Протоколы связи в локальных сетях. Стек-протоколы локальных сетей. Методы доступа к среде передачи в локальных сетях

Протоколы связи в локальных сетях. Стек-протоколы локальных сетей. Методы доступа к среде передачи в локальных сетях

17.04.2019

В локальных сетях основная роль в организации взаимодействия узлов принадлежит протоколу канального уровня, который ориентирован на вполне определенную топологию ЛКС. Так, самый популярный протокол этого уровня - Ethernet - рассчитан на топологию "общая шина", когда все узлы сети параллельно подключаются к общей для них шине, а протокол Token Ring - на топологию "звезда". При этом применяются простые структуры кабельных соединений между РС сети, а для упрощения и удешевления аппаратных и программных решений реализовано совместное использование кабелей всеми РС в режиме разделения времени. Такие простые решения, характерные для разработчиков первых ЛКС во второй половине 70-х годов ХХ века, наряду с положительными имели и отрицательные последствия, главные из которых - ограничения по производительности и надежности.

Поскольку в ЛКС с простейшей топологией (общая шина, кольцо, звезда) имеется только один путь передачи информации - моноканал, производительность сети ограничивается пропускной способностью этого пути, а надежность сети - надежностью пути. Поэтому по мере развития и расширения сфер применения локальных сетей с помощью специ-альных коммуникационных устройств (мостов, коммутаторов, маршрутизаторов) эти ограничения постепенно снимались. Базовые конфигурации ЛКС (шина, кольцо) превратились в элементарные звенья, из которых формируются более сложные структуры локальных сетей, имеющие параллельные и резервные пути между узлами.

Однако внутри базовых структур локальных сетей продолжают работать все те же протоколы Ethernet и Token Ring. Объединение этих структур (сегментов) в общую, более сложную локальную сеть осуществляется с помощью дополнительного оборудования, а взаимодействие РС такой сети - с помощью других протоколов.

В развитии локальных сетей, кроме отмеченных, наметились и другие тенденции:

    отказ от разделяемых сред передачи данных и переход к использованию активных коммутаторов, к которым РС сети присоединяются индивидуальными линиями связи;

    появление нового режима работы в ЛКС при использовании коммутаторов - полнодуплексного (хотя в базовых структурах локальных сетей РС работают в полудуплексном режиме, т. к. сетевой адаптер станции в каждый момент времени либо передает свои данные, либо принимает другие, но не делает это одновременно). Сегодня каждая технология ЛКС приспособлена для работы как в полудуплексном, так и в полнодуплексном режимах. Стандартизация протоколов ЛКС осуществлена комитетом 802, организованном в 1980 в институте IEEE. Стандарты семейства IEEE 802.Х охватывают только два нижних уровня модели ВОС - физический и канальный. Именно эти уровни отражают специфику локальных сетей, старшие уровни, начиная с сетевого, имеют общие черты для сетей любого класса.

В локальных сетях канальный уровень разделен на два подуровня:

    логической передачи данных (LLC - Logical Link Control);

    управления доступом к среде (МАС - Media Access Control).

Протоколы подуровней МАС и LLC взаимно независимы, т.е. каждый протокол подуровня МАС может работать с любым протоколом подуровня LLC, и наоборот.

Подуровень МАС обеспечивает совместное использование общей передающей среды, а подуровень LLC организует передачу кадров с различным уровнем качества транспортных услуг. В современных ЛКС используются несколько протоколов подуровня МАС, реализующих различные алгоритмы доступа к разделяемой среде и определяющих специфику технологий Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, 100VG-AnyLAN.

Протокол LLC . Для ЛКС этот протокол обеспечивает необходимое качество транспортной службы. Он занимает положение между сетевыми протоколами и протоколами подуровня МАС. По протоколу LLC кадры передаются либо дейтаграммным способом, либо с помощью процедур с установлением соединения между взаимодействующими станциями сети и восстановлением кадров путем их повторной передачи при наличии в них искажений.

Технология Ethernet (стандарт 802.3) . Это самый распространенный стандарт локальных сетей. По этому протоколу в настоящее время работают большинство ЛКС. Имеется несколько вариантов и модификаций технологии Ethernet, составляющих целое семейство технологий. Из них наиболее известными являются 10-мегабитный вариант стандарта IEEE 802.3, а также новые высокоскоростные технологии Fast Ethernet и Gigabit Ethernet. Все эти варианты и модификации отличаются типом физической среды передачи данных.

Все виды стандартов Ethernet используют один и тот же метод доступа к передающей среде - метод случайного доступа CSMA/CD. Он применяется исключительно в сетях с общей логической шиной, которая работает в режиме коллективного доступа и служит для передачи данных между любыми двумя узлами сети. Такой метод доступа носит вероятностный характер: вероятность получения среды передачи в свое распоряжение зависит от загруженности сети. При значительной загрузке сети интенсивность коллизий возрастает и ее полезная пропускная способ-ность резко падает.

Полезная пропускная способность сети - это скорость передачи пользовательских данных, переносимых полем данных кадров. Она всегда меньше номинальной битовой скорости протокола Ethernet за счет служебной информации кадра, межкадровых интервалов и ожидания доступа к среде. Коэффициент использования сети в случае отсутствия коллизий и ожидания доступа имеет максимальное значение 0,96.

Технологией Ethernet поддерживаются 4 разных типа кадров, имеющих общий формат адресов. Распознавание типа кадров осуществляется автоматически.

Для всех стандартов Ethernet имеют место следующие характеристики и ограничения:

    номинальная пропускная способность - 10 Мбит/с;

    максимальное число РС в сети - 1024;

    максимальное расстояние между узлами в сети - 2500 м;

    максимальное число коаксиальных сегментов сети - 5;

    максимальная длина сегмента - от 100 м (для 10Base-T) до 2000 м (для 10Base-F);

    максимальное число повторителей между любыми станциями сети - 4.

Технология Token Ring (стандарт 802.5) . Здесь используется разделяемая среда передачи данных, которая состоит из отрезков кабеля, соединяющих все РС сети в кольцо. К кольцу (общему разделяемому ресурсу) применяется детерминированный доступ, основанный на передаче станциям права на использование кольца в определенном порядке. Это право предается с помощью маркера. Маркерный метод доступа гарантирует каждой РС получение доступа к кольцу в течение времени оборота маркера. Используется приоритетная система владения маркером - от 0 (низший приоритет) до 7 (высший). Приоритет для текущего кадра определяется самой станцией, которая может захватить кольцо, если в нем нет более приоритетных кадров.

В сетях Token Ring в качестве физической среды передачи данных применяется экранированная и неэкранированная витая пара и волоконно-оптический кабель. Сети работают с двумя битовыми скоростями - 4 и 16 Мбит/с, причем в одном кольце все РС должны работать с одной скоростью. Максимальная длина кольца - 4 км, а максимальное количество РС в кольце - 260. Ограничения на максимальную длину кольца связаны со временем оборота маркера по кольцу. Если в кольце 260 станций и время удержания маркера каждой станцией равно 10 мс, то маркер после совершения полного оборота вернется в активный монитор через 2,6 с. При передаче длинного сообщения, разбиваемого, например, на 50 кадров, это сообщение будет принято получателем в лучшем случае (когда активной является только РС-отправитель) через 260 с, что для пользователей не всегда приемлемо.

Максимальный размер кадра в стандарте 802.5 не определен. Обычно он принимается равным 4 Кбайтам для сетей 4 Мбит/с и 16 Кбайтам для сетей 16 Мбит/с.

В сетях 16 Мбит/с используется также и более эффективный алгоритм доступа к кольцу. Это алгоритм раннего освобождения маркера (ETR): станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита своего кадра, не дожидаясь возвращения по кольцу этого кадра и занятого маркера. В этом случае по кольцу будут передаваться одновременно кадры нескольких станций, что существенно повышает эффективность использования пропускной способности кольца. Конечно, и в этом случае в каждый данный момент ге-нерировать кадр в кольцо может только та РС, которая в этот момент владеет маркером доступа, а остальные станции будут лишь ретранслировать чужие кадры.

Технология Token Ring (технология этих сетей была разработана еще в 1984 г. фирмой IBM) существенно сложнее технологии Ethernet. В ней заложены возможности отказоустойчивости: за счет обратной связи кольца одна из станций (активный монитор) непрерывно контролирует наличие маркера, время оборота маркера и кадров данных, обнаруженные ошибки в сети устраняются автоматически, например, потерянный маркер может быть восстановлен. В случае выхода из строя активного монитора выбирается новый активный монитор и процедура инициализации кольца повторяется.

Стандарт Token Ring изначально предусматривал построение связей в сети с помощью концентраторов, называемых MAU, т.е. устройствами многостанционного доступа. Концентратор может быть пассивным (соединяет порты внутренними связями так, чтобы РС, подключенные к этим портам, образовали кольцо, а также обеспечивает обход какого-либо порта, если подключенный к этому порту компьютер выключается) или активным (выполняет функции регенерации сигналов и поэтому иногда называется повторителем).

Для сетей Token Ring характерна звездно-кольцевая топология: РС подключаются к концентраторам по топологии звезды, а сами концентраторы через специальные порты Ring In (RI) и Ring Out (RO) объединяются для образования магистрального физического кольца. Сеть Token Ring может строиться на основе нескольких колец, разделенных мостами, маршрутизирующие кадры адресату (каждый кадр снабжается полем с маршрутом прохождения колец).

Недавно технология Token Ring стараниями компании IBM получила новое развитие: предложен новый вариант этой технологии (HSTR), поддерживающий битовые скорости в 100 и 155 Мбит/с. При этом сохранены основные особенности технологии Token Ring 16 Мбит/с.

Технология FDDI . Это первая технология ЛКС, в которой для передачи данных используется волоконно-оптический кабель. Она появилась в 1988 г. и ее официальное название - оптоволоконный интерфейс распределенных данных (Fiber Distributed Data Interface, FDDI). В настоящее время в качестве физической среды, кроме волоконно-оптического кабеля, применяется неэкранированная витая пара.

Технология FDDI предназначена для использования на магистральных соединениях между сетями, для подключения к сети высокопроизводительных серверов, в корпоративных и городских сетях. Поэтому в ней обеспечена высокая скорость передачи данных (100 Мбит/с), отказоустойчивость на уровне протокола и большие расстояния между узлами сети. Все это сказалось на стоимости подключения к сети: для подключения клиентских компьютеров эта технология оказалась слишком дорогой.

Существует значительная преемственность между технологиями Token Ring и FDDI. Основные идеи технологии Token Ring восприняты и получили совершенствование и развитие в технологии FDDI, в частности, кольцевая топология и маркерный метод доступа.

В сети FDDI для передачи данных используются два оптоволоконных кольца, образующих основной и резервный пути передачи между РС. Станции сети подключаются к обоим кольцам. В нормальном режиме задействовано только основное кольцо. В случае отказа какой-либо части основного кольца оно объединяется с резервным кольцом, вновь образуя единое кольцо (это режим "свертывания" колец) с помощью концентраторов и сетевых адаптеров. Наличие процедуры "свертывания" при отказах - основной способ повышения отказоустойчивости сети. Существуют и другие процедуры для определения отказов в сети и восстановления ее работоспособности.

Основное отличие маркерного метода доступа к передающей среде, используемого в сети FDDI, от этого метода в сети Token Ring заключается в том, что в сети FDDI время удержания маркера является постоянной величиной только для синхронного трафика, который критичен к задержкам передачи кадров. Для асинхронного трафика, не критичного к небольшим задержкам передачи кадров, это время зависит от загрузки кольца: при небольшой загрузке оно увеличивается, а при большой - может уменьшаться до нуля. Таким образом, для асинхронного трафика метод доступа является адаптивным, хорошо регулирующим временные перегрузки сети. Механизм приоритетов кадров отсутствует. Считается, что достаточно разделить трафик на два класса - синхронный, который обслуживается всегда (даже при перегрузках кольца), и асинхронный, обслуживаемый при малой загрузке кольца. Станции FDDI применяют алгоритм раннего освобождения маркера, как это сделано в сети Token Ring со скоростью 16 Мбит/с.

В сети FDDI выделенный активный монитор отсутствует, все станции и концентраторы равноправны, при обнаружении отклонений от нормы они осуществляют повторную инициализацию сети и, если это не-обходимо, ее реконфигурацию.

Результаты сравнения технологии FDDI с технологиями Ethernet и Token Ring приведены в табл.5.1 .

Технологии Fast Ethernet и 100VG-AnyLAN . Обе эти технологии не являются самостоятельными стандартами и рассматриваются как развитие и дополнение технологии Ethernet, реализованное соответственно в 1995 и 1998 годах. Новые технологии Fast Ethernet (стандарт 802.3и) и 100VG-AnyLAN (стандарт 802.3z) имеют производительность 100 Мбит/с и отличаются степенью преемственности с классическим Ethernet.

В стандарте 802.3и сохранен метод случайного доступа CSMA/CD и тем самым обеспечена преемственность и согласованность сетей 10 Мбит/с и 100 Мбит/с.

В технологии 100VG-AnyLAH используется совершенно новый метод доступа - Demand Priority (DP), приоритетный доступ по требованию. Эта технология существенно отличается от технологии Ethernet. Она поддерживает различные типы трафика в довольно узкой области и не нашла широкого распространения.

Отметим особенности технологии Fast Ethernet и ее отличия от технологии Ethernet:

    структура физического уровня технологии Fast Ethernet - более сложная, что объясняется использованием трех вариантов кабельных систем: волоконно-оптический кабель, витая пара категории 5 (используются две пары), витая пара категории 3 (используются четыре пары). Отказ от коаксиального кабеля привел к тому, что сети этой технологии всегда имеют иерархическую древовидную структуру;

    диаметр сети сокращен до 200 м, время передачи кадра минимальной длины уменьшено в 10 раз за счет увеличения скорости передачи в 10 раз;

    технология Fast Ethernet может использоваться при создании магистралей локальных сетей большой протяженности совместно с коммутаторами (полудуплексный вариант работы для этой технологии является основным);

    Таблица 17.1. Сравнение сетей различных топологий

    Характеристики

    Тип технологии

    Пропускная способность Мбит/с

    Топология

    Двойное кольцо

    Шина, звезда

    Звезда, кольцо

    Метод доступа

    Маркерный, доля от времени оборота маркера

    Маркерный, приоритетная система резервирования

    Среда передачи данных

    Оптоволокно, неэкранированная витая пара

    Толстый коаксиал, тонкий коаксиал, витая пара, оптоволокно

    Экранированная и неэкранированная витая пара, оптоволокно

    Максимальная длина сети (без мостов)

    200 км (100 км на кольцо)

    Максимальное расстояние между узлами

    Максимальное количество узлов

  • для всех трех спецификаций физического уровня, отличающихся типом применяемого кабеля, форматы кадров отличаются от форматов кадров технологий 10-мегабитного Ethernet;

    признаком свободного состояния передающей среды является не отсутствие сигналов, а передача по ней специального символа в кодированном виде;

    применяется метод кодирования 4В/5В, хорошо себя зарекомендовавший в технологии FDDI. В соответствии с этим методом каждые 4 бита передаваемых данных представляются 5 битами, т.е. из 32 комбинаций 5-битных символов для кодирования исходных 4-битных символов используются только 16 комбинаций, а из ос-тавшихся 16 комбинаций выбираются несколько кодов, которые используются как служебные. Один из служебных кодов постоянно передается в течение пауз между передачей кадров. Если он в линии связи отсутствует, то это свидетельствует об отказе физической связи;

    кодирование и синхронизация сигналов осуществляются с помощью биполярного кода NRZ;

    технология Fast Ethernet рассчитана на применение концентраторов-повторителей для образования связей в сети (то же самое имеет место для всех некоаксиальных вариантов Ethernet).

Технология Gigabit Ethernet . Появление этой технологии представляет собой новую ступень в иерархии сетей семейства Ethernet, обеспечивающую скорость передачи в 1000 Мбит/с. Стандарт по этой технологии принят в 1998г., в нем максимально сохранены идеи классической технологии Ethernet.

По поводу технологии Gigabit Ethernet следует отметить следующее:

    на уровне протокола не поддерживаются (так же, как и у его предшественников): качество обслуживания, избыточные связи, тестирование работоспособности узлов и оборудования. Что касается качества обслуживания, то считается, что высокая скорость передачи данных по магистрали и возможность назначения пакетам приоритетов в коммутаторах вполне достаточны для обеспечения качества транспортного обслуживания пользователей сети. Поддержка избыточных связей и тестирование оборудования осуществляются протоколами более высоких уровней;

    сохраняются все форматы кадров Ethernet;

    имеется возможность работы в полудуплексном и полнодуплексном режимах. Первый из них поддерживает метод доступа CSMA/CD, а второй - работу с коммутаторами;

    поддерживаются все основные виды кабелей, как и в предшествующих технологиях этого семейства: волоконно-оптический, коаксиальный, витая пара;

    минимальный размер кадра увеличен с 64 до 512 байт, максимальный диаметр сети тот же - 200 м. Можно передавать несколько кадров подряд, не освобождая среду.

Технология Gigabit Ethernet позволяет строить крупные локальные сети, в которых серверы и магистрали нижних уровней сети работают на скорости 100 Мбит/с, а магистраль 1000 Мбит/с объединяет их, обеспечивая запас пропускной способности.

Технология Wi-Fi . Технология Wi-Fi (произносится "вай-фай", сокр. от англ. Wireless Fidelity - беспроводная надежность) - это стандарт на оборудование Wireless LAN, которое устанавливается там, где развертывание кабельной системы невозможно или экономически нецелесообразно. Мобильные устройства этого оборудования (смартфоны и ноутбуки), оснащенные клиентскими Wi-Fi приемо-передающими устройствами, могут подключаться к локальной сети и получать доступ в Internet через так называемые точки доступа (хост-порты).

Обычно схема Wi-Fi сети содержит не менее одной точки доступа и не менее одного клиента, но возможно подключение двух клиентов в режиме "точка-точка", и тогда точка доступа не используется, а клиенты со-единяются посредством сетевых адаптеров напрямую. Наименьшая скорость передачи данных для Wi-Fi - 1 Мбит/с. Стандарт Wi-Fi дает клиенту полную свободу при выборе критериев для соединения с другими клиентами. Последние версии операционных систем этого стандарта содержат функцию, которая показывает пользователю все доступные сети и позволяет переключаться между ними.

Технология Wi-Fi применяется в основном для управления движущимися объектами, а также в тех случаях, когда невозможно прокладывать проводные сети Ethernet.

Преимущества Wi-Fi:

    возможность развертывания сети без прокладки кабеля, что уменьшает стоимость ее создания и расширения;

    Wi-Fi-устройства достаточно широко представлены на рынке, а устройства разных производителей могут взаимодействовать на базовом уровне сервисов;

    для клиентских станций возможно перемещение в пространстве;

    Wi-Fi - это набор глобальных стандартов, поэтому Wi-Fi-оборудование может работать в разных странах по всему миру.

В качестве недостатков Wi-Fi можно отметить следующие:

    наличие ограничений в частотном диапазоне в различных странах;

    довольно высокое по сравнению с другими стандартами потребление энергии;

    ограниченный радиус действия (до 100 м);

    возможность наложения сигналов от различных точек доступа, что затрудняет связь клиентов друг с другом;

    недостаточно высокая информационная безопасность. Отметим, что Microsoft Windows полностью поддерживает Wi-Fi посредством драйверов.

До сих пор рассматривались протоколы, работающие на первых трех уровнях семиуровневой эталонной модели ВОС и реализующие соответствующие методы логической передачи данных и доступа к передающей среде. В соответствии с этими протоколами передаются пакеты между рабочими станциями, но не решаются вопросы, связанные с сетевыми фай-ловыми системами и переадресацией файлов. Эти протоколы не включают никаких средств обеспечения правильной последовательности приема переданных данных и средств идентификации прикладных программ, нуждающихся в обмене данными.

В отличие от протоколов нижнего уровня, протоколы верхнего уровня (называемые также протоколами среднего уровня, так как они реализуются на 4-м и 5-м уровнях модели ВОС) служат для обмена данными. Они предоставляют программам интерфейс для передачи данных методом дейтаграмм, когда пакеты адресуются и передаются без подтвержде-ния получения, и методом сеансов связи, когда устанавливается логическая связь между взаимодействующими станциями (источником и адресатом) и доставка сообщений подтверждается.

Здесь лишь коротко отметим протокол IPX/SPX, получивший некоторое применение в локальных сетях, особенно в связи с усложнением их топологии (вопросы маршрутизации перестали быть тривиальными) и расширением предоставляемых услуг. IPX/SPX - сетевой протокол NetWare, причем IPX (Internetwork Packet Exchange) - протокол межсетевого обмена пакетами, а SPX (Sequenced Packet Exchange) - протокол последовательного обмена пакетами.

Протокол IPX/SPX . Этот протокол является набором протоколов IPX и SPX. Фирма Nowell в сетевой операционной системе NetWare применяет протокол IPX для обмена дейтаграммами и протокол SPX для обмена в сеансах связи.

Протокол IPX/SPX относится к программно-реализованным протоколам. Он не работает с аппаратными прерываниями, используя функции драйверов операционных систем. Пара протоколов IPX/SPX имеет фиксированную длину заголовка, что приводит к полной совместимости разных реализаций этих протоколов.

Протокол IPX применяется маршрутизаторами в сетевой операционной системе (СОС) NetWare. Он соответствует сетевому уровню модели ВОС и выполняет функции адресации, маршрутизации и переадресации в процессе передачи пакетов данных. Несмотря на отсутствие гарантий доставки сообщений (адресат не передает отправителю подтверждения о получении сообщения), в 95% случаев не требуется повторной передачи. На уровне IPX выполняются служебные запросы к файловым серверам, и каждый такой запрос требует ответа со стороны сервера. Этим и определяется надежность работы методом дейтаграмм, так как маршрутизаторы воспринимают реакцию сервера на запрос как ответ на правильно переданный пакет.

Протокол SPX работает на транспортном уровне модели ВОС, но имеет и функции, свойственные протоколам сеансового уровня. Он осуществляет управление процессами установки логической связи, обмена и окончания связи между любыми двумя узлами (рабочими станциями) ЛКС. После установления логической связи пакеты могут циркулировать в обоих направлениях с гарантией того, что они передаются без ошибок. Протокол SPX гарантирует очередность приема пакетов согласно очередности отправления.

В настоящей главе описываются различные методы доступа к среде передачи, методы передачи данных, а также топологии и устройства, используемые в локальных серое (Jocal-Siwa network - LAN). Особое внимание уделяется методам и устройствам, используемым в стандартах Ethernet/IEEE 802.3, Token Ring/IEEE 802.5 и Fiber fitistributed Dat* Iaterface (Fiber Distributed Data Interface - FDDI). В части II этой книги данные протоколы будут описаны более подробно. Базовые схемы этих трех вариантов реализации LAN-сетей показаны на рис. 2.1.

Рис. 2.1. Три наиболее часто используемые конфигурации локальных сетей

Что такое локальная сеть?

Локалщая сеть (Local Area Network - LAN) представляет собой сеть с высокой скоростью; ,дередачи данных, ограниченную относительно небольшой географической областью. Обычно в такую сеть объединяются рабочие станции, персональные компьютеры, принтеры, серверы и другие устройства. Локальные сети предоставляют пользователям компьютеров много преимуществ, включая совместный доступ к устройствам и приложениям, обмен файлами между пользователями, общение по электронной почте и другие приложения.

Протоколы локальных сетей и эталонная модель OSI

Как отмечалось в главе 1 "Основы теории объединенных сетей", протоколы локальных сетей работают на двух самых нижних уровнях эталонной модели OSI - между физическим и канальным. Соответствие нескольких наиболее распространенных протоколов локальных сетей уровням модели OSI показано на рис. 2.2.

Рис. 2.2. Соответствие распространенных протоколов локальных сетей уровням модели 0S1

Методы доступа к среде передачи в локальных сетях

Если сразу несколько сетевых устройств пытаются одновременно отправить данные, то возникает конфликт доступа к среде передачи. Поскольку несколько устройств не могут одновременно передавать данные по сети, требуется какой-либо метод, позволяющий в каждый момент времени обращаться к сетевой среде передачи данных только одному устройству. Для этого обычно применяется один из двух способов: множественный доступ с обнаружением несушей и обнаружением коллизий (Carrier Sense Multiple Access/Collision Detect - CSMA/CD) и передача маркера.

В сетях, использующих технологию CSMA/CD, таких как сети Ethernet, сетевые устройства "соперничают" за доступ к сетевой среде передачи данных. Когда устройству требуется отправить данные, оно сначала прослушивает сеть, чтобы узнать, не использует ли ее в данный момент какое-либо другое устройство. Если сеть свободна, то устройство начинает передавать свои данные. После того как передача данных закончится, устройство снова прослушивает сеть, чтобы узнать, не возникло ли коллизии. Коллизия возникает, когда два устройства посылают данные одновременно. Если коллизия произошла, то каждое из этих устройств ожидает в течение некоторого случайно выбираемого промежутка времени, а затем отправляет данные повторно. В большинстве случаев коллизия между этими двумя устройствами не повторяется. Вследствие такого "соперничества" устройств увеличение нагрузки в сети вызывает увеличение числа коллизий. Поэтому при увеличении количества устройств в сети Ethernet ее производительность резко падает.

В сетях с передачей маркера (token-passing), таких как Token Ring и FDDI, по всей сети, от устройства к устройству, передается специальный пакет, называемый маркером (token). Если устройству требуется отправить данные, то оно ждет, пока не будет получен маркер, и только затем посылает данные. Когда передача данных окончена, маркер освобождается, и тогда сетевая среда может быть использована другими устройствами. Основное преимущество таких сетей состоит в том, что происходящие в них процессы в них детерминированы, т.е., легко подсчитать максимальное время, в течение которого устройство должно ожидать возможности отправить данные. Этим объясняется популярность сетей с передачей маркера в некоторых средах, работающих в режиме реального времени, например, в сфере производства, где необходимо обеспечить обмен данными между устройствами через строго определенные интервалы времени.

В сетях множественного доступа CSMA/CD могут использоваться коммутаторы, которые сегментируют сеть на несколько коллизионных доменов. Это уменьшает количество устройств, "соперничающих" за среду передачи, в каждом сегменте сети. За счет создания более мелких коллизионных доменов можно существенно увеличить производительность сети без изменения системы адресации.

Обычно соединения сети CSMA/CD являются полудуплексными. Термин "полудуплексное соединение" означает, что устройство не может одновременно отправлять и получать информацию. Пока устройство передает данные, оно не может следить за поступающими данными. Это очень напоминает устройство "walkie-talkie": при необходимости что-либо сказать нажимается кнопка передачи и, пока говорящий не закончит, никто другой не может говорить на этой же частоте. Когда говорящий заканчивает, он отпускает кнопку передачи и тем самым освобождает частоту для остальных.

При использовании коммутаторов становится возможной реализация режима полного дуплекса. Полнодуплексное соединение работает так же, как и телефон: можно одновременно и слушать, и говорить. Если сетевое устройство подключено непосредственно к порту сетевого коммутатора, то эти два устройства смогут работать в режиме полного дуплекса. В этом режиме производительность сети может увеличиться. Сегмент Ethernet 100 Мбит/с способен передавать данные со скоростью 200 Мбит/с, но из них в одном направлении только 100 Мбит/с. Поскольку большинство соединений асимметричны (в одном направлении передается больше данных, чем в другом), то выигрыш оказывается не столь велик, как полагают некоторые. Однако работа в полнодуплексном режиме все же увеличивает пропускную способность многих приложений, поскольку в этом случае сетевая среда передачи уже не является общей.

Используя полнодуплексное соединение, два устройства, могут начать отправку данных сразу же после его установки.

В сетях с передачей маркера, таких как Token Ring, также можно воспользоваться преимуществами коммутаторов. В больших сетях после отправки фрейма задержка перед следующим получением маркера может оказаться весьма значительной, поскольку он передается через всю сеть.

Методы передачи данных в локальных сетях

Все пересылки данных в локальных сетях можно разделить на три категории: од- ноадресатная, многоадресатная и широковещательная передача. В каждом из этих случаев один пакет отправляется одному или нескольким узлам.

При одноадресатной передаче (unicast transmission) пакет пересылается по сети от источника только одному получателю. Узел-источник адресует пакет, используя адрес узла-получателя. Затем этот пакет посылается в сеть и передается получателю.

При многоадресатной передаче (multicast transmission) пакет данных копируется и отправляется некоторому подмножеству узлов сети. Узел-источник адресует пакет, используя групповой адрес. Затем пакет посылается в сеть, которая делает с него копии и отправляет по одной копии каждому узлу, соответствующему групповому адресу.

При широковещательной передаче (broadcast transmission) пакет данных копируется и отправляется всем узлам в сети. При передаче такого типа узел-источник адресует пакет, используя широковещательный адрес. Затем пакет отправляется в сеть, которая делает с него копии и посылает по одной копии каждому узлу сети.

Литература:

Руководство по технологиям объединенных сетей, 4-е издание. : Пер. с англ. - М.: Издательский дом «Вильяме», 2005. - 1040 с.: ил. – Парал. тит. англ.

3.1.1. Общая характеристика протоколов локальных сетей

При организации взаимодействия узлов в локальных сетях основная роль отводит­ся протоколу канального уровня. Однако для того, чтобы канальный уровень мог справиться с этой задачей, структура локальных сетей должна быть вполне опреде­ленной, так, например, наиболее популярный протокол канального уровня - Ether­net - рассчитан на параллельное подключение всех узлов сети к общей для них шине - отрезку коаксиального кабеля или иерархической древовидной структуре сегментов, образованных повторителями. Протокол Token Ring также рассчитан на вполне определенную конфигурацию - соединение компьютеров в виде логическо­го кольца.

Подобный подход, заключающийся в использовании простых структур кабель­ных соединений между компьютерами локальной сети, соответствовал основной цели, которую ставили перед собой разработчики первых локальных сетей во вто­рой половине 70-х годов. Эта цель заключалась в нахождении простого и дешевого решения для объединения в вычислительную сеть нескольких десятков компьюте­ров, находящихся в пределах одного здания. Решение должно было быть недоро­гим, поскольку в сеть объединялись недорогие компьютеры - появившиеся и быстро распространившиеся тогда мини-компьютеры стоимостью в 10 000-20 000 долла­ров. Количество их в одной организации было небольшим, поэтому предел в не­сколько десятков (максимум - до сотни) компьютеров представлялся вполне достаточным для роста практически любой локальной сети.

Для упрощения и, соответственно, удешевления аппаратных и программных решений разработчики первых локальных сетей остановились на совместном ис-

182 Глава 3 Базовые технологии локальных сетей

пользовании кабелей всеми компьютерами сети в режиме разделения времени, то есть режиме TDM. Наиболее явным образом режим совместного использования кабеля проявляется в классических сетях Ethernet, где коаксиальный кабель физи­чески представляет собой неделимый отрезок кабеля, общий для всех узлов сети. Но и в сетях Token Ring и FDDI, где каждая соседняя пара компьютеров соедине­на, казалось бы, своими индивидуальными отрезками кабеля с концентратором, эти отрезки не могут использоваться компьютерами, которые непосредственно к ним подключены, в произвольный момент времени. Эти отрезки образуют логи­ческое кольцо, доступ к которому как к единому целому может быть получен толь­ко по вполне определенному алгоритму, в котором участвуют все компьютеры сети. Использование кольца как общего разделяемого ресурса упрощает алгоритмы пе­редачи по нему кадров, так как в каждый конкретный момент времени кольцо занято только одним компьютером.

Использование разделяемых сред (shared media) позволяет упростить логику работы сети. Например, отпадает необходимость контроля переполнения узлов сети кадрами от многих станций, решивших одновременно обменяться информацией. В глобальных сетях, где отрезки кабелей, соединяющих отдельные узлы, не рас­сматриваются как общий ресурс, такая необходимость возникает, и для решения этой проблемы в протоколы обмена информацией вводятся весьма сложные про­цедуры управления потоком кадров, предотвращающие переполнение каналов свя­зи и узлов сети.

Использование в локальных сетях очень простых конфигураций (общая шина и кольцо) наряду с положительными имело и отрицательные последствия, из кото­рых наиболее неприятными были ограничения по производительности и надежно­сти. Наличие только одного пути передачи информации, разделяемого всеми узлами сети, в принципе ограничивало пропускную способность сети пропускной способ­ностью этого пути (которая делилась в среднем на число компьютеров сети), а надежность сети - надежностью этого пути. Поэтому по мере повышения попу­лярности локальных сетей и расширения их сфер применения все больше стали применяться специальные коммуникационные устройства - мосты и маршрутиза­торы, - которые в значительной мере снимали ограничения единственной разделя­емой среды передачи данных. Базовые конфигурации в форме общей шины и кольца превратились в элементарные структуры локальных сетей, которые можно теперь соединять друг с другом более сложным образом, образуя параллельные основные или резервные пути между узлами.

Тем не менее внутри базовых структур по-прежнему работают все те же прото­колы разделяемых единственных сред передачи данных, которые были разработа­ны более 15 лет назад. Это связано с тем, что хорошие скоростные и надежностные характеристики кабелей локальных сетей удовлетворяли в течение всех этих лет пользователей небольших компьютерных сетей, которые могли построить сеть без больших затрат только с помощью сетевых адаптеров и кабеля. К тому же колос­сальная инсталляционная база оборудования и программного обеспечения для тех­нологий Ethernet и Token Ring способствовала тому, что сложился следующий подход: в пределах небольших сегментов используются старые протоколы в их неизменном виде, а объединение таких сегментов в общую сеть происходит с помо­щью дополнительного и достаточно сложного оборудования.

В последние несколько лет наметилось движение к отказу от разделяемых сред передачи данных в локальных сетях и переходу к применению активных коммута-

3.1. Протоколы и стандарты локальных сетей 183

торов, к которым конечные узлы присоединяются индивидуальными линиями связи. В чистом виде такой подход предлагается в технологии ATM (Asynchronous Transfer Mode), а в технологиях, носящих традиционные названия с приставкой switched (коммутируемый): switched Ethernet, switched Token Ring, switched FDDI, обычно используется смешанный подход, сочетающий разделяемые и индивидуальные среды передачи данных. Чаще всего конечные узлы соединяются в небольшие разделяе­мые сегменты с помощью повторителей, а сегменты соединяются друг с другом с помощью индивидуальных коммутируемых связей.

Существует и достаточно заметная тенденция к использованию в традицион­ных технологиях так называемой микросегментации, когда даже конечные узлы сразу соединяются с коммутатором индивидуальными каналами. Такие сети полу­чаются дороже разделяемых или смешанных, но производительность их выше.

При использовании коммутаторов у традиционных технологий появился но­вый режим работы - полнодуплексный (full-duplex). В разделяемом сегменте стан­ции всегда работают в полудуплексном режиме (half-duplex), так как в каждый момент времени сетевой адаптер станции либо передает свои данные, либо принимает чу­жие, но никогда не делает это одновременно. Это справедливо для всех технологий локальных сетей, так как разделяемые среды поддерживаются не только класси­ческими технологиями локальных сетей Ethernet, Token Ring, FDDI, но и всеми новыми - Fast Ethernet, lOOVG-AnyLAN, Gigabit Ethernet.

В полнодуплексном режиме сетевой адаптер может одновременно передавать свои данные в сеть и принимать из сети чужие данные. Такой режим несложно обеспечивается при прямом соединение с мостом/коммутатором или маршрутиза­тором, так как вход и выход каждого порта такого устройства работают независи­мо друг от друга, каждый со своим буфером кадров.

Сегодня каждая технология локальных сетей приспособлена для работы как в полудуплексном, так и полнодуплексном режимах. В этих режимах ограничения, накладываемые на общую длину сети, существенно отличаются, так что одна и та же технология может позволять строить весьма различные сети в зависимости от выбранного режима работы (который зависит от того, какие устройства использу­ются для соединения узлов - повторители или коммутаторы). Например, техноло­гия Fast Ethernet позволяет для полудуплексного режима строить сети диаметром не более 200 метров, а для полнодуплексного режима ограничений на диаметр сети не существует. Поэтому при сравнении различных технологий необходимо обяза­тельно принимать во внимание возможность их работы в двух режимах. В данной главе изучается в основном полудуплексный режим работы протоколов, а полно­дуплексный режим рассматривается в следующей главе, совместно с изучением коммутаторов.

Несмотря на появление новых технологий, классические протоколы локальных сетей Ethernet и Token Ring по прогнозам специалистов будут повсеместно исполь­зоваться еще по крайней мере лет 5-10, в связи с чем знание их деталей необходимо для успешного применения современной коммуникационной аппаратуры. Кроме того, некоторые современные высокопроизводительные технологии, такие как Fast Ethernet, Gigabit Ethernet, в значительной степени сохраняют преемственность со своими предшественниками. Это еще раз подтверждает важность изучения класси­ческих протоколов локальных сетей, естественно, наряду с изучением новых тех­нологий.

184 Глава 3 Базовые технологии локальных сетей

3.1.2. Структура стандартов IEEE 802.x

В 1980 году в институте IEEE был организован комитет 802 по стандартизации локальных сетей, в результате работы которого было принято семейство стандар­тов IEEE 802.x, которые содержат рекомендации по проектированию нижних уров­ней локальных сетей. Позже результаты работы этого комитета легли в основу комплекса международных стандартов ISO 8802-1.„5. Эти стандарты были созда­ны на основе очень распространенных фирменных стандартов сетей Ethernet, ArcNet и Token Ring.

Помимо IEEE в работе по стандартизации протоколов локальных сетей прини­мали участие и другие организации. Так, для сетей, работающих на оптоволокне, американским институтом по стандартизации ANSI был разработан стандарт FDDI, обеспечивающий скорость передачи данных 100 Мб/с. Работы по стандартизации протоколов ведутся также ассоциацией ЕСМА, которой приняты стандарты ЕСМА-80, 81, 82 для локальной сети типа Ethernet и впоследствии стандарты ЕСМА-89, 90 по методу передачи маркера.

Стандарты семейства IEEE 802.x охватывают только два нижних уровня семи­уровневой модели OSI - физический и канальный. Это связано с тем, что именно эти уровни в наибольшей степени отражают специфику локальных сетей. Старшие же уровни, начиная с сетевого, в значительной степени имеют общие черты как для локальных, так и для глобальных сетей.

Специфика локальных сетей также нашла свое отражение в разделении каналь­ного уровня на два подуровня, которые часто называют также уровнями. Каналь­ный уровень (Data Link Layer) делится в локальных сетях на два подуровня:

Логической передачи данных (Logical Link Control, LLC);

Управления доступом к среде (Media Access Control, MAC).

Уровень MAC появился из-за существования в локальных сетях разделяемой среды передачи данных. Именно этот уровень обеспечивает корректное совместное использование общей среды, предоставляя ее в соответствии с определенным алго­ритмом в распоряжение той или иной станции сети. После того как доступ к среде получен, ею может пользоваться более высокий уровень - уровень LLC, организу­ющий передачу логических единиц данных, кадров информации, с различным уров­нем качества транспортных услуг. В современных локальных сетях получили распространение несколько протоколов уровня MAC, реализующих различные ал­горитмы доступа к разделяемой среде. Эти протоколы полностью определяют спе­цифику таких технологий, как Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, lOOVG-AnyLAN.

Уровень LLC отвечает за передачу кадров данных между узлами с различной степенью надежности, а также реализует функции интерфейса с прилегающим к нему сетевым уровнем. Именно через уровень LLC сетевой протокол запрашивает у канального уровня нужную ему транспортную операцию с нужным качеством. На уровне LLC существует несколько режимов работы, отличающихся наличием или отсутствием на этом уровне процедур восстановления кадров в случае их поте­ри или искажения, то есть отличающихся качеством транспортных услуг этого уровня.

Протоколы уровней MAC и LLC взаимно независимы - каждый протокол уровня MAC может применяться с любым протоколом уровня LLC, и наоборот.

Эта структура появилась в результате большой работы, проведенной комите­том 802 по выделению в разных фирменных технологиях общих подходов и общих функций, а также согласованию стилей их описания. В результате канальный уро­вень был разделен на два упомянутых подуровня. Описание каждой технологии разделено на две части: описание уровня MAC и описание физического уровня. Как видно из рисунка, практически у каждой технологии единственному протоко­лу уровня MAC соответствует несколько вариантов протоколов физического уров­ня (на рисунке в целях экономии места приведены только технологии Ethernet и Token Ring, но все сказанное справедливо также и для остальных технологий, та­ких как ArcNet, FDDI, lOOVG-AnyLAN).

Над канальным уровнем всех технологий изображен общий для них протокол LLC, поддерживающий несколько режимов работы, но независимый от выбора конкретной технологии. Стандарт LLC курирует подкомитет 802.2. Даже техноло­гии, стандартизованные не в рамках комитета 802, ориентируются на использова­ние протокола LLC, определенного стандартом 802.2, например протокол FDDI, стандартизованный ANSI.

Особняком стоят стандарты, разрабатываемые подкомитетом 802.1. Эти стан­дарты носят общий для всех технологий характер. В подкомитете 802.1 были разработаны общие определения локальных сетей и их свойств, определена связь трех уровней модели IEEE 802 с моделью OSI. Но наиболее практически важны-

186 Глава 3 Базовые технологии локальных сетей

ми являются стандарты 802.1, которые описывают взаимодействие между собой различных технологий, а также стандарты по построению более сложных сетей на основе базовых топологий. Эта группа стандартов носит общее название стан­дартов межсетевого взаимодействия (internetworking). Сюда входят такие важные стандарты, как стандарт 802.ID, описывающий логику работы моста/коммутато­ра, стандарт 802.1Н, определяющий работу транслирующего моста, который мо­жет без маршрутизатора объединять сети Ethernet и FDDI, Ethernet и Token Ring и т. п. Сегодня набор стандартов, разработанных подкомитетом 802.1, продолжа­ет расти. Например, недавно он пополнился важным стандартом 802.1Q, опреде­ляющим способ построения виртуальных локальных сетей VLAN в сетях на основе коммутаторов.

Стандарты 802.3,802.4, 802.5 и 802.12 описывают технологии локальных сетей, которые появились в результате улучшений фирменных технологий, легших в их основу. Так, основу стандарта 802.3 составила технология Ethernet, разработанная компаниями Digital, Intel и Xerox (или Ethernet DIX), стандарт 802.4 появился как обобщение технологии ArcNet компании Datapoint Corporation, а стандарт 802.5 в основном соответствует технологии Token Ring компании IBM.

Исходные фирменные технологии и их модифицированные варианты - стан­дарты 802.x в ряде случаев долгие годы существовали параллельно. Например, технология ArcNet так до конца не была приведена в соответствие со стандартом 802.4 (теперь это делать поздно, так как где-то примерно с 1993 года производство оборудования ArcNet было свернуто). Расхождения между технологией Token Ring и стандартом 802.5 тоже периодически возникают, так как компания IBM регуляр­но вносит усовершенствования в свою технологию и комитет 802.5 отражает эти усовершенствования в стандарте с некоторым запозданием. Исключение составля- ет технология Ethernet. Последний фирменный стандарт Ethernet DIX был принят в 1980 году, и с тех пор никто больше не предпринимал попыток фирменного раз­вития Ethernet. Все новшества в семействе технологий Ethernet вносятся только в результате принятия открытых стандартов комитетом 802.3.

Более поздние стандарты изначально разрабатывались не одной компанией, а группой заинтересованных компаний, а потом передавались в соответствующий подкомитет IEEE 802 для утверждения. Так произошло с технологиями Fast Ethernet, lOOVG-AnyLAN, Gigabit Ethernet. Группа заинтересованных компаний образовывала сначала небольшое объединение, а затем по мере развития работ к нему присоединялись другие компании, так что процесс принятия стандарта но­сил открытый характер.

Сегодня комитет 802 включает следующий ряд подкомитетов, в который вхо­дят как уже упомянутые, так и некоторые другие:

802.1 - Internetworking - объединение сетей;

802.2 - Logical Link Control, LLC - управление логической передачей данных;

802.3 - Ethernet с методом доступа CSMA/CD;

802.4 - Token Bus LAN - локальные сети с методом доступа Token Bus;

802.5 - Token Ring LAN - локальные сети с методом доступа Token Ring;

802.6 - Metropolitan Area Network, MAN - сети мегаполисов;

802.7 - Broadband Technical Advisory Group - техническая консультационная группа по широкополосной передаче;

3.1. Протоколы и стандарты локальных сетей 187

802.8 - Fiber Optic Technical Advisory Group - техническая консультационная группа по волоконно-оптическим сетям;

802.9 - Integrated Voice and data Networks - интегрированные сети передачи голоса и данных;

о 802.10 - Network Security - сетевая безопасность;

802.11 - Wireless Networks - беспроводные сети;

802.12 - Demand Priority Access LAN, lOOVG-AnyLAN - локальные сети с мето­дом доступа по требованию с приоритетами.

» При организации взаимодействия узлов в локальных сетях основная роль отво­дится классическим технологиям Ethernet, Token Ring, FDDI, разработанным более 15 лет назад и основанным на использовании разделяемых сред.

Разделяемые среды поддерживаются не только классическими технологиями локальных сетей Ethernet, Token Ring, FDDI, но и новыми - Fast Ethernet, lOOVG-AnyLAN, Gigabit Ethernet.

Современной тенденцией является частичный или полный отказ от разделяе­мых сред: соединение узлов индивидуальными связями (например, в техноло­гии ATM), широкое использование коммутируемых связей и микросегментации. Еще одна важная тенденция - появление полнодуплексного режима работы практически для всех технологий локальных сетей.

Комитет IEEE 802.x разрабатывает стандарты, которые содержат рекомендации для проектирования нижних уровней локальных сетей - физического и каналь­ного. Специфика локальных сетей нашла свое отражение в разделении каналь­ного уровня на два подуровня - LLC и MAC.

Стандарты подкомитета 802.1 носят общий для всех технологий характер и по­стоянно пополняются. Наряду с определением локальных сетей и их свойств, стандартами межсетевого взаимодействия, описанием логики работы моста/ком­мутатора к результатам работы комитета относится и стандартизация сравни­тельно новой технологии виртуальных локальных сетей VLAN.

» Подкомитет 802.2 разработал и поддерживает стандарт LLC. Стандарты 802.3, 802.4, 802.5 описывают технологии локальных сетей, которые появились в ре­зультате улучшений фирменных технологий, легших в их основу, соответствен­но Ethernet, ArcNet, Token Ring.

Более поздние стандарты изначально разрабатывались не одной компанией, а группой заинтересованных компаний, а потом передавались в соответствую­щий подкомитет IEEE 802 для утверждения.

188 Глава 3 Базовые технологии локальных сетей

Конец работы -

Эта тема принадлежит разделу:

Посвящаем нашей дочери анне

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

В локальных сетях основная роль в организации взаимодействия узлов принадлежит протоколу канального уровня, который ориентирован на вполне определенную топологию ЛКС. Так, самый популярный протокол этого уровня – Ethernet – рассчитан на топологию «общая шина», когда все узлы сети параллельно подключаются к общей для них шине, а протокол Token Ring – на топологию «звезда». При этом применяются простые структуры кабельных соединений между РС сети, а для упрощения и удешевления аппаратных и программных решений реализовано совместное использование кабелей всеми РС в режиме разделения времени (в режиме TDH). Такие простые решения, характерные для разработчиков первых ЛКС во второй половине 70-х годов ХХ-го века, наряду с положительными имели и отрицательные последствия, главные из которых – ограничения по производительности и надежности.

Поскольку в ЛКС с простейшей топологией (общая шина, кольцо, звезда) имеется только один путь передачи информации, производительность сети ограничивается пропускной способностью этого пути, а надежность сети – надежностью пути. Поэтому по мере развития и расширения сфер применения локальных сетей с помощью специальных коммуникационных устройств (мостов, коммутаторов, маршрутизаторов) эти ограничения постепенно снимались. Базовые конфигурации ЛКС (шина, кольцо) превратились в элементарные звенья, из которых формируются более сложные структуры локальных сетей, имеющие параллельные и резервные пути между узлами.

Однако внутри базовых структур локальных сетей продолжают работать все те же протоколы Ethernet и Token Ring. Объединение этих структур (сегментов) в общую, более сложную локальную сеть осуществляется с помощью дополнительного оборудования, а взаимодействие РС такой сети – с помощью других протоколов.

В развитии локальных сетей, кроме отмеченного, наметились и другие тенденции:

· отказ от разделяемых сред передачи данных и переход к использованию активных коммутаторов, к которым РС сети присоединяются индивидуальными линиями связи;

· появление нового режима работы в ЛКС при использовании коммутаторов – полнодуплексного (хотя в базовых структурах локальных сетей РС работают в полудуплексном режиме, т.к. сетевой адаптер станции в каждый момент времени либо передает свои данные, либо принимает другие, но не делает это одновременно). Сегодня каждая технология ЛКС приспособлена для работы как в полудуплексном, так и в полнодуплексном режимах.

Стандартизация протоколов ЛКС осуществлена комитетом 802, организованном в 1980 в институте IEEE. Стандарты семейства IEEE 802.Х охватывают только два нижних уровня модели ВОС – физический и канальный. Именно эти уровни отражают специфику локальных сетей, старшие уровни, начиная с сетевого, имеют общие черты для сетей любого класса.

В локальных сетях, как уже отмечалось, канальный уровень разделен на два подуровня:

· логической передачи данных (LLC);

· управления доступом к среде (МАС).

Протоколы подуровней МАС и LLC взаимно независимы, т.е. каждый протокол подуровня МАС может работать с любым протоколом подуровня LLC, и наоборот.

Подуровень МАС обеспечивает совместное использование общей передающей среды, а подуровень LLC – организует передачу кадров с различным уровнем качества транспортных услуг. В современных ЛКС используются несколько протоколов подуровня МАС, реализующих различные алгоритмы доступа к разделяемой среде и определяющих специфику технологий Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, 100VG-AnyLAN.

Протокол LLC . Для технологий ЛКС этот протокол обеспечивает необходимое качество транспортной службы. Он занимает положение между сетевыми протоколами и протоколами подуровня МАС. По протоколу LLC кадры передаются либо дейтаграммным способом, либо с помощью процедур с установлением соединения между взаимодействующими станциями сети и восстановлением кадров путем их повторной передачи при наличии в них искажений.

Различают три режима работы протокола LLC:

· LLC1 – процедура без установления соединения и без подтверждения. Это дейтаграммный режим работы. Он используется обычно тогда, когда восстановление данных после ошибок и упорядочение данных осуществляется протоколами вышележащих уровней;

· LLC2 – процедура с установлением соединения и подтверждением. По этому протоколу перед началом передачи между взаимодействующими РС устанавливается логическое соединение и, если это необходимо, выполняются процедуры восстановления кадров после ошибок и упорядочения потока кадров в рамках установленного соединения (протокол работает в режиме скользящего окна, используемом в сетях ARQ). Логический канал протокола LLC2 является дуплексным, т.е. данные могут передаваться одновременно в обоих направлениях;

· LLC3 – процедура без установления соединения, но с подтверждением. Это дополнительный протокол, который применяется, когда временные задержки (например, связанные с установлением соединения) перед отправкой данных не допускаются, но подтверждение о корректности приема данных необходимо. Протокол LLC3 используется в сетях, работающих в режиме реального времени по управлению промышленными объектами.

Указанные три протокола являются общими для всех методов доступа к передающей среде, определенных стандартами IEEE 802.Х.

Кадры подуровня LLC по своему назначению делятся на три типа – информационные (для передачи данных), управляющие (для передачи команд и ответов в процедурах LLC2) и ненумерованные (для передачи ненумерованных команд и ответов LLC1 и LLC2).

Все кадры имеют один и тот же формат: адрес отправителя, адрес получателя, контрольное поле (где размещается информация, необходимая для контроля правильности передачи данных), поле данных и два обрамляющих однобайтовых поля «Флаг» для определения границ кадра LLC. Поле данных может отсутствовать в управляющих и ненумерованных кадрах. В информационных кадрах, кроме того, имеется поле для указания номера отправленного кадра, а также поле для указания номера кадра, который отправляется следующим.

В локальных сетях основная роль в организации взаимодействия узлов принадлежит протоколу канального уровня, который ориентирован на вполне определенную топологию ЛКС. Так, самый популярный протокол этого уровня - Ethernet - рассчитан на топологию «общая шина», когда все узлы сети параллельно подключаются к общей для них шине, а протокол Token Ring - на топологию «звезда». При этом применяются простые структуры кабельных соединений между РС сети, а для упрощения и удешевления аппаратных и программных решений реализовано совместное использование кабелей всеми РС в режиме разделения времени (в режиме TDH). Такие простые решения, характерные для разработчиков первых ЛКС во второй половине 70-х годов ХХ-го века, наряду с положительными имели и отрицательные последствия, главные из которых - ограничения по производительности и надежности.

Поскольку в ЛКС с простейшей топологией («общая шина», «кольцо», «звезда») имеется только один путь передачи информации, производительность сети ограничивается пропускной способностью этого пути, а надежность сети - надежностью пути. Поэтому по мере развития и расширения сфер применения локальных сетей с помощью специальных коммуникационных устройств (мостов, коммутаторов, маршрутизаторов) эти ограничения постепенно снимались. Базовые конфигурации ЛКС («шина», «кольцо») превратились в элементарные звенья, из которых формируются более сложные структуры локальных сетей, имеющие параллельные и резервные пути между узлами.

Однако внутри базовых структур локальных сетей продолжают работать все те же протоколы Ethernet и Token Ring. Объединение этих структур (сегментов) в общую, более сложную локальную сеть осуществляется с помощью дополнительного оборудования, а взаимодействие РС такой сети - с помощью других протоколов.

В развитии локальных сетей, кроме отмеченного, наметились и другие тенденции:

Отказ от разделяемых сред передачи данных и переход к использованию активных коммутаторов, к которым РС сети присоединяются индивидуальными линиями связи;

Появление нового режима работы в ЛКС при использовании коммутаторов - полнодуплексного (хотя в базовых структурах локальных сетей РС работают в полудуплексном режиме, т. к. сетевой адаптер станции в каждый момент времени либо передает свои данные, либо принимает другие, но не делает это одновременно). Сегодня каждая технология ЛКС приспособлена для работы как в полудуплексном, так и в полнодуплексном режимах.

Стандартизация протоколов ЛКС осуществлена комитетом 802, организованном в 1980 в институте IEEE. Стандарты семейства IEEE 802.Х охватывают только два нижних уровня модели ВОС - физический и канальный. Именно эти уровни отражают специфику локальных сетей, старшие уровни, начиная с сетевого, имеют общие черты для сетей любого класса.

В локальных сетях, как уже отмечалось, канальный уровень разделен на два подуровня:

Логической передачи данных (LLC);

Управления доступом к среде (МАС).

Протоколы подуровней МАС и LLC взаимно независимы, т. е. каждый протокол подуровня МАС может работать с любым протоколом подуровня LLC, и наоборот.

Подуровень МАС обеспечивает совместное использование общей передающей среды, а подуровень LLC - организует передачу кадров с различным уровнем качества транспортных услуг. В современных ЛКС используются несколько протоколов подуровня МАС, реализующих различные алгоритмы доступа к разделяемой среде и определяющих специфику технологий Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, 100VG-AnyLAN.

Протокол LLC. Для технологий ЛКС этот протокол обеспечивает необходимое качество транспортной службы. Он занимает положение между сетевыми протоколами и протоколами подуровня МАС. По протоколу LLC кадры передаются либо дейтаграммным способом, либо с помощью процедур с установлением соединения между взаимодействующими станциями сети и восстановлением кадров путем их повторной передачи при наличии в них искажений.

Различают три режима работы протокола LLC:

LLC1 - процедура без установления соединения и без подтверждения. Это дейтаграммный режим работы. Он используется обычно тогда, когда восстановление данных после ошибок и упорядочение данных осуществляется протоколами вышележащих уровней;

LLC2 - процедура с установлением соединения и подтверждением. По этому протоколу перед началом передачи между взаимодействующими РС устанавливается логическое соединение и, если это необходимо, выполняются процедуры восстановления кадров после ошибок и упорядочения потока кадров в рамках установленного соединения (протокол работает в режиме скользящего окна, используемом в сетях ARQ). Логический канал протокола LLC2 является дуплексным, т. е. данные могут передаваться одновременно в обоих направлениях;

LLC3 - процедура без установления соединения, но с подтверждением. Это дополнительный протокол, который применяется, когда временные задержки (например, связанные с установлением соединения) перед отправкой данных не допускаются, но подтверждение о корректности приема данных необходимо. Протокол LLC3 используется в сетях, работающих в режиме реального времени по управлению промышленными объектами.

Указанные три протокола являются общими для всех методов доступа к передающей среде, определенных стандартами IEEE 802.Х.

Кадры подуровня LLC по своему назначению делятся на три типа - информационные (для передачи данных), управляющие (для передачи команд и ответов в процедурах LLC2) и ненумерованные (для передачи ненумерованных команд и ответов LLC1 и LLC2).

Все кадры имеют один и тот же формат: адрес отправителя, адрес получателя, контрольное поле (где размещается информация, необходимая для контроля правильности передачи данных), поле данных и два обрамляющих однобайтовых поля «Флаг» для определения границ кадра LLC. Поле данных может отсутствовать в управляющих и ненумерованных кадрах. В информационных кадрах, кроме того, имеется поле для указания номера отправленного кадра, а также поле для указания номера кадра, который отправляется следующим.

Технология Ethernet (стандарт 802.3). Это самый распространенный стандарт локальных сетей. По этому протоколу в настоящее время работают более 5 миллионов ЛКС. Имеется несколько вариантов и модификаций технологии Ethernet, составляющих целое семейство технологий. Из них наиболее известными являются 10-мегабитный вариант стандарта IEEE 802.3, а также новые высокоскоростные технологии Fast Ethernet и Gigabit Ethernet. Все эти варианты и модификации отличаются типом физической среды передачи данных.

Все виды стандартов Ethernet используют один и тот же метод доступа к передающей среде - метод случайного доступа CSMA/CD. Он применяется исключительно в сетях с общей логической шиной, которая работает в режиме коллективного доступа и используется для передачи данных между любыми двумя узлами сети. Такой метод доступа носит вероятностный характер: вероятность получения в свое распоряжение среды передачи зависит от загруженности сети. При значительной загрузке сети интенсивность коллизий возрастает и ее полезная пропускная способность резко падает.

Полезная пропускная способность сети - это скорость передачи пользовательских данных, переносимых полем данных кадров. Она всегда меньше номинальной битовой скорости протокола Ethernet за счет служебной информации кадра, межкадровых интервалов и ожидания доступа к среде. При передаче кадров минимальной длины (72 байта вместе с преамбулой) максимально возможная пропускная способность сегмента Ethernet составляет 14880 кадр/ с, а полезная пропускная способность - всего 5,48 Мбит/ с, что немного превышает половину номинальной пропускной способности - 10 Мбит/ с. При передаче кадров максимальной длины (1518 байт) полезная пропускная способность равна 9,76 Мбит/ с, что близко к номинальной скорости протокола. Наконец, при использовании кадров средней длины с полем данных в 512 байт, полезная пропускная способность равна 9,29 Мбит/ с, т. е. также мало отличается от предельной пропускной способности в 10 Мбит/ с. Следует учесть, что такие скорости достигаются только при отсутствии коллизий, когда двум взаимодействующим узлам другие узлы не мешают. Коэффициент использования сети в случае отсутствия коллизий и ожидания доступа имеет максимальное значение 0,96.

Технологией Ethernet поддерживаются 4 разных типа кадров, имеющих общий формат адресов. Распознавание типа кадров осуществляется автоматически. В качестве примера приведем структуру кадра 802.3/LLC.

Такой кадр имеет следующие поля:

Поле преамбулы - состоит из семи синхронизирующих байт 10101010, которые используются для реализации манчестерского кодирования;

Начальный ограничитель кадра - состоит из одного байта 10101011 и указывает на то, что следующий байт - это первый байт заголовка кадра;

Адрес назначения - длина его 6 байт, он включает признаки, по которым устанавливает тип адреса - индивидуальный (кадр отправляется одной РС), групповой (кадр отправляется группе РС), широковещательный (для всех РС сети);

Адрес источника (отправителя) - длина его 2 или 6 байт;

Длина поля данных - 2-байтовое поле, определяющее длину поля данных в кадре;

Поле данных - длина его от 0 до 1500 байт. Если длина этого поля меньше 46 байт, то используется так называемое поле заполнения, чтобы дополнить кадр до минимального допустимого значения в 46 байт;

Поле заполнения - длина его такая, чтобы обеспечить минимальную длину поля данных в 46 байт (это необходимо для корректной работы механизма обнаружения ошибок). Поле заполнения в кадре отсутствует, если длина поля данных достаточна;

Поле контрольной суммы - состоит из 4 байт и содержит контрольную сумму, которая используется на приемной стороне для выявления ошибок в принятом кадре.

В зависимости от типа физической среды по стандарту IEEE 802.3 различают следующие спецификации:

10Base-5 - толстый коаксиальный кабель (диаметр 0,5 дюйма), максимальная длина сегмента сети 500 метров;

10Base-2 - тонкий коаксиальный кабель (диаметр 0,25 дюйма), максимальная длина сегмента без повторителей 185 метров;

10 Base-T - неэкранированная витая пара, образующая звездообразную топологию на основе концентратора. Расстояние между концентратором и РС - не более 100 метров;

10Base-F - волоконно-оптический кабель, образующий звездообразную топологию. Расстояние между концентратором и РС - до 1000 м и 2000 м для различных вариантов этой спецификации.

В этих спецификациях число 10 обозначает битовую скорость передачи данных (10 Мбит/с), слово Base - метод передачи на одной базовой частоте 10 МГц, последний символ (5, 2, Т, F) - тип кабеля.

Для всех стандартов Ethernet имеют место следующие характеристики и ограничения:

Номинальная пропускная способность - 10 Мбит/ с;

Максимальное число РС в сети - 1024;

Максимальное расстояние между узлами в сети - 2500 м;

Максимальное число коаксиальных сегментов сети - 5;

Максимальная длина сегмента - от 100 м (для 10Base-T) до 2000 м (для 10Base-F);

Максимальное число повторителей между любыми станциями сети - 4.

Технология Token Ring (стандарт 802.5). Здесь используется разделяемая среда

передачи данных, состоящая из отрезков кабеля, соединяющих все РС сети в кольцо. К кольцу (общему разделяемому ресурсу) применяется детерминированный доступ, основанный на передаче станциям права на использование кольца в определенном порядке. Это право предается с помощью маркера. Маркерный метод доступа гарантирует каждой РС получение доступа к кольцу в течение времени оборота маркера. Используется приоритетная система владения маркером - от 0 (низший приоритет) до 7 (высший). Приоритет для текущего кадра определяется самой станцией, которая может захватить кольцо, если в нем нет более приоритетных кадров.

В сетях Token Ring в качестве физической среды передачи данных используются экранированная и неэкранированная витая пара и волоконно-оптический кабель. Сети работают с двумя битовыми скоростями - 4 и 16 Мбит/ с, причем в одном кольце все РС должны работать с одной скоростью. Максимальная длина кольца - 4 км, а максимальное количество РС в кольце - 260. Ограничения на максимальную длину кольца связаны со временем оборота маркера по кольцу. Если в кольце 260 станций и время удержания маркера каждой станцией равно 10 мс, то маркер после совершения полного оборота вернется в активный монитор через 2,6 с. При передаче длинного сообщения, разбиваемого, например на 50 кадров, это сообщение будет принято получателем в лучшем случае (когда активной является только РС-отправитель) через 260 с, что для пользователей не всегда приемлемо.

Максимальный размер кадра в стандарте 802.5 не определен. Обычно он принимается равным 4 Кбайт для сетей 4 Мбит/ с и 16 Кбайт для сетей 16 Мбит/ с.

В сетях 16 Мбит/ с используется также и более эффективный алгоритм доступа к кольцу. Это алгоритм раннего освобождения маркера (ETR): станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита своего кадра, не дожидаясь возвращения по кольцу этого кадра и занятого маркера. В этом случае по кольцу будут передаваться одновременно кадры нескольких станций, что существенно повышает эффективность использования пропускной способности кольца. Конечно, и в этом случае в каждый данный момент генерировать кадр в кольцо может только та РС, которая в этот момент владеет маркером доступа, а остальные станции будут только ретранслировать чужие кадры.

Технология Token Ring существенно сложнее технологии Ethernet. В ней заложены возможности отказоустойчивости: за счет обратной связи кольца одна из станций (активный монитор) непрерывно контролирует наличие маркера, время оборота маркера и кадров данных, обнаруженные ошибки в сети устраняются автоматически, например потерянный маркер может быть восстановлен. В случае выхода из строя активного монитора, выбирается новый активный монитор и процедура инициализации кольца повторяется.

Стандарт Token Ring (технология этих сетей была разработана еще в 1984 г. фирмой IBM, которая является законодателем мод в этой технологии) изначально предусматривал построение связей в сети с помощью концентраторов, называемых MAU, т.

Е. устройствами многостанционного доступа. Концентратор может быть пассивным (соединяет порты внутренними связями так, чтобы РС, подключенные к этим портам, образовали кольцо, а также обеспечивает обход какого-либо порта, если подключенный к этому порту компьютер выключается) или активным (выполняет функции регенерации сигналов и поэтому иногда называется повторителем).

Для сетей Token Ring характерна звездно-кольцевая топология: РС подключаются к концентраторам по топологии звезды, а сами концентраторы через специальные порты Ring In (RI) и Ring Out (RO) объединяются для образования магистрального физического кольца. Сеть Token Ring может строиться на основе нескольких колец, разделенных мостами, маршрутизирующими кадры адресату (каждый кадр снабжается полем с маршрутом прохождения колец).

Недавно технология Token Ring стараниями компании IBM получила новое развитие: предложен новый вариант этой технологии (HSTR), поддерживающий битовые скорости в 100 и 155 Мбит/с. При этом сохранены основные особенности технологии Token Ring 16 Мбит/с.

Технология FDDI. Это первая технология ЛКС, в которой для передачи данных используется волоконно-оптический кабель. Она появилась в 1988 г. и ее официальное название - оптоволоконный интерфейс распределенных данных (Fiber Distributed Data Interface, FDDI). В настоящее время в качестве физической среды, кроме волоконнооптического кабеля, применяется неэкранированная витая пара.

Технология FDDI предназначена для использования на магистральных соединениях между сетями, для подключения к сети высокопроизводительных серверов, в корпоративных и городских сетях. Поэтому в ней обеспечена высокая скорость передачи данных (100 Мбит/ с), отказоустойчивость на уровне протокола и большие расстояния между узлами сети. Все это сказалось на стоимости подключения к сети: для подключения клиентских компьютеров эта технология оказалась слишком дорогой.

Существует значительная преемственность между технологиями Token Ring и FDDI. Основные идеи технологии Token Ring восприняты и получили совершенствование и развитие в технологии FDDI, в частности, кольцевая топология и маркерный метод доступа.

Компьютерные сети и сетевые технологии

В сети FDDI для передачи данных используются два оптоволоконных кольца, образующих основной и резервный пути передачи между РС. Станции сети подключаются к обоим кольцам. В нормальном режиме задействовано только основное кольцо. В случае отказа какой-либо части основного кольца оно объединяется с резервным кольцом, вновь образуя единое кольцо (это режим «свертывания» колец) с помощью концентраторов и сетевых адаптеров. Наличие процедуры «свертывания» при отказах - основной способ повышения отказоустойчивости сети. Существуют и другие процедуры для определения отказов в сети и восстановления ее работоспособности.

Основное отличие маркерного метода доступа к передающей среде, используемого в сети FDDI, от этого метода в сети Token Ring, заключается в том, что в сети FDDI время удержания маркера является постоянной величиной только для синхронного трафика, который критичен к задержкам передачи кадров. Для асинхронного трафика, не критичного к небольшим задержкам передачи кадров, это время зависит от загрузки кольца: при небольшой загрузке оно увеличивается, а при большой - может уменьшаться до нуля. Таким образом, для асинхронного трафика метод доступа является адаптивным, хорошо регулирующим временные перегрузки сети. Механизм приоритетов кадров отсутствует. Считается, что достаточно разделить трафик на два класса - синхронный, который обслуживается всегда (даже при перегрузках кольца), и асинхронный, обслуживаемый при малой загрузке кольца. Станции FDDI применяют алгоритм раннего освобождения маркера, как это сделано в сети Token Ring со скоростью 16 Мбит/с. Синхронизация сигналов обеспечивается применением биполярного кода NRZI.

В сети FDDI выделенный активный монитор отсутствует, все станции и концентраторы равноправны, и при обнаружении отклонений от нормы они осуществляют повторную инициализацию сети и, если это необходимо, ее реконфигурацию.

Результаты сравнения технологии FDDI с технологиями Ethernet и Token Ring приведены в табл. 8.


Технологии Fast Ethernet и 100VG-AnyLAN. Обе эти технологии не являются самостоятельными стандартами и рассматриваются как развитие и дополнение технологии Ethernet, реализованное соответственно в 1995 и 1998 годах. Новые технологии Fast Ethernet (стандарт 802.3и) и 100VG-AnyLAN (стандарт 802.3z) имеют производительность 100 Мбит/ с и отличаются степенью преемственности с классическим Ethernet.

В стандарте 802.3и сохранен метод случайного доступа CSMA/CD и тем самым обеспечена преемственность и согласованность сетей 10 Мбит/с и 100 Мбит/ с.

В технологии 100VG-AnyLAN используется совершенно новый метод доступа - Demand Priority (DP), приоритетный доступ по требованию. Эта технология существенно отличается от технологии Ethernet.

Отметим особенности технологии Fast Ethernet и ее отличия от технологии Ethernet:

Структура физического уровня технологии Fast Ethernet более сложная, что объясняется использованием трех вариантов кабельных систем: волоконно-оптический кабель, витая пара категории 5 (используются две пары), витая пара категории 3 (используются четыре пары). Отказ от коаксиального кабеля привел к тому, что сети этой технологии всегда имеют иерархическую древовидную структуру;

Диаметр сети сокращен до 200 м, время передачи кадра минимальной длины уменьшено в 10 раз за счет увеличения скорости передачи в 10 раз;

Технология Fast Ethernet может использоваться при создании магистралей локальных сетей большой протяженности, но только в полудуплексном варианте и совместно с коммутаторами (полудуплексный вариант работы для этой технологии является основным);

Для всех трех спецификаций физического уровня, отличающихся типом используемого кабеля, форматы кадров отличаются от форматов кадров технологий 10- мегабитного Ethernet;

Признаком свободного состояния передающей среды является не отсутствие сигналов, а передача по ней специального символа в кодированном виде;

Для представления данных при передаче по кабелю и обеспечения синхронизации сигналов манчестерский код не используется. Применяется метод кодирования 4В/5В, хорошо себя зарекомендовавший в технологии FDDI. В соответствии с этим методом каждые 4 бита передаваемых данных представляются 5 битами, т. е. из 32 комбинаций 5-битных символов для кодирования исходных 4-битных символов используются только 16 комбинаций, а из оставшихся 16 комбинаций выбираются несколько кодов, которые используются как служебные. Один из служебных кодов постоянно передается в течение пауз между передачей кадров. Если он в линии связи отсутствует, то это свидетельствует об отказе физической связи;

Кодирование и синхронизация сигналов осуществляются с помощью биполярного кода NRZI;

Технология Fast Ethernet рассчитана на использование концентраторов- повторителей для образования связей в сети (то же самое имеет место для всех некоаксиальных вариантов Ethernet).

Особенности технологии 100VG-AnyLAN заключается в следующем:

Используется другой метод доступа к передающей среде - Demand Priority, обеспечивающий более эффективное распределение пропускной способности сети между запросами пользователей и поддерживающий приоритетный доступ для синхронного режима работы. В качестве арбитра доступа используется концентратор, который циклически выполняет опрос рабочих станций. Станция, желая передать свой кадр, посылает специальный сигнал концентратору, запрашивает

передачу кадра и указывает его приоритет. Имеются два уровня приоритетов - низкий (для обычных данных) и высокий (для данных, чувствительных к временным задержкам, например мультимедиа). Приоритеты запросов имеют две составляющие - статическую и динамическую, поэтому станция с низким уровнем приоритета, долго не имеющая доступа к сети, получает высокий приоритет;

Передача кадров осуществляется только станции назначения, а не всем станциям сети;

Сохранены форматы кадров Ethernet и Token Ring, что облегчает межсетевое взаимодействие через мосты и маршрутизаторы;

Поддерживаются несколько спецификаций физического уровня, предусматривающих использование четырех и двух неэкранированных витых пар, двух экранированных витых пар и двух оптоволоконных кабелей. Если используются 4 пары неэкранированного кабеля, по каждой паре одновременно передаются данные со скоростью 25 Мбит/ с, что в сумме дает 100 Мбит/ с. Коллизии при передаче информации отсутствуют. Для кодирования данных применяется код 5В/6В, идея использования которого аналогична коду 4В/5В.

Технология 100VG-AnyLAN не нашла такого широкого распространения, как Fast Ethernet. Это объясняется узостью технических возможностей поддержки разных типов трафика, а также появлением высокоскоростной технологии Gigabit Ethernet.

Технология Gigabit Ethernet. Появление этой технологии представляет собой новую ступень в иерархии сетей семейства Ethernet, обеспечивающую скорость передачи в 1000 Мбит/ с. Стандарт по этой технологии принят в 1998г., в нем максимально сохранены идеи классической технологии Ethernet.

По поводу технологии Gigabit Ethernet следует отметить следующее:

На уровне протокола не поддерживаются (так же, как и у его предшественников): качество обслуживания, избыточные связи, тестирование работоспособности узлов и оборудования. Что касается качества обслуживания, то считается, что высокая скорость передачи данных по магистрали и возможность назначения пакетам приоритетов в коммутаторах вполне достаточны для обеспечения качества транспортного обслуживания пользователей сети. Поддержка избыточных связей и тестирование оборудования осуществляются протоколами более высоких уровней;

Сохраняются все форматы кадров Ethernet;

Имеется возможность работы в полудуплексном и полнодуплексном режимах. Первый из них поддерживает метод доступа CSMA/CD, а второй - работу с коммутаторами;

Поддерживаются все основные виды кабелей, как и в предшествующих технологиях этого семейства: волоконно-оптический, витая пара, коаксиал;

Минимальный размер кадра увеличен с 64 до 512 байт, максимальный диаметр сети тот же - 200 м. Можно передавать несколько кадров подряд, не освобождая среду.

Технология Gigabit Ethernet позволяет строить крупные локальные сети, в которых серверы и магистрали нижних уровней сети работают на скорости 100 Мбит/ с, а магистраль 1000 Мбит/ с объединяет их, обеспечивая запас пропускной способности.

До сих пор рассматривались протоколы, работающие на первых трех уровнях семиуровневой эталонной модели ВОС и реализующие соответствующие методы логической передачи данных и доступа к передающей среде. В соответствии с этими протоколами передаются пакеты между рабочими станциями, но не решаются вопросы, связанные с сетевыми файловыми системами и переадресацией файлов. Эти протоколы не включают никаких средств обеспечения правильной последовательности приема переданных данных и средств идентификации прикладных программ, нуждающихся в обмене данными.

В отличие от протоколов нижнего уровня протоколы верхнего уровня (называемые также протоколами среднего уровня, так как они реализуются на 4-м и 5-м уровнях модели ВОС) служат для обмена данными. Они предоставляют программам интерфейс для передачи данных методом дейтаграмм, когда пакеты адресуются и передаются без подтверждения получения, и методом сеансов связи, когда устанавливается логическая связь между взаимодействующими станциями (источником и адресатом) и доставка сообщений подтверждается.

Протоколы верхнего уровня подробно рассматриваются в следующей главе. Здесь лишь коротко отметим протокол IPX/SPX, получивший широкое применение в локальных сетях особенно в связи с усложнением их топологии (вопросы маршрутизации перестали быть тривиальными) и расширением предоставляемых услуг. IPX/SPX - сетевой протокол NetWare, причем IPX (Internetwork Packet Exchange) - протокол межсетевого обмена пакетами, а SPX (Sequenced Packet Exchange) - протокол последовательного обмена пакетами.

Протокол IPX/SPX. Этот протокол является набором протоколов IPX и SPX. Фирма Nowell в сетевой операционной системе NetWare применяет протокол IPX для обмена дейтаграммами и протокол SPX для обмена в сеансах связи.

Протокол IPX/SPX относится к программно-реализованным протоколам. Он не работает с аппаратными прерываниями, используя функции драйверов операционных систем. Пара протоколов IPX/SPX имеет фиксированную длину заголовка, что приводит к полной совместимости разных реализаций этих протоколов.

Протокол IPX применяется маршрутизаторами в сетевой операционной системе (СОС) NetWare. Он соответствует сетевому уровню модели ВОС и выполняет функции адресации, маршрутизации и переадресации в процессе передачи пакетов данных. Несмотря на отсутствие гарантий доставки сообщений (адресат не передает отправителю подтверждения о получении сообщения) в 95 % случаев не требуется повторной передачи. На уровне IPX выполняются служебные запросы к файловым серверам. и каждый такой запрос требует ответа со стороны сервера. Этим и определяется надежность работы методом дейтаграмм, так как маршрутизаторы воспринимают реакцию сервера на запрос как ответ на правильно переданный пакет.

Раздел 16 - Уголовного Кодекса Украины Преступления в сфере использования электронно-вычислительных машин (компьютеров), систем и компьютерных сетей и сетей электросвязи



  • © 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows