Выпрямитель используемый в устройствах большой мощности называется. Типы выпрямителей переменного тока Какие бывают выпрямители? Структурная схема и классификация выпрямителей

Выпрямитель используемый в устройствах большой мощности называется. Типы выпрямителей переменного тока Какие бывают выпрямители? Структурная схема и классификация выпрямителей

20.03.2019

Данная страница содержит красивые арабские цифры , которые не напечатать с клавиатуры. Их можно скопировать и вставить туда, где нельзя изменить шрифт (в соц. сетях). Кроме цифр, которыми пользуются европейцы, тут есть и настоящие - те что применяют сами арабы. А для комплекта, пусть тут же полежат и римские цифры и индийские. Есть же не попросят, я надеюсь. Все они из Юникода, узнать про них подробнее вы сможете, забив их в поиск на сайте.

Арабские:

① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮ ⑯ ⑰ ⑱ ⑲ ⑳

❶ ❷ ❸ ❹ ❺ ❻ ❼ ❽ ❾ ❿ ⓫ ⓬ ⓭ ⓮ ⓯ ⓰ ⓱ ⓲ ⓳ ⓴ ⓿ ❶ ❷ ❸ ❹ ❺ ❻ ❼ ❽ ❾ ❿

⓵ ⓶ ⓷ ⓸ ⓹ ⓺ ⓻ ⓼ ⓽ ⓾

¼ ½ ¾ ⅐ ⅑ ⅒ ⅓ ⅔ ⅕ ⅖ ⅗ ⅘ ⅙ ⅚ ⅛ ⅜ ⅝ ⅞ ⅟

⑴ ⑵ ⑶ ⑷ ⑸ ⑹ ⑺ ⑻ ⑼ ⑽ ⑾ ⑿ ⒀ ⒁ ⒂ ⒃ ⒄ ⒅ ⒆ ⒇

⒈ ⒉ ⒊ ⒋ ⒌ ⒍ ⒎ ⒏ ⒐ ⒑ ⒒ ⒓ ⒔ ⒕ ⒖ ⒗ ⒘ ⒙ ⒚ ⒛

𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟘 𝟙 𝟚 𝟛 𝟜 𝟝 𝟞 𝟟 𝟠 𝟡 𝟢 𝟣 𝟤 𝟥 𝟦 𝟧 𝟨 𝟩 𝟪 𝟫 𝟬 𝟭 𝟮 𝟯 𝟰 𝟱 𝟲 𝟳 𝟴 𝟵 𝟶 𝟷 𝟸 𝟹 𝟺 𝟻 𝟼 𝟽 𝟾 𝟿

Римские:

Ⅰ – 1 ; ⅩⅠ - 11

Ⅱ – 2 ; ⅩⅡ - 12

Ⅲ – 3 ; ⅩⅢ - 13

Ⅳ – 4 ; ⅩⅣ - 14

Ⅴ – 5 ; ⅩⅤ - 15

Ⅵ – 6 ; ⅩⅥ - 16

Ⅶ – 7 ; ⅩⅦ - 17

Ⅷ – 8 ; ⅩⅧ - 18

Ⅸ – 9 ; ⅩⅨ - 19

Ⅹ – 10 ; ⅩⅩ - 20

Ⅽ – 50 ; ⅩⅩⅠ - 21

Арабские для арабов = индийские в письменности деванагари = понятные нам

Немного истории. Считается, что арабская система счисления зародилась в Индии, примерно, в V веке. Хотя, возможно, что ещё раньше и в Вавилоне. Арабскими цифры называются потому, что в Европу пришли от арабов. Сначала, в мусульманскую часть Испании, а в X веке уже и папа римский Сильвестр II призывал забросить громоздкую латинскую запись. Серьёзным толчком к распространению арабских цифр стал перевод на латинский язык книги Аль-Хорезми «Об индийском счёте».

Индо-арабская система записи чисел является десятичной. Любое число составляется из 10 знаков. Юникод, кстати, использует шестнадцатеричные числа. Удобнее римской она потому, что позиционная. В таких системах, величина которую обозначает цифра зависит от её положения в числе. В числе 90 цифра 9 значит девяносто, а в числе 951 – девятьсот. В непозиционных системах расположение символа не играет такой роли. Римская Х означает десять и в числе XII и в числе MXC. Подобным непозиционным образом записывали числа многие народы. У греков и у славян некоторые буквы алфавита имели и цифровое значение.

В первую очередь модели делятся по фазам. Существуют двухфазные, а также трехфазные модификации. Мостовые устройства изготавливаются исключительно для преобразователей. По мощности выделяют силовые элементы, а также модели сигналов. По наличию устройств стабилизации они делятся на полноволновые, неполноволновые, двухпериодные и трансформаторные модификации. Для того чтобы разобраться в выпрямителях, необходимо рассмотреть схему обычной модели.

Схема выпрямителя

Схема выпрямителя тока включает в себя проводники с различной проводимостью тока. Также в устройствах используются каналы. Электронные вентили устанавливаются различной чувствительности. Если рассматривать мостовые модификации, то у них применяются стабилитроны. Также на рынке представлены диодные устройства.

Принцип действия

Принцип работы выпрямителя основывается на преобразовании тока. Осуществляется данный процесс за счет изменения частоты. Для этого в устройстве имеется электронный вентиль. Для стабилизации процесса преобразования используются каналы. Чтобы избежать проблем с отрицательной полярностью, устанавливаются стабилитроны. Непосредственно подключение устройства осуществляется через проводники.

Силовые устройства

Выпрямители тока данного типа используются в различных блоках питания. Наиболее часто их можно встретить в персональных компьютерах. Схема устройства предполагает использование векторного транзистора. Если рассматривать двухканальную модификацию, то подключение осуществляется через расширитель.

В некоторых устройствах используются тетроды. Если рассматривать трехканальные элементы, то они рассчитаны для блоков питания на 20 В. В данном случае тетроды никогда не применяются. Принцип работы выпрямителей построен на изменении частоты. Многие модификации продаются с электронными вентилями. Если говорить про параметры, то чувствительность устройства колеблется в районе 23 мВ. Непосредственно проводимость тока у моделей не превышает 2 мк.

Принцип работы выпрямителей сигналов

Выпрямители сигналов работают от обратной связи. Использоваться модели могут только в сети с переменным током. Если рассматривать устройства на 12 Вт, то следует отметить, что фильтры применяются только полудуплексного типа. Также стандартная схема выпрямителя подразумевает использование транзистора с ресивером.

У моделей на три канала обязательно используются триггеры. Данные устройства устанавливаются через изоляторы. Выходное напряжение у моделей, как правило, не превышает 20 В. Силовая электроника у выпрямителей позволила решить проблему с перепадами напряжения за счет установки

Мостовые устройства

Мостовые выпрямители продаются для блоков питания и преобразователей. Действуют устройства в сети с переменным током. Непосредственно изменение частоты осуществляется за счет работы расширителя. Указанный элемент в выпрямителе играет роль проводника. В некоторых случаях он устанавливается с изоляторами. По системе защиты мостовые выпрямители довольно сильно отличаются.

Если рассматривать модификации на три канала, то у них используются триггеры. Данные элементы могут устанавливаться с обкладкой и без нее. Модификации на четыре канала встречаются очень редко. Показатель проводимости тока у выпрямителей не превышает 40 мк. В данном случае чувствительность устройства равняется 2,5 мк.

Двухфазные модификации

Двухфазные выпрямители тока производятся для транспортных средств. Работают модели по принципу изменения частоты. Осуществляться этот процесс может за счет расширителя либо триггера. Наиболее часто модели встречаются без тетродов. Параметр предельной перегрузки у модификаций не превышает 6 А. Фильтры используются, как правило, проводного типа.

Если рассматривать модификации на три канала, то у них есть двухразрядный триггер. Показатель его чувствительности составляет не более 3 мк. В свою очередь, выходное напряжение максимум равняется 35 В. Силовая электроника у двухфазных устройств дала возможность решить проблему с перегрузками напряжения благодаря использованию диодных мотов.

Трехфазные модели

Трехфазный выпрямитель встретить можно только в трансформаторных подстанциях. Работают устройства от высоковольтной чети. В данном случае принцип работы модели построен то резком увеличении частоты. Параметр выходного напряжения при этом остается неизменными. Выпускаются модели на три и четыре канала. Подсоединение у них происходит через проводники.

Трехфазный выпрямитель на три канала выпускается с тетродами. В некоторых случаях для стабилизации процесса преобразования применяются расширители. Если говорить про выпрямители на четыре канала, то важно отметить, что они производятся всегда с усилителями. В данном случае показатель проводимости тока лежит в пределах 70 мк. Чувствительность выпрямителя равняется не более 4,2 мВ.

Полноволновые устройства

Полноволновый выпрямитель напряжения тока работает за счет смены полярности на расширителях. Транзисторы, как правило, используются открытого типа. Подходят данные устройства для преобразователей на 20 и 30 В. Непосредственно параметр чувствительности у них равняется 3 мВ. В свою очередь, проводимость тока находится в районе 4,5 мк.

Если говорить про модификации на три канала, то они устанавливаются только в блоки питания с усилителями. Фильтры для выпрямителей подходят в основном расширительного типа. Если говорить про устройства на четыре канала, то у них показатель проводимости тока лежит в районе 3 мк. Для модели не подходят.

Неполноволновые модификации

Неполноволновые выпрямители тока отличаются отсутствием электронного вентиля. Выпускаются элементы только с двумя каналами. Непосредственно подсоединение модификации осуществляется через контакты. Изоляторы используются как с обкладкой, так и без нее. В некоторых случаях применяются усилители.

Также важно отметить, что устанавливаются выпрямители данного типа в контроллерах. Параметр выходного напряжения у них, как правило, не превышает 30 В. В среднем чувствительность устройств составляет 75 мВ. В данном случае проводимость тока зависит от типа используемых фильтров.

Однопериодные модификации

Однопериодные выпрямители тока производятся для различных ресиверов. Отличительной чертой элементов принято считать высокий параметр проводимости тока. Работают устройства от обратной полярности. Выпускаются модели на два и три канала. Если рассматривать первый вариант, то важно отметить, что проводники используются с обкладкой. В данном случае расширители устанавливаются редко. Параметр проводимости тока у выпрямителей колеблется в районе 3 мк.

Если говорить про устройства на три канала, то они всегда выпускаются с тетродами. Также схема модификации подразумевает использование модуляторов. Для низкочастотных ресиверов указанные выпрямители подходят идеально. В данном случае чувствительность составляет не более 60 мВ.

Схема двухпериодных устройств

Двухпериодный выпрямитель тока производится для преобразования тока от приводных устройств. В данном случае процесс происходит за счет изменения частоты напряжения. Расширители у моделей используются, как правило, отрытого типа. Если говорить про модификации на два канала, то у них применяются распределительные фильтры. В некоторых случаях устанавливаются триггеры. Для подключения устройств к приводным установкам необходимы типа. Выпускаются они с различной емкостью. Как правило, на рынке представлены модификации на 20 пФ.

Особенности трансформаторных устройств

Трансформаторный выпрямитель (преобразователь электрической энергии) способен работать в сети с постоянным и переменным током. В данном случае триггеры используются трехразрядного типа. Для подключения устройств применяются проводники. Встретить трансформаторные выпрямители можно на подстанциях. Данные устройства рассчитаны на высокое выходное напряжение.

Система защиты у них устанавливается с хроматическими фильтрами. В данном случае параметр чувствительности лежит в пределах 80 мВ. Для приводных механизмов указанные устройства не подходят однозначно. Показатель приводимости тока у них равняется 20 мк. Триггеры для цепей подбираются как открытого, так и закрытого типа. В среднем параметр пороговой перегрузки находится на уровне 5 А.

Модели с умножением напряжения

Выпрямители данного типа на сегодняшний день активно используются в преобразователях. Стандартная схема модификации включает в себя вентиль, а также транзисторы. В среднем показатель их емкости равняется 2 пФ. Непосредственно проводимость тока составляет не более 3 мк.

Если говорить про модификации на два канала, то у них используются расширители. Устанавливаются они как открытого, так и закрытого типа. Во многих моделях есть регуляторы. Если говорить про выпрямители на четыре канала, то они производятся с модуляторами. Для их работы используются различные триггеры. Чаще всего они встречаются трехразрядного типа.

Модификации с гальванической развязкой

Устройства с работают по принципу понижения частоты. Подключаются они только от сети с переменным током. В данном случае транзисторы устанавливаются на 20 пФ. Непосредственно показатель чувствительности равняется 88 мВ. Если говорить про модификации на три канала, то у них применяются импульсные модуляторы. Во многих моделях есть защитные системы, которые помогают справляться с перегрузами. Фильтры используются с лучевыми тетродами.

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель .

Однополупериодный выпрямитель.

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети - 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 - 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители.

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Как видим, на выходе выпрямителя уже в два раза меньше "провалов" напряжения - тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов - общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема . Взгляните.

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage drop - V F ). Для обычных выпрямительных диодов оно может быть 1 - 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x V F , т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения .

Выпрямитель с удвоением напряжения.

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор - смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U ). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение , как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители.

Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора.

В данной статье расскажем что такое выпрямитель тока, принципы его работы и схемы выпрямления электрического тока.

Выпрямитель электрического тока электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (одно полярный) электрический ток.

В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.

Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.

В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).

Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним.

Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.

Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.

На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.

Из рисунка видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:

U ср = U max / π = 0,318 U max

Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток.

Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.

Рассмотрим мостовую схему однофазного двухполупериодного выпрямителя и его работу.

Если ток вторичной обмотки трансформатора течёт по направлению от точки «А» к точке «В», то далее от точки «В» ток течёт через диод VD3 (диод VD1 его не пропускает), нагрузку R н , диод VD2 и возвращается в обмотку трансформатора через точку «А».

Когда направление тока вторичной обмотки трансформатора меняется на противоположное, то вышедший из точки «А», ток течёт через диод VD4, нагрузку R н , диод VD1 и возвращается в обмотку трансформатора через точку «В».

Таким образом, практически отсутствует промежуток времени, когда напряжение на выходе выпрямителя равно нулю.

Рассмотрим балансную схему однофазного двухполупериодного выпрямителя.

По своей сути это два однополупериодных выпрямителя, подключенных параллельно в противофазе, при этом начало второй обмотки соединено с концом первой вторичной обмотки. Если в мостовой схеме во время действия обоих полупериодов сетевого напряжения используется одна вторичная обмотка трансформатора, то в балансной схеме две вторичных обмотки (2 и 3) используются поочерёдно.

Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:

U ср = 2*U max / π = 0,636 U max

где: π — константа равная 3,14.

Представляет интерес сочетание мостовой и балансной схемы выпрямления, в результате которого, получается двухполярный мостовой выпрямитель, у которого один провод является общим для двух выходных напряжений (для первого выходного напряжения, он отрицательный, а для второго — положительный):

Трёхфазные выпрямители электрического тока (Схема Ларионова)

Трёхфазные выпрямители обладают лучшей характеристикой выпрямления переменного тока – меньшим коэффициентом пульсаций выходного напряжения по сравнению с однофазными выпрямителями. Связано это с тем, что в трёхфазном электрическом токе синусоиды разных фаз «перекрывают» друг друга. После выпрямления такого напряжения, сложения амплитуд различных фаз не происходит, а выделяется максимальная амплитуда из значений всех трёх фаз входного напряжения.

На следующем рисунке представлена схема трёхфазного однополупериодного выпрямителя и его выходное напряжение (красным цветом), образованное на «вершинах» трёхфазного напряжения.

За счёт «перекрытия» фаз напряжения, выходное напряжение трёхфазного однополупериодного выпрямителя имеет меньшую глубину пульсации. Вторичные обмотки трансформатора могут быть использованы только по схеме подключения «звезда», с «нулевым» выводом от трансформатора.

На следующем рисунке представлена схема трёхфазного двухполупериодного мостового выпрямителя (схема Ларионова) и его выходное напряжение (красным цветом).

За счёт использования положительной и перевернутой отрицательной полуволны трёхфазного напряжения, выходное напряжение (выделено красным цветом), образованное на вершинах синусоид, имеет самую маленькую глубину пульсаций выходного напряжения по сравнению со всеми остальными схемами выпрямления. Вторичные обмотки трансформатора могут быть использованы как по схеме подключения «звезда», без «нулевого» вывода от трансформатора, так и «треугольник».

При конструировании блоков питания

Для выбора выпрямительных диодов используют следующие параметры, которые всегда указаны в справочниках:

— максимальное обратное напряжение диода – U обр ;

максимальный ток диода – I max ;

— прямое падение напряжения на диоде – U пр .

Необходимо выбирать все эти перечисленные параметры с запасом, для исключения выхода диодов из строя.

Максимальное обратное напряжение диода U обр должно быть в два раза больше реального выходного напряжения трансформатора. В противном случае возможен обратный пробой p-n , который может привести к выходу из строя не только диодов выпрямителя, но и других элементов схем питания и нагрузки.

Значение максимального тока I max выбираемых диодов должно превышать реальный ток выпрямителя в 1,5 – 2 раза. Невыполнение этого условия, также приводит к выходу из строя сначала диодов, а потом других элементов схем.

Прямое падение напряжения на диоде – U пр , это то напряжение, которое падает на кристалле p-n перехода диода. Если по пути прохождения тока стоят два диода, значит это падение происходит на двух p-n переходах. Другими словами, напряжение, подаваемое на вход выпрямителя, на выходе уменьшается на значение падения напряжения.

Схемы выпрямителей электрического тока предназначены для преобразования переменного — изменяющего полярность напряжения в однополярное — не изменяющее полярность. Но этого недостаточно для превращения переменного напряжения в постоянное. Для того, чтобы оно преобразовалось в постоянное необходимо применение сглаживающих фильтров питания , устраняющих резкие перепады выходного напряжения от нуля до максимального значения.

Выпрямителем электрического тока называют особое устройство, которое предназначено для получения выходного постоянного электрического тока из входного переменного тока. В большинстве выпрямителей принимают фильтры, чтобы сгладить создаваемые ими однонаправленные пульсирующие напряжения и токи.

Зачем нужен выпрямитель

Основным недостатком гальванических элементов, питающих многие электроприборы, является малый срок их службы. Эти неудобства особенно ощутимы, если нагрузке требуются токи большой силы. Для питания электронных потребителей лучше всего подходит электрический ток промышленной электросети. Но подключать устройство, предусмотренное для питания батареей, непосредственно в сеть нельзя. Необходимо преобразовать переменное напряжение сети в постоянное. Поэтому очень полезно разобраться в том, как сделать выпрямитель. Для питания аппаратуры обычно используются напряжения меньше, чем напряжения сети. Это достигается благодаря применению силового трансформатора. Затем преобразуют переменное напряжение в постоянное. Постоянное получают в два этапа:

сначала переменное изображение преобразуют в пульсирующее, то есть, изменяющееся от нулевого значения только в одну сторону. После этого фильтр преобразовывает пульсирующее напряжение в постоянное.

Виды выпрямителей

  • Однополупериодный – выпрямитель, состоящий из конденсатора и одного полупроводникового диода. Его конструкция очень простая. Отличается малым коэффициентом полезного действия, поэтому используется только для питания маломощных потребителей.
  • Двухполупериодный – выпрямитель, состоит из обмоток трансформатора, конденсатора и четырех диодов. Обычно его выполняют по мостовой схеме. Применяется для питания радиоаппаратуры.

Диоды выбирают по таким параметрам: величине постоянного (выпрямленного) тока на выходе выпрямителя и величине обратного напряжения. Эти параметры берутся из справочников. Выпрямленный ток не может быть меньшим, чем ток, который потребляет нагрузка. Диоды не будут нагреваться, если выпрямленный ток будет большим в 2 раза, чем ток необходимый потребителю. Обратное напряжение состоит из напряжения вторичной обмотки и напряжению на конденсаторе.

Изготовление выпрямителя

  • Возьмем полулитровую стеклянную банку или стакан, пластины площадью 40х100 мм – алюминиевую и медную, резиновую трубу с диаметром 2 см. Отрежем 2 см от трубы и наденем на алюминиевую пластину. Это делается потому, что электролит во время работы сильно разъедает алюминий. Если на него надеть резину, то она защитит металл от коррозии, и выпрямитель прослужит гораздо дольше.
  • Как электролит будем использовать раствор питьевой соды. Ее понадобится 5-7 грамм на 100 мл воды. За положительный полюс примем алюминий, а за отрицательный - свинец. Ток пойдет, если подключить выпрямитель свинцовой пластиной в сеть. Но идти ток будет только в одном направлении. Алюминиевая пластина будет постоянным положительным полюсом напряжения.
  • Если в сеть включить алюминиевую пластину, то свинцовая пластина будет выступать отрицательным полюсом. Это будет однополупериодный выпрямитель, через который течет ток только одного полупериода. В этом случае будет течь ток положительного направления.
  • Двухполупериодные выпрямители применяют, чтобы полностью использовать напряжение. Количество элементов, из которых они состоят, зависит от необходимой величины выпрямленного тока. Подключают их в обе фазы электросети.
  • Используйте предохранители, когда включаете прибор в сеть. При помощи реостата можно регулировать напряжение.

Расчет выпрямителя

  • Определим переменное напряжение вторичной обмотки трансформатора:

    Uн - постоянное напряжение нагрузки, В;

    В - коэффициент, который зависит от тока нагрузки.

  • Определяем максимальный ток, протекающий через диоды:

    Iд = 0,5 С Iн,

    Iд – ток, идущий через диод,

    Iн - наибольшее значение тока,

    С - коэффициент, зависящий от нагрузки.

  • Определим обратное напряжение:

    Uобр = 1,5 Uн,

    Uобр - обратное напряжение,

    Uн - напряжение нагрузки.

  • Выберем диоды, у которых величина выпрямленного тока и обратного напряжения выше расчетных.
  • Найдем величину емкости конденсатора:

    Сф = 3200 Iн / Uн Kп,

    Сф - емкость конденсатора фильтра,

    Iн - максимальный ток нагрузки.;

    Uн - напряжение на нагрузке,

    Kп – коэффициент пульсации (10 -5 -10-2).

Сварочный выпрямитель

Сварочный выпрямитель ВД применяется в качестве источника питания при сварке любыми электродами. Его используют для исключения межтоковых перерывов при сварке, благодаря чему получается качественный сварочный шов.

  • Выпрямитель универсален, может использоваться в самых тяжелых условиях работы.
  • Нечувствителен к температурным колебаниям, изменению влажности, падению напряжения в сети, запыленности.
  • Надежен
  • Долговечен
  • Имеет небольшую стоимость и способен заменять дорогие установки.

Теперь вы знаете все о том, кто хочет знать, как сделать выпрямитель в домашних условиях. Это позволит вам решить проблемы по его отсутствию самостоятельно и с наименьшей затратой средств.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows