает раскрываться потенциал субатомных вычислений. 2 кубита позволяют исследовать 4 состояния: 00, 01, 10 и 11. Принцип работы квантового процессора таков, что выполнение логической операции дает возможность работать со всеми положениями сразу. И число доступных состояний равно 2 в степени количества кубитов. Так что, если сделать 50-кубитный универсальный квантовый компьютер, то теоретически можно исследовать все 1,125 квадриллиона комбинаций одновременно.

Кудиты

Квантовый процессор в России видят несколько иначе. Ученые из МФТИ и Российского квантового центра создали «кудиты», представляющие собой несколько «виртуальных» кубитов с различными «энергетическими» уровнями.

Амплитуды

Процессор квантового типа обладает тем преимуществом, что квантовая механика базируется на амплитудах. Амплитуды подобны вероятности, но они также могут быть отрицательными и комплексными числами. Так что, если необходимо рассчитать вероятность события, можно сложить амплитуды всевозможных вариантов их развития. Идея квантовых вычислений заключается в попытке настройки таким образом, чтобы некоторые пути к неправильным ответам имели положительную амплитуду, а некоторые - отрицательную, и поэтому они бы компенсировали друг друга. А пути, ведущие к правильному ответу, имели бы амплитуды, которые находятся в фазе друг с другом. Хитрость в том, что необходимо все организовать, не зная заранее, какой ответ правильный. Так что экспоненциальность квантовых состояний в сочетании с потенциалом интерференции между положительными и отрицательными амплитудами является преимуществом вычислений данного типа.

Алгоритм Шора

Есть много задач, которые компьютер не в состоянии решить. Например, шифрование. Проблема заключается в том, что не так легко найти простые множители 200-значного числа. Даже если ноутбук работает с отличным ПО, то, возможно, придется ждать годы, чтобы найти ответ. Поэтому еще одной вехой в квантовых вычислениях стал алгоритм, опубликованный в 1994 г. Питером Шором, теперь профессором математики в MIT. Его метод заключается в поиске множителей большого числа с помощью квантового компьютера, которого тогда еще не существовало. По сути, алгоритм выполняет операции, которые указывают на области с правильным ответом. В следующем году Шор открыл способ квантовой коррекции ошибок. Тогда многие поняли, что это - альтернативный способ вычислений, который в некоторых случаях может быть более мощным. Тогда последовал всплеск интереса со стороны физиков к созданию кубитов и логических вентилей между ними. И вот, два десятилетия спустя, человечество стоит на пороге создания полноценного квантового компьютера.

Квантовый компьютер — это не просто компьютер будущего поколения, это нечто гораздо большее. Не только с точки зрения применения новейших технологий, но и с точки зрения его неограниченных, невероятных, фантастических возможностей, способных не только изменить мир людей, но даже … создавать иную реальность.

Как известно, современные компьютеры используют память, представленную в двоичном коде: 0 и 1. Точно так же как в азбуке Морзе — точка и титре. С помощью двух знаков можно зашифровать любую информацию, путем варьирования их сочетаний.

В памяти современного компьютера миллиарды этих битов. Но каждый из них может быть в одном из двух состояний — либо ноль, либо один. Как лампочка: либо включена, либо выключена.

Квантовый бит (кубит) — наименьший элемент хранения информации в компьютере будущего. Единицей информации в квантовом компьютере теперь может быть не только нуль или единица, а то и другое одновременно .

Одна ячейка выполняет два действия, две -четыре, четыре — шестнадцать и т. д. Именно поэтому квантовые системы могут работать в два раза быстрее и с большими объемами информации, чем современные.

Впервые «измерили» кубит (Q-bit) ученые Российского квантового центра (РКЦ) и Лаборатории сверхпроводящих мета материалов.

С технической стороны, кубит, — это диаметром в несколько микрон металлическое кольцо с разрезами, напылённое на полупроводник. Кольцо охлаждается до сверхнизких температур для того, что бы оно стало сверхпроводником. Допускаем, что ток, протекающий по кольцу, идет по часовой стрелке — это 1. Против — 0. То есть два обычных состояния.

Через кольцо пропустили микроволновое излучение. На выходе из кольца этого излучения, измеряли сдвиг тока по фазе. Оказалось, что вся эта система может находиться как в двух основных, так и смешанном состоянии: тем и другим одновременно!!! В науке это называется принципом суперпозиции.

Эксперимент русских ученых (аналогичный провели и ученые других стран), доказал, что кубит имеет право на жизнь. Создание кубита подвело к идее и приблизило ученых к мечте по созданию оптического квантового компьютера. Осталось его только сконструировать и создать. Но не все так просто…

Сложности, проблемы в создании квантового компьютера

Если требуется, к примеру, обсчитать миллиард вариантов в современном компьютере, то ему нужно «прокрутить» миллиард подобных циклов. На квантовом компьютере имеется принципиальное отличие, он может просчитывать все эти варианты одновременно.
Один из главных принципов, на которых будет работать квантовый компьютер, — это принцип суперпозиции и иначе, как магическим, его не назовешь!
Он означает, что один и тот же человек может находится в разных местах в одно и то же время. Физики шутят: » Если вас не шокирует квантовая теория, значит вы ее не поняли».

Внешний вид создаваемых сейчас квантовых компьютеров разительно отличается от классических. Они похожи… на самогонный аппарат:

Такая конструкция, сотоящая из медных и золотых частей, змеевиков-охладителей и пр. характерных деталей, разумеется не устраивает его создателей. Одна из основных задач ученых сделать ее компактной и дешевой. Что бы это произошло, нужно решить несколько проблем.

Проблема первая — неустойчивость суперпозиций

Все эти квантовые суперпозиции очень «нежные». Как только на них начинаешь смотреть, как только они начинают взаимодействовать с другими объектами, так они сразу разрушаются. Становятся, как бы классическими. Это одна из самых важных проблем в создании квантового компьютера.

Проблема вторая — требуется сильное охлаждение

Второе препятствие — для достижения стабильной работы квантового компьютера. в том виде, какой имеем на сегодня, требуется его сильное охлаждение. Сильное, это создание аппаратуры, в которой поддерживается температура близкая к абсолютному нулю — минус 273 градуса по Цельсию! Поэтому сейчас прототипы таких компьютеров, со своими криогенно-вакуумными установками, выглядят очень громоздко:

Однако ученые уверены, что вскоре все технические проблемы будут решены и однажды квантовые компьютеры, обладающие огромной вычислительной мощью, заменят современные.

Некоторые технические решения в решении проблем

К настоящему времени, ученые нашли ряд существенных решений в решении вышеизложенных проблем. Эти технологические находки, результат сложной, а иногда и длительной, напряженной работы ученых, заслуживает всяческого уважения.

Лучший путь к совершенствованию работы кубита… бриллианты

Все очень похоже на известную песню о девушках и бриллиантах. Главное, над чем сейчас работают ученые -поднять время жизни кубита, а так же «заставить» работать квантовый компьютер при обычных температурах . Да, для связи между квантовыми компьютерами нужны бриллианты! Для всего этого пришлось создавать и использовать искусственные алмазы сверх высокой прозрачности. С их помощью смогли продлить жизнь кубита до двух секунд. Эти скромные достижения: две секунды жизни кубита и работа компьютера при комнатной температуре, на самом деле революция в науке.

Суть эксперимента французского ученого Сержа Ароша основана на том, что он сумел показать всему миру, что свет (квантовый поток фотонов), проходящий между двумя специально созданными им зеркалами, не теряет квантового состояния.

Заставив свет пройти 40 000 км между этими зеркалами, он определил, все происходит без потери квантового состояния. Свет состоит из фотонов и до сих пор никто не мог выяснить, теряют ли они свое квантовое состояние при прохождении определенного расстояния. Лауреат Нобелевской премии Серж Арош: «Один фотон находится в нескольких местах одновременно , нам удалось это зафиксировать.» На самом деле это и есть принцип суперпозиции . «В нашем большом мире такое невозможно. А в микро-мире — другие законы.», — говорит Арош.


Внутри резонатора находились классические атомы, которые можно измерить. По поведению атомов физик научился определять и измерять неуловимые квантовые частицы. До экспериментов Ароша считалось, что наблюдение за квантами невозможно. После эксперимента — заговорили о покорении фотонов, то есть о приближении эры квантовых компьютеров.

Почему многие с нетерпением ждут создания полноценного квантового генератора, а другие его боятся

Квантовый компьютер подарит человечеству огромные возможности

Квантовый компьютер откроет перед человечеством необозримые возможности. Например, поможет создать искусственный разум, о котором столько времени бредят фантасты. Или смоделировать вселенную. Целиком. По самым скромным прогнозам он позволит заглянуть за грани возможного. Давайте представим мир, где можно смоделировать абсолютно все, что пожелаешь: спроектировать молекулу, сверхпрочный металл, быстро разлагающийся пластик, придумать лекарства от неизлечимых болезней. Машина смоделирует весь наш мир, целиком, до последнего атома. Можно даже смоделировать другой мир, пусть даже виртуальный.

Квантовый компьютер сможет стать орудием Апокалипсиса

Многие люди, вникнув в суть квантовой технологии, боятся ее по разным причинам. Уже сейчас компьютеризация и все околокомпьютерные технологии, пугают обывателя. Достаточно вспомнить скандалы о том, как специальные службы с помощью встроенных программ в ПК и даже бытовые приборы, организуют слежку и сбор данных об их потребителях. Например во многих странах запретили всем известные очки — ведь они являются идеальным средством для скрытой съемки и слежки. Уже сейчас, наверняка, каждый житель любой страны, а тем более пользователь в Сети, занесен в какую-нибудь базу данных. Более того и вполне реально, определенные службы могут просчитывать каждое его действие в интернете.

Но для квантовых компьютеров не будет тайн! Вообще никаких. Вся компьютерная безопасность держится на очень длинных числах-паролях. Что бы получить подобрать ключ к коду, обычному компьютеру понадобиться миллион лет. Но с помощью квантового это сможет сделать любой и мгновенно. Получается, что в мире станет совершенно небезопасно: ведь в современном мире все контролируется с помощью компьютеров: банковские переводы, полеты самолетов, фондовые биржи, ракетно-ядерное оружие! Вот и получается: кто владеет информацией, тот владеет Миром. Кто первый — тот и бог. Квантовый компьютер станет сильнее любого комплекса вооружений . На Земле может начаться (или уже началась) новая гонка вооружений, только теперь не ядерная, а компьютерная.

Дай нам Бог выйти из нее благополучно…

Квантовый компьютер - вычислительное устройство, которое использует явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных. Полноценный универсальный квантовый компьютер является пока гипотетическим устройством, сама возможность построения которого связана с серьёзным развитием квантовой теории в области многих частиц и сложных экспериментов; разработки в данной области связаны с новейшими открытиями и достижениями современной физики. На настоящий момент были практически реализованы лишь единичные экспериментальные системы, исполняющие фиксированный алгоритм небольшой сложности.

Ученые из Московского физико-технического института, вместе с коллегами из и Швейцарии провели эксперименты, в которых успешно заставили квантовый компьютер вернуться в состояние прошлого. Краткие выводы исследования, в которых описывается возможность проявления этого эффекта, сообщает пресс-релиз, опубликованный на сайте Phys.org. Подробности исследования международной команды физиков в журнале Scientific Reports.

Многие эксперты уверены, что с появлением полноценных квантовых компьютеров эра криптовалют и блокчейна подойдёт к своему логическому концу — системы криптографии, на которых основаны криптовалюты, будут моментально взломаны, а сами криптовалюты обесценятся, ведь первое, что сделает владелец квантового компьютера, — намайнит оставшиеся Биткоины, Эфиры и другие популярные «монеты». Именно так считает Алекс Бит, канадский физик, предсказавший безрадостное криптовалютное будущее в квантовой эре.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows