Тестирование цикла работы программного обеспечения. · Автоматизированное тестирование (automated testing). Тестирование обратной совместимости

Тестирование цикла работы программного обеспечения. · Автоматизированное тестирование (automated testing). Тестирование обратной совместимости

13.04.2019

— процесс выявления ошибок в программном обеспечении (ПО). Существующие на сегодняшний день методы тестирования ПО не позволяют однозначно и полностью устранить все дефекты и ошибки и установить корректность функционирования анализируемой программы особенно в закрытых частных программах. Поэтому все существующие методы тестирования действуют в рамках формального процесса проверки исследуемого или разрабатываемого ПО.

Такой процесс формальной проверки или верификации может доказать, что дефекты отсутствуют, с точки зрения используемого метода. (То есть нет никакой возможности точно установить или гарантировать отсутствие дефектов в программном продукте с учётом человеческого фактора, присутствующего на всех этапах жизненного цикла ПО).

Существует множество подходов к решению задачи тестирования и верификации ПО, но эффективное тестирование сложных программных продуктов — это процесс в высшей степени творческий, не сводящийся к следованию строгим и чётким процедурам или созданию таковых.

Тестирование ПО — попытка определить, выполняет ли программа то, что от неё ожидают. Как правило, никакое тестирование не может дать абсолютной гарантии работоспособности программы в будущем.

Для наглядности: почти все производители коммерческого ПО исправляют ошибки в своих продуктах.

Например: Корпорация Microsoft выпускает пакеты обновлений («Service Pack»), для своих операционных систем. Разработчики игр регулярно выпускают «патчи» для своих продуктов. Большинство разработчиков ПО после устранения ошибок выпускают обновлённую (новую) версию своей программы.

Тестирование программного обеспечения

Существует несколько признаков по которым принято производить классификацию видов тестирования. Обычно выделяют следующие признаки:

По объекту тестирования:

  • Функциональное тестирование (functional testing)
  • Нагрузочное тестирование
    • Тестирование производительности (perfomance/stress testing)
    • Тестирование стабильности (stability/load testing)
  • Тестирование удобства использования (usability testing)
  • Тестирование интерфейса пользователя (UI testing)
  • Тестирование безопасности (security testing)
  • Тестирование локализации (localization testing)
  • Тестирование совместимости (compatibility testing)

По знанию системы:

  • Тестирование чёрного ящика (black box)
  • Тестирование белого ящика (white box)
  • Тестирование серого ящика (gray box)

По степени автоматизированности:

  • Ручное тестирование (manual testing)
  • Автоматизированное тестирование (automated testing)
  • Полуавтоматизированное тестирование (semiautomated testing)

По степени изолированности компонентов:

  • Компонентное (модульное) тестирование (component/unit testing)
  • Интеграционное тестирование (integration testing)
  • Системное тестирование (system/end-to-end testing)

По времени проведения тестирования:

  • Альфа тестирование (alpha testing)
    • Тестирование при приёмке (smoke testing)
    • Тестирование новых функциональностей (new feature testing)
    • Регрессионное тестирование (regression testing)
    • Тестирование при сдаче (acceptance testing)
  • Бета тестирование (beta testing)

По признаку позитивности сценариев:

  • Позитивное тестирование (positive testing)
  • Негативное тестирование (negative testing)

По степени подготовленности к тестированию:

  • Тестирование по документации (formal testing)
  • Эд Хок (интуитивное) тестирование (ad hoc testing)

Уровни тестирования

  • Модульное тестирование (юнит-тестирование) — тестируется минимально возможный для тестирования компонент, например, отдельный класс или функция. Часто модульное тестирование осуществляется разработчиками ПО.
  • Интеграционное тестирование — тестируются интерфейсы между компонентами, подсистемами. При наличии резерва времени на данной стадии тестирование ведётся итерационно, с постепенным подключением последующих подсистем.
  • Системное тестирование — тестируется интегрированная система на её соответствие требованиям.
    • Альфа-тестирование — имитация реальной работы с системой штатными разработчиками, либо реальная работа с системой потенциальными пользователями/заказчиком. Чаще всего альфа-тестирование проводится на ранней стадии разработки продукта, но в некоторых случаях может применяться для законченного продукта в качестве внутреннего приёмочного тестирования. Иногда альфа-тестирование выполняется под отладчиком или с использованием окружения, которое помогает быстро выявлять найденные ошибки. Обнаруженные ошибки могут быть переданы тестировщикам для дополнительного исследования в окружении, подобном тому, в котором будет использоваться ПО.
    • Бета-тестирование — в некоторых случаях выполняется распространение версии с ограничениями (по функциональности или времени работы) для некоторой группы лиц, с тем чтобы убедиться, что продукт содержит достаточно мало ошибок. Иногда бета-тестирование выполняется для того, чтобы получить обратную связь о продукте от его будущих пользователей.

Часто для свободного/открытого ПО стадия Альфа-тестирования характеризует функциональное наполнение кода, а Бета тестирования — стадию исправления ошибок. При этом как правило на каждом этапе разработки промежуточные результаты работы доступны конечным пользователям.

Тестирование «белого ящика» и «чёрного ящика»

В терминологии профессионалов тестирования (программного и некоторого аппаратного обеспечения), фразы «тестирование белого ящика» и «тестирование чёрного ящика» относятся к тому, имеет ли разработчик тестов доступ к исходному коду тестируемого ПО, или же тестирование выполняется через пользовательский интерфейс либо прикладной программный интерфейс, предоставленный тестируемым модулем.

При тестировании белого ящика (англ. white-box testing , также говорят — прозрачного ящика ), разработчик теста имеет доступ к исходному коду программ и может писать код, который связан с библиотеками тестируемого ПО. Это типично для юнит-тестирования (англ. unit testing ), при котором тестируются только отдельные части системы. Оно обеспечивает то, что компоненты конструкции — работоспособны и устойчивы, до определённой степени. При тестировании белого ящика используются метрики покрытия кода.

При тестировании чёрного ящика, тестировщик имеет доступ к ПО только через те же интерфейсы, что и заказчик или пользователь, либо через внешние интерфейсы, позволяющие другому компьютеру либо другому процессу подключиться к системе для тестирования. Например, тестирующий модуль может виртуально нажимать клавиши или кнопки мыши в тестируемой программе с помощью механизма взаимодействия процессов, с уверенностью в том, все ли идёт правильно, что эти события вызывают тот же отклик, что и реальные нажатия клавиш и кнопок мыши. Как правило, тестирование чёрного ящика ведётся с использованием спецификаций или иных документов, описывающих требования к системе. Как правило, в данном виде тестирования критерий покрытия складывается из покрытия структуры входных данных, покрытия требований и покрытия модели (в тестировании на основе моделей).

Если «альфа-» и «бета-тестирование» относятся к стадиям до выпуска продукта (а также, неявно, к объёму тестирующего сообщества и ограничениям на методы тестирования), тестирование «белого ящика» и «чёрного ящика» имеет отношение к способам, которыми тестировщик достигает цели.

Бета-тестирование в целом ограничено техникой чёрного ящика (хотя постоянная часть тестировщиков обычно продолжает тестирование белого ящика параллельно бета-тестированию). Таким образом, термин «бета-тестирование» может указывать на состояние программы (ближе к выпуску чем «альфа»), или может указывать на некоторую группу тестировщиков и процесс, выполняемый этой группой. Итак, тестировщик может продолжать работу по тестированию белого ящика, хотя ПО уже «в бете» (стадия), но в этом случае он не является частью «бета-тестирования» (группы/процесса).

Статическое и динамическое тестирование

Описанные выше техники — тестирование белого ящика и тестирование чёрного ящика — предполагают, что код исполняется, и разница состоит лишь в той информации, которой владеет тестировщик. В обоих случаях это динамическое тестирование .

При статическом тестировании программный код не выполняется — анализ программы происходит на основе исходного кода, который вычитывается вручную, либо анализируется специальными инструментами. В некоторых случаях, анализируется не исходный, а промежуточный код (такой как байт-код или код на MSIL).

Также к статическому тестированию относят тестирование требований, спецификаций, документации.

Регрессионное тестирование

После внесения изменений в очередную версию программы, регрессионные тесты подтверждают, что сделанные изменения не повлияли на работоспособность остальной функциональности приложения. Регрессионное тестирование может выполняться как вручную, так и средствами автоматизации тестирования.

Тестовые скрипты

Тестировщики пишут и используют тестовые скрипты в юнит-, системном и регрессионном тестировании. Тестовые скрипты нужно писать для модулей с наивысшим риском появления отказов и наибольшей вероятностью того что этот риск станет проблемой.

Покрытие кода

Покрытие кода, по своей сути, является тестированием методом белого ящика. Тестируемое ПО собирается со специальными настройками или библиотеками и/или запускается в особом окружении, в результате чего для каждой используемой (выполняемой) функции программы определяется местонахождение этой функции в исходном коде. Этот процесс позволяет разработчикам и специалистам по обеспечению качества определить части системы, которые, при нормальной работе, используются очень редко или никогда не используются (такие как код обработки ошибок и т.п.). Это позволяет сориентировать тестировщиков на тестирование наиболее важных режимов.

Тестировщики могут использовать результаты теста покрытия кода для разработки тестов или тестовых данных, которые расширят покрытие кода на важные функции.

Как правило, инструменты и библиотеки, используемые для получения покрытия кода, требуют значительных затрат производительности и/или памяти, недопустимых при нормальном функционировании ПО. Поэтому они могут использоваться только в лабораторных условиях.

Разработка через тестирование (test-driven development)

(англ. test-driven development) — техника программирования, при которой модульные тесты для программы или её фрагмента пишутся до самой программы (англ. test-first development) и, по существу, управляют её разработкой. Является одной из основных практик экстремального программирования.

Ни один программист не считает работу над некоторым фрагментом кода завершенной, не проверив перед этим его работоспособность. Однако, если вы тестируете свой код, это не означает, что у вас есть тесты.

Тест - это процедура, которая позволяет либо подтвердить, либо опровергнуть работоспособность кода. Когда программист проверяет работоспособность разработанного им кода, он выполняет тестирование вручную. В данном контексте тест состоит из двух этапов: стимулирование кода и проверки результатов его работы. Автоматический тест выполняется иначе: вместо программиста стимулированием кода и проверкой результатов занимается компьютер, который отображает на экране результат выполнения теста: код работоспособен или код неработоспособен.

Методика разработки через тестирование(Test-Driven Development, TDD) позволяет получить ответы на вопросы об организации автоматических тестов и выработке определенных навыков тестирования.

«Чистый код, который работает» - в этой короткой, но содержательной фразе, кроется весь смысл методики разработки приложений через тестирование. Чистый код, который работает, - это цель, к которой стоит стремиться, и этому есть причины:

    У разработчика появляется шанс усвоить уроки, которые преподносит ему код. Если он воспользуется первой же идеей, которая пришла ему в голову, у него не будет шанса реализовать вторую, лучшую идею.

    Коллеги по команде могут рассчитывать на разработчика, а он, в, свою очередь, на них.

    Разработчику приятнее писать такой код.

Однако как мы можем получить чистый код, который работает? Очень многие силы мешают нам добиться этого, а иногда нам не удается получить даже код, который работает. Чтобы избавиться от множества проблем, мы будем разрабатывать код, исходя из автоматических тестов. Такой стиль программирования называется разработкой через тестирование. В рамках этой методики мы:

    Пишем новый код только тогда, когда автоматический код не сработал.

    Удаляем дублирование.

Два столь простых правила на самом деле генерируют сложное индивидуальное и групповое поведение со множеством технических последствий:

    Проектируя код, мы постоянно запускаем его и получаем представление о том, как он работает, это помогает нам принимать правильные решения.

    Мы самостоятельно пишем свои собственные тесты, так как мы не можем ждать, что кто-то другой напишет тесты для нас.

    Наша среда разработки должна быстро реагировать на небольшие модификации кода.

    Архитектура программы должна базироваться на использовании множества сильно связанных компонентов, которые слабо сцеплены друг с другом, благодаря чему тестирование кода упрощается.

Два упомянутых правила TDD определяют порядок этапов программирования:

    Красный - напишите небольшой тест, который не работает, а возможно, даже не компилируется.

    Зеленый - заставьте тест работать как можно быстрее, при этом не думайте о правильности дизайна и чистоте кода. Напишите ровно столько кода, чтобы тест сработал.

    Рефакторинг - удалите из написанного вами кода любое дублирование.

Освоив TDD, разработчики обнаруживают, что они пишут значительно больше тестов, чем раньше, и двигаются вперед маленькими шагами, которые раньше могли показаться бессмысленными.

Заставив тест работать, мы знаем, что теперь тест работает, отныне и навеки. Мы стали на шаг ближе к завершению работы, чем мы были до того, как тест сработал. После этого мы заставляем второй тест работать, затем третий, четвертый и т.д. Чем сложнее проблема, стоящая перед программистом, тем меньшую область функциональности должен покрывать каждый тест.

Определенно существуют задачи, которые невозможно(по крайней мере, на текущий момент) решить только при помощи тестов. В частности, TDD не позволяет механически продемонстрировать адекватность разработанного кода в области безопасности данных и взаимодействия между процессами. Безусловно, безопасность основана на коде, в котором не должно быть дефектов, однако она основана также на участии человека в процедурах защиты данных. Тонкие проблемы, возникающие в области взаимодействия между процессами, невозможно с уверенностью воспроизвести, просто запустив некоторый код.

Терминология, связанная с модульными тестами

  • Разработка через тестирование - процесс разработки программного обеспечения, который предусматривает написание и автоматизацию модульных тестов еще до момента написания соответствующих классов или модулей. Это гарантирует, что все обязанности любого элемента программного обеспечения определяются еще до того, как они будут закодированы.
  • Модульные тесты - Unit Tests, Programming Tests, Developer Tests - тесты, проверяющие функциональность отдельных классов, компонентов, модулей приложения. Эти тесты не видны конечному заказчику или доменному эксперту. Обычно их начинают писать после оформления функциональных тестов.
  • Зеленая/Красная полоса - многие графические среды для выполнения модульных тестов отображают результат выполнения тестов в виде линии, которая окрашена в зеленый цвет, если все тесты выполнились удачно, и красной, если были ошибки.
  • Моки, Мок-объекты (MockObjects) - автоматически генерируемые заглушки, которые могу выступат в роли реальных объектов. Поведением моков можно управлять непосредственно в тесте. Моки могут выполнять дополнительные проверки, что тестируемый код их использовал, как ожидалось.
  • Модульный тест - тест, который проверяет поведение небольшой части приложения. Эта часть может быть одним классом, одним методом или набором классов, который реализуют какое-то архитектурное решение, и это решение необходимо проверить на работоспособность.
  • Тест - TestCase - набор тестовых методов, предназначенных для тестирования одного класса (в среде xUnit). Обычно TestCase состоит из методов, чье имя начинается с приставки test. Каждый такой метод тестирует какой-либо один момент тестируемого класса. В приемочном тестировании TestCase - это набор команд, которые тестируют одну значимую для заказчика функциональность.
  • Фикстура - Fixture - состояние среды тестирования, которое требуется для успешного выполнения тестового метода. Это может быть набор каких-либо объектов, состояние базы данных, наличие определенных файлов и т.д. Фикстура создается в методе setUp() перед каждым вызовом метода вида testSomething теста (TestCase) и удаляется в tearDown() после окончания выполнения тестового метода.
  • Проверка - Assert - метод класса TestCase, который предназначен для сверки реального состояния тестируемого кода с ожидаемым.

Терминология, связанная с наборами тестов

  • Набор тестов - TestSuite - набор тестов, предназначенный для тестирования какой-либо укрупненной сущности программной системы. В SimpleTest есть понятие TestGroup, которые практически эквивалентно понятию TestSuite. Иногда TestSuite употребляют в значении «все тесты, которые есть для приложения».

Терминология, связанная с приемочными тестами

  • Приемочные (функциональные) тесты - Customer tests, Acceptance tests - тесты, проверяющие функциональность приложения на соответствие требованиям заказчика. Приемочные тесты не должны ничего знать о деталях реализации приложения. Приемочные тесты заменяют ТЗ при использовании методики экстремального программирования (XP).
  • Регрессионный тесты - тесты, которые проверяют, что поведение системы не изменилось. На самом деле, большинство регрессионных тестов являются или модульными или функциональными тестами, которые включаются в определенный набор тестов (RegressionTestSuite), который гарантирует, что функциональность системы не будет случайно изменена.

В этом разделе мы опишем различные виды тестирования программного обеспечения. Различные виды тестирования ПО проводятся для достижения разных целей при тестировании программного приложения. Вы также можете прочитать о различных методах тестирования программного обеспечения, которые могут быть связаны с различными видами тестирования ПО. Наши помогут Вам стать специалистом в данной области.

Ad-hoc тестирование

Этот вид тестирования ПО является неформальным и неструктурированным и может выполняться любым заинтересованным лицом, без ссылок на какие-либо тестовые сценарии или тестовые документы.

Лицо, проводящее Ad-hoc-тестирование, хорошо понимает рабочие процессы приложения, при этом пытается найти дефекты и взломать ПО . Специальные проверки предназначены для обнаружения дефектов, которые не были обнаружены в существующих тестовых случаях.

Приемочное тестирование

Приемочное тестирование — это формальный вид тестирования программного обеспечения, который выполняется конечным потребителем, когда разработчики предоставили запрашиваемые услуги. Целью этого тестирования является проверка соответствия ПО бизнес-требованиям потребителей и требованиям, представленным ранее. Приемочные тестирования обычно документируются в начале работы (в agile) и помогают тестировщикам и разработчикам улучшить свои знания и умения в данной области.

Что такое приемочное тестирование в Agile?

Тестирование доступности

При тестировании доступности цель тестирования заключается в определении, можно ли легко получить доступ к содержимому веб-сайта людям с ограниченными возможностями. Включает в себя различные проверки, такие как проверка цвета и контраста (для людей с дальтонизмом), размер шрифта для слабовидящих, четкий и лаконичный текст, который легко читать и понимать.

Agile тестирование

Agile Testing — это вид тестирования программного обеспечения, который учитывает гибкий подход и методы разработки программного обеспечения. В среде разработки Agile тестирование является неотъемлемой частью разработки ПО и выполняется параллельно с написанием кода. Agile тестирование позволяет проводить постепенное написание кода и его тестирование.

Тестирование API

Тестирование API — это вид тестирования, который похож на модульное тестирование. Каждый из программных интерфейсов API тестируется в соответствии со спецификацией API. Тестирование API в основном выполняется командой тестировщиков. Требует понимания как функциональности API, так и наличия хороших навыков в программировании.

Автоматизированное тестирование

Это подход к тестированию, который использует инструменты тестирования и / или программирование для запуска тестовых примеров с использованием программного обеспечения или специально разработанных тестовых утилит. Большинство автоматизированных средств представляют собой средства записи и воспроизведения, однако есть инструменты, которые требуют написания обширных сценариев или программирования для автоматизации тестовых сценариев.

Парное тестирование

Другими словами, «парное тестирование» — это тестирование методом «черного ящика» и метод тестирования, при котором для каждого входа тестируется пара входных данных, что помогает тестировать работу ПО, как и ожидалось, со всеми возможными комбинациями ввода.

Бета-тестирование

Это формальный вид тестирования программного обеспечения, который выполняется конечными потребителями перед выпуском или передачей программного обеспечения пользователям. Успешное завершение бета-тестирования означает согласие пользователя с программным обеспечением.

Тестирование Черного Ящика

Тестирование черного ящика — это вид тестирования программного обеспечения, когда от тестировщиков не требуется знать кодировку или внутреннюю структуру программного обеспечения. Метод тестирования «черного ящика» основан на тестировании ПО с различными входами и сравнении результатов с ожидаемыми.

Тестирование обратной совместимости

Вид тестирования программного обеспечения, который проводится для проверки того, что более новая версия программного обеспечения может успешно работать поверх предыдущей версии ПО и что новая версия программного обеспечения прекрасно работает со структурой таблиц, структурами данных и файлами, созданными предыдущей версии ПО.

Тестирование граничных значений

Тестирование граничных значений — это вид тестирования, основанный на концепции «агрегации ошибок на границах». Тестирование проводится методом тщательного тестирования дефектов в граничных значениях. Если в поле принимается значение от 1 до 100, то тестирование выполняется для значений 0, 1, 2, 99, 100 и 101.

Метод тестирования «большой взрыв»

Это один из подходов интеграционного тестирования. Метод тестирования «большой взрыв» основывается на том, что все или большинство модулей разрабатываются и затем соединяются вместе.

Интеграционное тестирование Снизу вверх (восходящее тестирование)

Интеграционное тестирование Снизу вверх — это метод интеграционного тестирования, в котором тестирование начинается с меньших частей или подсистем системы, и заканчивается полным охватом всей программной системы. Интеграционное тестирование Снизу вверх начинается с небольших частей программного обеспечения и в конечном итоге масштабируется с точки зрения размера, сложности и полноты.

Тестирование ветвей

Является методом тестирования белого ящика для разработки тестовых сценариев для тестирования кода для каждого условия ветвления. Применяется во время модульного тестирования.

Тестирование совместимости браузера

Это один из подвидов тестирования совместимости, выполняемый командой тестирования. Тестирование совместимости браузера выполняется для веб-приложений в комбинациях с различными браузерами и операционными системами.

Тестирование совместимости

Тестирование на совместимость является одним из видов тестов, выполняемых группой тестировщиков. Тестирование совместимости проверяет, можно ли запускать программное обеспечение на другом оборудовании, операционной системе, базах данных, веб-серверах, серверах приложений, аппаратных периферийных устройствах, эмуляторах, различной конфигурации, процессоре, различных браузерах и различных версиях браузеров и т.д.

Тестирование компонентов

Этот тип тестирования программного обеспечения выполняется разработчиками. Тестирование компонентов выполняется после завершения модульного тестирования. Компонентное тестирование включает в себя тестирование группы единиц как кода вместе в целом, а не тестирование отдельных функций и методов.

Тестирование покрытия условий

Тестирование покрытия условий — это методика тестирования, используемая во время модульного тестирования, где разработчик тестирует все условия, такие как if, if-else, case и т. д. в тестируемом модуле кода.

Динамическое тестирование

Тестирование может быть выполнено методом статического тестирования и динамического тестирования. Динамическое тестирование — это подход к тестированию, когда тестирование может быть выполнено только при извлечении кода.

Тестирование покрытия решения

Это методика тестирования, которая используется в модульном тестировании. Цель тестирования покрытия решения состоит в том, чтобы осуществить и проверить каждый блок принятия решения в коде, например. If, if-else, case.

Сквозное тестирование

Сквозное тестирование выполняется командой тестировщиков, и основное внимание уделяется тестированию сквозных потоков. Прямо от создания заказа до составления отчетов или создания заказа до возврата товара и т. д. и проверки. Сквозное тестирование обычно направлено на то, чтобы имитировать реальные сценарии жизни и их воплощение. Сквозное тестирование включает в себя тестирование потока информации между приложениями.

Исследовательское тестирование

Исследовательское тестирование — это неофициальный вид тестирования, проводимый для изучения ПО, в то же время ищущего ошибки или поведение приложения, которое кажется неочевидным. Тестирование обычно проводится тестировщиками, но может быть сделано другими заинтересованными лицами, а также бизнес-аналитиками, разработчиками, конечными пользователями и т. д., которые заинтересованы в изучении функций программного обеспечения и в то же время ищут ошибки или поведение, которое кажется неочевидным.

Эквивалентное разбиение

Эквивалентное разбиение также называется разделением эквивалентности. Разделение на классы — это методика тестирования программного обеспечения, а не вид тестирования сам по себе. Тестирование методом эквивалентного разбиения используется в тестах черного ящика и серого ящика. Эквивалентное разбиение классифицирует тестовые данные в классы эквивалентности как положительные классы эквивалентности и отрицательные классы эквивалентности, — такая классификация гарантирует тестирование как положительных, так и отрицательных условий.

Функциональное тестирование

Функциональное тестирование — формальный тип тестирования, выполняемый тестировщиками. Функциональное тестирование сосредоточено на тестировании программного обеспечения на основе документа о состоянии, случаев и требований. Функциональное тестирование является типом тестирования «черного ящика» и не требует знаний внутренней работы программного обеспечения, в отличие от тестирования «белого ящика».

Fuzz тестирование

Fuzz testing или fuzzing — это методика тестирования программного обеспечения, которая включает тестирование с непредвиденными или случайными исходными данными. Программное обеспечение тестируется на предмет ошибок или сообщений об ошибках, которые появляются из-за ошибок при вводе данных.

Тестирование графического интерфейса пользователя

Этот вид тестирования ПО направлен на тестирование графический интерфейса пользователя ПО, который должен соответствовать требованиям, указанным в макетах GUI и детально разработанных документах. Например, проверка длины и емкости полей ввода, указанных в форме, типе предоставленного поля ввода. Некоторые поля формы могут отображаться как раскрывающийся список или набор переключателей. Таким образом, GUI-тестирование обеспечивает элементы графического интерфейса программного обеспечения в соответствии с утвержденными макетами GUI, подробными проектно-техническими документами и функциональными требованиями. Большинство инструментов автоматизации функциональных тестов работают с возможностями записи и воспроизведения графического интерфейса. Это ускоряет запись сценариев и увеличивает затраты на обслуживание скриптов.

Тестирование методом «стеклянного ящика»

Тестирование стеклянного ящика — еще одно название для тестирования белого ящика. Тестирование стеклянных ящиков — это метод тестирования, который включает в себя тестирование отдельных утверждений, функций и т. д. Модульное тестирование является одним из методов тестирования стеклянного ящика.

Gorilla тестирование (хаотическое тестирование)

Этот вид тестирования программного обеспечения выполняется группой тестировщиков ПО. Цель Gorilla тестирования состоит в том, чтобы использовать одну или несколько функциональных возможностей полностью или исчерпывающе, если несколько человек испытывают одни и те же функции.

Тестирование благоприятного пути

Также известный как тестирование Золотого пути, этот вид тестирования фокусируется на успешном прохождении тестов, которые не приведут к ошибкам.

Интеграционное тестирование

Интеграционное тестирование является одним из наиболее распространенных и важных видов тестирования программного обеспечения. После того, как отдельные подразделения или компоненты будут проверены разработчиками как работающие, группа тестировщиков проведет тесты, которые проведут тестирование связи между этими единицами / компонентами или несколькими устройствами / компонентами. Существуют различные подходы к интеграционному тестированию, а именно: интеграционное тестирование сверху вниз, интеграционное тестирование снизу вверх и комбинация этих двух тестов Sand witch.

Тестирование интерфейса

Тестирование интерфейса необходимо, когда программное обеспечение обеспечивает поддержку одного или нескольких интерфейсов, таких как «Графический интерфейс пользователя», «Интерфейс командной строки» или «Интерфейс прикладного программирования», чтобы взаимодействовать со своими пользователями или другим программным обеспечением. Интерфейсы служат средой для ПО, чтобы принимать входные данные от пользователя и предоставлять выходные данные пользователю. Подход к тестированию интерфейса зависит от типа тестируемого интерфейса, такого как GUI или API или CLI.

Тестирование интернационализации

Тестирование интернационализации — это вид тестирования, который выполняется группой тестировщиков ПО, чтобы проверить, насколько программное обеспечение может поддерживать интернационализацию, т.е. использование разных языков, разных наборов символов, двухбайтовых символов и т. д. Например: Gmail — это веб-приложение, который используется людьми для работы с разными языками, одиночными или многобайтными наборами символов.

Тестирование на основе ключевых слов

Тестирование на основе ключевого слова — это скорее автоматизированный подход к тестированию программного обеспечения, чем сам вид тестирования. Тестирование на основе ключевых слов известно как тестирование на основе действий или тестирование на основе таблиц.

Нагрузочное тестирование

Нагрузочное тестирование — это вид нефункционального тестирования. Нагрузочное тестирование проводится для проверки поведения ПО в условиях нормальной и сверхпиковой нагрузки. Нагрузочное тестирование обычно выполняется с использованием автоматизированных средств тестирования. Нагрузочное тестирование предназначено для поиска уязвимых мест или проблем, которые мешают ПО выполнять свои задачи в соответствии с его максимальными рабочими нагрузками.

Тестирование локализации

Тестирование локализации — вид тестирования программного обеспечения, выполняемого тестировщиками ПО, при этом виде тестирования программное обеспечение, как ожидается, адаптируется к определенному языку, оно должно поддерживать конкретный язык, принимать ввод в этой конкретной локали, отображать шрифт, время, дату, валюту и т. д., относящиеся к определенному языку. Например, многие веб-приложения позволяют выбирать язык, например, английский, французский, немецкий или японский. Поэтому, если локаль определена или настроена в конфигурации программного обеспечения, ожидается, что программное обеспечение будет работать, как и ожидалось, с заданным языком / локалью.

Отрицательное тестирование

Этот вид подхода к тестированию ПО, который показывает поведение ПО при взломе. Другими словами, это функциональный и нефункциональный тест, который предназначен для взлома ПО, введя неправильные данные, такие как некорректная дата, время или строку, или загрузив бинарный файл, когда предполагается загрузка текстового файла или ввести огромную текстовую строку для полей ввода и т. д. Это также положительный тест на наличие ошибки.

Нефункциональное тестирование

Большинство программных продуктов созданы для удовлетворения функциональных и нефункциональных требований. Нефункциональные требования: производительность, удобство использования, локализация и т. д. Существует множество видов тестирования, таких как тестирование на совместимость, локализацию, удобство, которые выполняются для проверки нефункциональных требований.

Парное тестирование

— это методика тестирования ПО, которую могут выполнять тестировщики ПО, разработчики или бизнес-аналитики. Как следует из названия, два человека работают вместе, один занимается тестированием и другой контролирует и записывает результаты тестирования. Парное тестирование может также выполняться в комбинации тестировщика-разработчика, тестировщика-бизнес-аналитика или комбинации аналитик-бизнес-разработчик. Объединение тестировщиков и разработчиков в парном тестировании помогает быстрее обнаруживать дефекты, определять основную причину, исправлять и тестировать исправление.

Тестирование производительности

Является одним из видов тестирования ПО и частью инженерной деятельности, которая выполняется для проверки некоторых атрибутов качества ПО, таких как стабильность, надежность, доступность. Тестирование производительности выполняется командой разработчиков. В отличие от функционального тестирования, тестирование производительности выполняется для проверки нефункциональных требований. Тестирование производительности проверяет, насколько хорошо ПО работает в ожидаемых и максимальных рабочих нагрузках. Существуют различные варианты или подтипы производительности, такие как нагрузочное тестирование, стресс-тестирование, объемное тестирование, тестирование на выдержку и тестирование конфигурации.

Тестирование безопасности

Является одним из видов тестирования безопасности. Тестирование проникновения проводится для проверки того, как защищенное программное обеспечение и его среда (оборудование, операционная система и сеть) подвергаются атакам со стороны внешнего или внутреннего злоумышленника. Нарушитель может быть человеком / хакером или вредоносными программами. Pentest использует методы насильственного вторжения (путем грубой силы атаки) или использования уязвимости для получения доступа к ПО или данным, или оборудованию с целью разоблачения способов кражи, манипулирования или повреждения данных, файлов ПО или конфигурации. Тестирование безопасности — это способ этичного взлома: опытный тестировщик безопасности будет использовать те же методы и инструменты, что и хакер, но намерение тестировщика — идентифицировать уязвимость и исправить ее до того, как настоящий хакер или вредоносная программа использует уязвимость в своих целях.

Регрессионное тестирование

— это вид тестирования ПО, который выполняется тестировщиками ПО в качестве функциональных регрессионных тестов, а разработчики — в виде единичных регрессионных тестов. Целью регрессионных тестов является выявление дефектов, которые были введены для исправления дефектов или внедрения новых функций. Регрессионные тесты являются идеальными вариантами для автоматизации тестирования.

Повторное тестирование

Это тип повторного тестирования, который выполняется тестировщиками ПО как часть проверки исправления дефекта. Например, тестировщик проверяет исправление дефекта. Как только тестировщик проверит исправление дефекта как успешное, тестировщик затем повторно протестирует или проверит ту же функцию, выполнив тестовые примеры, которые были неудачны ранее.

Тестирование на основе рисков

Является одним из видов тестирования ПО и другого подхода к тестированию программного обеспечения. При тестировании на основе рисков требования и функциональность тестируемого ПО имеют приоритет как критический, высокий, средний и низкий. В этом подходе тестируются все критические и высокоприоритетные случаи, за ними следует средние. Функциональность с низким приоритетом или с низким уровнем риска тестируется в конце или может вообще не тестироваться, в зависимости от временных рамок.

Smoke тестирование (тестирование «на дым»)

Это вид тестирования, который выполняется тестировщиками ПО для проверки, является ли новая сборка, предоставленная командой разработчиков, достаточно стабильной, т. е. работают так ли основные функции, как ожидается, для проведения дальнейшего или подробного тестирования. Smoke тестирование предназначено для обнаружения дефектов «show stopper», которые могут препятствовать тестированию приложения в деталях. Smoke тестирование также известно как тестирование проверки сборки.

Тестирование защищенности

Является одним из видов тестирования ПО, выполняемого специализированной группой тестировщиков ПО. Цель тестирования защищенности — обеспечить защиту программного обеспечения от внешних или внутренних угроз со стороны людей и вредоносных программ. Тестирование защищенности в основном проверяет, насколько хорош механизм авторизации программного обеспечения, насколько сильна аутентификация, как программное обеспечение поддерживает конфиденциальность данных, как программное обеспечение поддерживает целостность данных, какова доступность программного обеспечения в случае атаки на программное обеспечение хакеров и вредоносных программ. Для тестирования безопасности необходимо наличие хороших знаний приложений, технологий, сетей, инструментов тестирования безопасности. С увеличением числа веб-приложений тестирование защищенности стало более важным, чем когда-либо.

Тестирование работоспособности

Это вид тестирования, который выполняется в основном тестировщиками, а также в некоторых проектах разработчиками. Тестирование работоспособности — это быстрая оценка ПО, среды, сети, внешних систем, и проверка программной среды на стабильность, достаточную для начала всестороннего тестирования. Тесты на работоспособность являются узкими, и в большинстве случаев не документируются.

Тестирование масштабируемости

Представляет собой нефункциональный тест, предназначенный для тестирования одного из атрибутов качества ПО, то есть «Масштабируемость». Тест масштабируемости не ориентирован только на одну или несколько функций ПО, а не на производительность ПО в целом. Тестирование масштабируемости обычно выполняется командой разработчиков. Цель тестирования масштабируемости — проверить способность ПО увеличиваться с увеличением пользователей, увеличивать транзакции, увеличивать размер базы данных и т. д. Не обязательно, чтобы производительность ПО возрастала с увеличением конфигурации оборудования. Тесты масштабируемости помогают выяснить, как гораздо большую рабочую нагрузку ПО может поддерживать с расширением базы пользователей, транзакций, хранения данных и т.д.,

Тестирование стабильности

Является нефункциональным тестом, предназначенным для тестирования одного из атрибутов качества ПО, то есть «Стабильности». Тестирование стабильности фокусируется на тестировании стабильного ПО, когда оно подвергается нагрузкам на приемлемых уровнях, пиковым нагрузкам, нагрузкам, генерируемым в пиках с большим количеством обрабатываемых данных. Тестирование масштабируемости будет включать в себя выполнение различных видов тестов производительности, таких как нагрузочное тестирование, стресс-тестирование, тестирование спайков, тестирование выдержки.

Статическое тестирование

— это форма тестирования, в подходах которой, используются пошаговые руководства для оценки правильности результатов. В статическом тестировании программный код не выполняется, а пересматривается для синтаксиса, комментирования, соглашения об именах, размера функций / методов и т. д. Статическое тестирование обычно имеет контрольные списки, по которым оцениваются результаты. Статическое тестирование может применяться для тестирования требований, дизайнов, а также для тестовых примеров с использованием таких подходов, как обзоры или пошаговые руководства.

Стресс-тестирование

Является одним из видов тестирования производительности, при котором ПО подвергается пиковым нагрузкам, чтобы наблюдать за тем, как программное обеспечение будет вести себя при пиковой нагрузке. Стресс-тестирование также проверяет поведение ПО при недостатке ресурсов, таких как процессор, память, пропускная способность сети, дисковое пространство и т. д. Стресс-тестирование позволяет проверить такой атрибут качества, как надежность.

Тестирование системы

Включает в себя несколько видов тестирования ПО, которые позволят проверить программное обеспечение в целом (программное обеспечение, аппаратное обеспечение и сеть) в соответствии с требованиями, для которых он был создан. Для завершения тестирования системы выполняются различные виды тестов (GUI-тестирование, функциональное тестирование, регрессионное тестирование, тестирование дыма, нагрузочное тестирование, стресс-тестирование, тестирование безопасности, стресс-тестирование, ad-hoc тестирование и т. д.).

Нагрузочное тестирование

Является одним из видов тестирования производительности, когда ПО подвергается нагрузке в течение значительного периода времени, тестирование на выдержку может продолжаться в течение нескольких дней или даже нескольких недель. Тестирование на выдержку — это тип тестирования, который проводится для выявления ошибок, приводящих к дегенерации производительности ПО при продолжении использования. Испытания на выдержку широко применяются для электронных устройств, которые, как ожидается, будут работать непрерывно в течение нескольких дней или месяцев или лет без перезагрузки. С растущим количеством веб-приложений тестирование на выдержку приобрело большое значение, поскольку доступность веб-приложений крайне важна для поддержки и успеха бизнеса.

Тестирование интеграции системы

Известный как SIT (вкратце), является видом тестирования, проводимого командой тестировщиков ПО. Как следует из названия, в фокус тестирования системной интеграции попадают проверка ошибок, связанных с интеграцией между различными приложениями, службами, приложениями сторонних поставщиков и т. д. В рамках SIT проверяются сквозные сценарии, для которых требуется ПО для взаимодействия (Отправлять или получать данные) с другими приложениями вверх, вниз, со сторонними приложениями.

Модульное тестирование

Это вид тестирования, который выполняется разработчиками ПО. Модульное тестирование следует методу тестирования белых полей, где разработчик будет тестировать модули исходного кода, такие как операторы, ветви, функции, методы, интерфейс в ООП (объектно-ориентированное программирование). Модульное тестирование обычно включает в себя разработку драйверов. Модульные тесты — идеальные варианты для автоматизации. Автоматизированные тесты могут выполняться как единичные регрессионные тесты для новых версий или новых версий ПО. Существует множество полезных фреймов, таких как Junit, Nunit и т. д., которые могут сделать модульное тестирование более эффективным.

Тестирование удобства использования

Является типом тестирования ПО, которое выполняется, чтобы понять, насколько ПО удобно для пользователя. Цель тестирования удобства использования заключается в том, чтобы позволить конечным пользователям использовать ПО, наблюдать за их поведением, эмоциональным откликом (понравилось ли пользователям использование программного обеспечения или они подчеркнули его использование и т. Д.) и собрать их отзывы о том, как ПО может быть более удобным для пользователя.

Приемочное тестирование пользователя

Приемочное тестирование пользователя является обязательным для любого проекта. Оно выполняется клиентами / конечными пользователями ПО. Приемочное тестирование позволяет специалистам от клиента тестировать ПО в соответствии с реальными бизнес-сценариями или реальными сценариями и проверять соответствие ПО их бизнес-требованиям.

Тестирование объема

Является нефункциональным видом тестирования, выполняемым группой инженеров по производительности. Тестирование объема — один из видов тестирования производительности. Тестирование объема выполняется для того, чтобы проверить ПО на надежность при работе с различными размерами данных, которые принимаются и обрабатываются программным обеспечением. Например, если вы собираетесь тестировать слово Microsoft, то проверка объема будет заключаться в том, чтобы увидеть, может ли MS Word открыть, сохранить и работать с файлами разных размеров (от 10 до 100 МБ).

Тестирование уязвимости

Включает выявление ПО, оборудования или сети, уязвимости, которые могут быть использованы хакерами и другими вредоносными программами, похожими на вирусы или черви. Тестирование на уязвимость является ключом к обеспечению безопасности и доступности по. С ростом числа хакеров и вредоносных программ, тестирование уязвимостей имеет решающее значение для успеха бизнеса.

Тестирование методом «белого ящика»

Тестирование методом белого ящика также известно как тестирование прозрачного или стеклянного ящика. Тестирование белого ящика — это метод тестирования ПО, который предназначен для тестирования ПО со знанием внутренней работы ПО. Этот метод используется в модульном тестировании, которое обычно выполняется разработчиками ПО. Тестирование «белого ящика» предназначено для тестирования кода, тестов, ветвей, пути, решений и потока данных в тестируемой программе. Тестирование белого ящика и тестирование «черного ящика» дополняют друг друга, поскольку каждый из подходов к тестированию может выявить определенную категорию ошибок.

Хочу отметить, что помогут познакомиться с данными методами тестирования наши .

Запишитесь прямо сейчас или закажите звонок с бесплатной консультацией!

Тестирование программного обеспечения является неотъемлемой частью жизненного цикла разработки программного обеспечения. Прочитайте эту статью чтобы узнать основные понятия и различные шаги тестирования программного обеспечения

Жизненный цикл разработки программного обеспечения – это процедурный процесс в разработке программного продукта. Этот процесс осуществляется серией шагов, которые объясняют в целом идею, лежащую в основе разработки программного продукта.

Классификация жизненного цикла процесса разработки программного обеспечения происходит следующим образом:

  1. Планирование
  2. Анализ
  3. Дизайн
  4. Разработка программного обеспечения
  5. Реализация
  6. Развертывание
  7. Техническое обслуживание

Тестирование программного обеспечения является важным этапом жизненного цикла продукта, так как это будет определять, правильно ли работает продукт и является ли он эффективным в соответствии с требованиями клиентов.

Введение в тестирование программного обеспечения

Ошибка: ошибка или заблуждение - это человеческое действие, которое производит неправильный или неверный результат.

Дефект (баг, неисправность): сбой в системе или продукте, который может привести к сбою или неисправности компонента.

Отказ: это разница между фактическим и ожидаемым результатом.

Риск: риск - это фактор, который может привести к отрицательным результатам или возможности убытка, или ущерба.

Таким образом, тестирование программного обеспечения - это процесс поиска дефектов/ошибок в системе, которые происходят из-за ошибок в программе, которые могут привести к выходу из строя результирующего продукта. Короче говоря, тестирование программного обеспечения имеет различные цели и задачи, которые часто включают в себя:

  1. Обнаружение дефектов
  2. Обретение уверенности и предоставление информации об уровне качества
  3. Предотвращение дефектов

Область применения тестирования программного обеспечения

Основной функцией тестирования является обнаружение ошибок для того, чтобы раскрыть их и обнаружить. Область включает в себя выполнение кода в различных средах, а также изучение аспектов кода - делает ли программа то, что должна делать и функционирует ли в соответствии со спецификациями?

Рекомендуется начинать тестирование с начальных стадий разработки программного обеспечения. Это не только помогает в исправлении ошибок, перед последним этапом, но также уменьшает переделки поиске ошибок на начальных стадиях. Это экономит время и является экономически эффективным. Тестирование программного обеспечения - это непрерывный процесс, который потенциально бесконечен, но может быть остановлено, из-за отсутствия времени или бюджета. Для этого требуется достижение максимальной прибыли с хорошим качеством продукта, в рамках ограничения времени и денег. Тестер должен следовать некоторым процедурным способам, посредством которых он может делать выводы. Чтобы помочь тестерам выполнять эту повседневную деятельность, есть базовый набор, который осуществляется в виде контрольных перечней.

Ключевые понятия

Дефекты и отказы: как мы уже обсуждали ранее, дефекты возникают не только из-за ошибок кодирования, но наиболее часто из-за пробелов в нефункциональных требованиях, таких как удобство использования, тестируемость, масштабируемость, ремонтопригодность, производительность и безопасность. Отказы возникают в результате отклонения между фактическим и ожидаемым результатом. Но не все дефекты приводят к сбоям. Дефект может обернуться неудачей из-за изменений в окружающей среде или изменения конфигурации системных требований.

Входные комбинации и предпосылки: Тестирование всех комбинаций входов и начального состояния (предпосылки), не представляется возможным. Это означает что достаточно сложно найти большое количество нечастых дефектов.

Статический и динамический анализ: статическое тестирование не требует исполнения кода для обнаружения дефектов, а при динамических испытаниях, программный код выполняется, лишь для того чтобы продемонстрировать результаты тестов.

Верификация и Валидация: тестирование программного обеспечения проводится с учетом этих двух факторов.

  1. Верификация: проверяет, разработан ли данный продукт согласно спецификации.
  2. Валидация: проверяет, соответствует ли продукт требованиям клиентов.

Обеспечение качества ПО: тестирование программного обеспечения является важной частью обеспечения качества. Обеспечение качества - это деятельность, которая подтверждает пригодность продукта, заботу о качестве товара и обеспечение соблюдения требований заказчика.

Типы тестирования программного обеспечения

Типы тестирования программного обеспечения - это группа контрольных мероприятий, направленных на тестирование компонента или системы, ориентированной на определенную цель тестирования; нефункциональные требования, такие как удобство использования, тестируемость и надежность. Различные виды тестирования используются с общей целью нахождение дефектов этого конкретного компонента.

Тестирование программного обеспечения классифицируется на два основных типа: ручное и автоматизированное тестирование.

Инструкции по сценарию тестирования:

  • Black Box (черный ящик) тестирование
  • White Box (белый ящик) тестирование
  • Gray Box (серый ящик) тестирование

Уровни тестирования программного обеспечения жизненного цикла включают в себя:

  • Модульное тестирование
  • Интеграционное тестирование
  • Системное тестирование
  • Приемочное тестирования (альфа-тестирование и бета-тестирование)

Другими видами тестирования программного обеспечения являются:

  • Функциональное тестирование
  • Тестирование производительности (нагрузочное тестирование и стресс-тестирование)
  • Дымовое тестирование
  • Санитарное тестирование (проверка согласованности)
  • Регрессионное тестирование
  • Тестирование восстановления.
  • Юзабилити-тестирование
  • Тестирование на совместимость
  • Тестирование конфигурации
  • Исследовательское тестирование

Автоматизированное тестирование

Ручное тестирование - трудоемкий процесс. Автоматизация тестирования предполагает автоматизировать ручной процесс. Автоматизация тестирования - это процесс написания компьютерной программы в виде скриптов для тестирования, который обычно делается вручную. Некоторыми популярными средствами автоматизации являются Winrunner, Quick Test Professional (QTP), LoadRunner, SilkTest, Rational Robot, и т. д. Средства автоматизации также включает в себя сервисные инструменты, такие как TestDirector и многие другие.

Методологии тестирования программного обеспечения

Существуют различные методики тестирования доступные для разработки и тестирования программного продукта. Этими моделями являются:

  • Каскадная модель
  • V Модель
  • Спиральная модель
  • Рационального унифицированный процесс
  • Гибкая модели
  • Быстрая разработка приложений

Тестовые артефакты

В процессе тестирования программного обеспечения можно произвести различные артефакты, такие как:

Тест план: документ, описывающий полный объем работы по тестированию. Тест план – может быть использован для проверки и обеспечения того, чтобы продукт или система соответствует проектной спецификации.

Прослеживаемость матрицы: Это таблица, которая сопоставляет или разрабатывает документы для тестовых документов. Это подтверждает, что результаты теста верны, а также используется для изменения тестов, когда исходные документы будут изменены.

Тестовый случай: Прецедент и стратегия испытаний используются для проверки работоспособности отдельных компонентов, которые интегрированы с получением полученного продукта. Эти тест-кейсы разрабатываются с целью оценки применения способности или особенности.

Тестовые данные: при множественных наборах значений или данных, используемых для тестирования те же функциональные возможности той или иной функции в тест-кейсах, тест ценностей и переменчивой окружающей среды, компоненты собраны в отдельных файлах и хранятся в качестве тестовых данных.

Сценарий тестирования: тестовый сценарий представляет собой сочетание теста, процедуры тестирования и данных испытаний.

Тестовый набор: это сборник тестовых случаев.

Процесс тестирование программного обеспечения

Процесс тестирования программного обеспечения осуществляется в следующей последовательности, для того чтобы найти недостатки в программном обеспечении системы:

  1. Создание плана тестирования
  2. Дизайн тест-кейсов
  3. Описание тестовых случаев
  4. Обзор тестовых случаев
  5. Выполнение теста
  6. Изучение результатов тестов
  7. Составление конечного обзора

Ниже приведены примеры тестирования:

Тестирование программного обеспечения для входа на страницу системы:

цель: пользователь должен иметь возможность перейти на главную страницу.

Предпосылки:

  1. Программное обеспечение должно быть совместимо с операционной системой.
  2. Должна появиться страница «ввода логина».
  3. Текстовые поля идентификатора пользователя и пароля должны быть доступны с соответствующими метками.
  4. Должны быть в наличии кнопки «Войти» и «Отмена» с соответствующими подписями.

Тест 1

Название теста: проверка требований пользовательского интерфейса.

Шаги/действия: Пользователь просматривает страницу, чтобы проверить, включает ли она в себя ID пользователя и пароль в текстовых полях с соответствующими наклейками. Кроме того, кнопки «Войти» и «Отмена» должны быть доступны с соответствующими подписями.

Ожидаемые результаты: экран отображает интерфейс пользователя согласно требованиям пользователя.

Тест 2

Название теста: Текстовое поле для идентификатора пользователя следует: 1) разрешить только буквенные символы {от a до z, и от A до Z}, 2) не разрешать специальные символы, такие как {"$","#","!","~","*",...}, 3) не разрешать цифровые символы {0-9}.

Шаги/действия: 1) Пользователь вводит числа в текстовое поле. 2) Пользователь вводит алфавитно-цифровые данные в текстовом поле.

Ожидаемые результаты: я) для числовых данных отображается сообщение об ошибке. 2) текст принимается, когда пользователь вводит алфавитные данные в текстовое поле.

Тест 3

Название теста: проверка функциональности текстового поля для пароля: 1) текстовое поле для пароля должно принять шесть или более символов. 2) данные должны отображаться в зашифрованном виде.

Шаги/действия: 1) Пользователь вводит только два символа в текстовом поле пароля. 2) Пользователь вводит более шести символов в текстовом поле пароля. 3) Пользователь проверяет отображаются ли данные в зашифрованном виде.

Ожидаемые Результаты: Когда пользователь вводит менее шести символов в текстовом поле пароль отображается сообщение об ошибке. Система принимает данные, когда пользователь входит более чем шесть символов в текстовом поле пароля. Система отображает данные в зашифрованном виде.

Тест 4

Название теста: проверка функциональности кнопки «Войти».

Шаги/действия: 1) Пользователь проверяет, включена или отключена кнопка «Войти». 2) Пользователь нажимает на кнопку «Войти» и ожидает, просмотра главной страницы приложения.

Ожидаемые результаты: 1) система отображает кнопку «Войти». 2) Система перенаправляет пользователя на главную страницу приложения, как только он нажимает на кнопку «Войти».

Тест 5

Название теста: проверка функциональности кнопки «Отмена».

Шаги/действия: 1) Пользователь проверяет, включена или отключена кнопка «Отмена». 2) Пользователь проверяет, сбрасываются ли текстовые поля ID пользователя и пароль при нажатии кнопки «Отмена».

Ожидаемые результаты: 1) система отображает кнопки «Отмена». 2) система сбрасывает данные текстовых полей идентификатора пользователя и пароля, когда пользователь нажимает на кнопку «Отмена».

Методы поиска неисправностей при тестировании программного обеспечения

Поиск дефекта или неисправности на начальных этапах разработки программного обеспечения не только экономит время и деньги, но также является эффективным с точки зрения безопасности и доходности. По мере продвижения вперед в направлении разных уровнях программного обеспечения, он становится трудным и утомительным, чтобы вернуться для поиска проблем на начальные стадии программного обеспечения. Затраты также повышаются. Таким образом, рекомендуется начинать тестирование с начальной стадии жизненного цикла разработки программного обеспечения.

Наряду с типами, существуют различные методы тестирования программного обеспечения. Существует порядок, который будет следовать при нахождении ошибки в заявке. Эта процедура сочетается с жизненным циклом в виде бага, в зависимости от тяжести и приоритета ошибки. Этот жизненный цикл известен как ошибка жизненного цикла.

Метрика программного обеспечения

Когда программное обеспечение находится на стадии разработки и после того, как система готова к использованию возникает необходимость измерения программного обеспечения. Хотя трудно измерить такое абстрактное ограничение, но без этого не обойтись. Элементы, которые не могут быть измерены, должны быть под контролем. Есть некоторые важные аспекты пользы от измерения программного обеспечения:

Метрика программного обеспечения поможет избежать таких подводных камней, как:

  1. Перерасход средств
  2. Определение, источника проблемы
  3. Уточнение целей

Даст ответы на такие вопросы как:

  1. Какова оценка каждого процесса деятельности?
  2. Каково качество кода, который был разработан?
  3. Как можно улучшить слаборазвитый код?

Оно помогает в оценке качества программного обеспечения, затрат и усилий, оценки, сбора данных, оценки производительности и эффективности.

Некоторыми общими метриками программного обеспечения являются:

  • Покрытие кода
  • Цикломатическая сложность
  • Сплоченность
  • Связь
  • Функция точечного анализа
  • Время выполнения
  • Источник строк кода
  • Ошибка в строках кода

Короче говоря, измерение программного обеспечения нужно для контроля и совершенствования программного обеспечения системы. Программное обеспечение подлежит изменениям, по отношению к изменяющимся условиям окружающей среды, различным потребностям пользователей, а также вопросами конфигурации и совместимости. Это дает толчок к развитию более новых и обновленных версий программного обеспечения. Но также должен быть какой-нибудь источник легкого возвращения к старым версиям и эффективной на них работы.

Тестирование программного обеспечения в качестве карьеры

Тестирование программного обеспечения - это хорошая возможность карьерного роста для тех, кто заинтересован в индустрии программного обеспечения. Видео тестирование игр является ответвлением тестирования программного обеспечения. Есть много отраслей промышленности, специализирующихся в этой области. Вам даже могут платить, чтобы вы испытывали видеоигры.

Тестирование программного обеспечения - это действительно огромное поле и точные знания имеют решающее значение для обеспечения качества разработанного программного обеспечения. Я надеюсь, что это учебное пособие по тестированию программного обеспечения должно дать вам ясное представление о различных видах тестирования программного обеспечения, методологий и различных стратегий тестирования.

Тестирование программного обеспечения (ПО) выявляет недоработки, изъяны и ошибки в коде, которые необходимо устранить. Его также можно определить как процесс оценки функциональных возможностей и корректности ПО с помощью анализа. Основные методы интеграции и тестирования программных продуктов обеспечивают качество приложений и заключаются в проверке спецификации, дизайна и кода, оценке надежности, валидации и верификации.

Методы

Главная цель тестирования ПО - подтверждение качества программного комплекса путем систематической отладки приложений в тщательно контролируемых условиях, определение их полноты и корректности, а также обнаружение скрытых ошибок.

Методы можно разделить на статические и динамические.

К первым относятся неформальное, контрольное и техническое рецензирование, инспекция, пошаговый разбор, аудит, а также статический анализ потока данных и управления.

Динамические техники следующие:

  1. Тестирование методом белого ящика. Это подробное исследование внутренней логики и структуры программы. При этом необходимо знание исходного кода.
  2. Тестирование методом черного ящика. Данная техника не требует каких-либо знаний о внутренней работе приложения. Рассматриваются только основные аспекты системы, не связанные или мало связанные с ее внутренней логической структурой.
  3. Метод серого ящика. Сочетает в себе предыдущие два подхода. Отладка с ограниченным знанием о внутреннем функционировании приложения сочетается со знанием основных аспектов системы.

Прозрачное тестирование

В методе белого ящика используются тестовые сценарии контрольной структуры процедурного проекта. Данная техника позволяет выявить ошибки реализации, такие как плохое управление системой кодов, путем анализа внутренней работы части программного обеспечения. Данные методы тестирования применимы на интеграционном, модульном и системном уровнях. Тестировщик должен иметь доступ к исходному коду и, используя его, выяснить, какой блок ведет себя несоответствующим образом.

Тестирование программ методом белого ящика обладает следующими преимуществами:

  • позволяет выявить ошибку в скрытом коде при удалении лишних строк;
  • возможность использования побочных эффектов;
  • максимальный охват достигается путем написания тестового сценария.

Недостатки:

  • высокозатратный процесс, требующий квалифицированного отладчика;
  • много путей останутся неисследованными, поскольку тщательная проверка всех возможных скрытых ошибок очень сложна;
  • некоторая часть пропущенного кода останется незамеченной.

Тестирование методом белого ящика иногда еще называют тестированием методом прозрачного или открытого ящика, структурным, логическим тестированием, тестированием на основе исходных текстов, архитектуры и логики.

Основные разновидности:

1) тестирование управления потоком - структурная стратегия, использующая поток управления программой в качестве модели и отдающая предпочтение большему количеству простых путей перед меньшим числом более сложных;

2) отладка ветвления имеет целью исследование каждой опции (истинной или ложной) каждого оператора управления, который также включает в себя объединенное решение;

3) тестирование основного пути, которое позволяет тестировщику установить меру логической сложности процедурного проекта для выделения базового набора путей выполнения;

4) проверка потока данных - стратегия исследования потока управления путем аннотации графа информацией об объявлении и использовании переменных программы;

5) тестирование циклов - полностью сосредоточено на правильном выполнении циклических процедур.

Поведенческая отладка

Тестирование методом черного ящика рассматривает ПО как «черный ящик» - сведения о внутренней работе программы не учитываются, а проверяются только основные аспекты системы. При этом тестировщику необходимо знать системную архитектуру без доступа к исходному коду.

Преимущества такого подхода:

  • эффективность для большого сегмента кода;
  • простота восприятия тестировщиком;
  • перспектива пользователя четко отделена от перспективы разработчика (программист и тестировщик независимы друг от друга);
  • более быстрое создание теста.

Тестирование программ методами черного ящика имеет следующие недостатки:

  • в действительности выполняется избранное число тестовых сценариев, результатом чего является ограниченный охват;
  • отсутствие четкой спецификации затрудняет разработку тестовых сценариев;
  • низкая эффективность.

Другие названия данной техники - поведенческое, непрозрачное, функциональное тестирование и отладка методом закрытого ящика.

1) эквивалентное разбиение, которое может уменьшить набор тестовых данных, так как входные данные программного модуля разбиваются на отдельные части;

2) краевой анализ фокусируется на проверке границ или экстремальных граничных значений - минимумах, максимумах, ошибочных и типичных значениях;

3) фаззинг - используется для поиска погрешностей реализации с помощью ввода искаженных или полуискаженных данных в автоматическом или полуавтоматическом режиме;

4) графы причинно-следственных связей - методика, основанная на создании графов и установлении связи между действием и его причинами: тождественность, отрицание, логическое ИЛИ и логическое И - четыре основных символа, выражающие взаимозависимость между причиной и следствием;

5) проверка ортогональных массивов, применяемая к проблемам с относительно небольшой областью ввода, превышающей возможности исчерпывающего исследования;

6) тестирование всех пар - техника, набор тестовых значений которой включает все возможные дискретные комбинации каждой пары входных параметров;

Тестирование методом черного ящика: примеры

Техника основана на спецификациях, документации, а также описаниях интерфейса программного обеспечения или системы. Кроме того, возможно использование моделей (формальных или неформальных), представляющих ожидаемое поведение ПО.

Обычно данный метод отладки применяется для пользовательских интерфейсов и требует взаимодействия с приложением путем введения данных и сбора результатов - с экрана, из отчетов или распечаток.

Тестировщик, таким образом, взаимодействует с ПО путем ввода, воздействуя на переключатели, кнопки или другие интерфейсы. Выбор входных данных, порядок их введения или очередность действий могут привести к гигантскому суммарному числу комбинаций, как это видно на следующем примере.

Какое количество тестов необходимо произвести, чтобы проверить все возможные значения для 4 окон флажка и одного двухпозиционного поля, задающего время в секундах? На первый взгляд расчет прост: 4 поля с двумя возможными состояниями - 24 = 16, которые необходимо умножить на число возможных позиций от 00 до 99, то есть 1600 возможных тестов.

Тем не менее этот расчет ошибочен: мы можем определить, что двухпозиционное поле может также содержать пробел, т. е. оно состоит из двух буквенно-цифровых позиций и может включать символы алфавита, специальные символы, пробелы и т. д. Таким образом, если система представляет собой 16-битный компьютер, то получится 216 = 65 536 вариантов для каждой позиции, результирующих в 4 294 967 296 тестовых случаев, которые необходимо умножить на 16 комбинаций для флажков, что в общей сложности дает 68 719 476 736. Если их выполнить со скоростью 1 тест в секунду, то общая продолжительность тестирования составит 2 177,5 лет. Для 32 или 64-битных систем, длительность еще больше.

Поэтому возникает необходимость уменьшить этот срок до приемлемого значения. Таким образом, должны применяться приемы для сокращения количества тестовых случаев без уменьшения охвата тестирования.

Эквивалентное разбиение

Эквивалентное разбиение представляет собой простой метод, применимый для любых переменных, присутствующих в программном обеспечении, будь то входные или выходные значения, символьные, числовые и др. Он основан на том принципе, что все данные из одного эквивалентного разбиения будут обрабатываться тем же образом и теми же инструкциями.

Во время тестирования выбирается по одному представителю от каждого определенного эквивалентного разбиения. Это позволяет систематически сокращать число возможных тестовых случаев без потери охвата команд и функций.

Другим следствием такого разбиения является сокращение комбинаторного взрыва между различными переменными и связанное с ними сокращение тестовых случаев.

Например, в (1/x) 1/2 используется три последовательности данных, три эквивалентных разбиения:

1. Все положительные числа будут обрабатываться таким же образом и должны давать правильные результаты.

2. Все отрицательные числа будут обрабатываться так же, с таким же результатом. Это неверно, так как корень из отрицательного числа является мнимым.

3. Ноль будет обрабатываться отдельно и даст ошибку «деление на ноль». Это раздел с одним значением.

Таким образом, мы видим три различных раздела, один из которых сводится к единственному значению. Есть один «правильный» раздел, дающий достоверные результаты, и два «неправильных», с некорректными результатами.

Краевой анализ

Обработка данных на границах эквивалентного разбиения может выполняться иначе, чем ожидается. Исследование граничных значений - хорошо известный способ анализа поведения ПО в таких областях. Эта техника позволяет выявить такие ошибки:

  • неправильное использование операторов отношения (<,>, =, ≠, ≥, ≤);
  • единичные ошибки;
  • проблемы в циклах и итерациях,
  • неправильные типы или размер переменных, используемых для хранения информации;
  • искусственные ограничения, связанные с данными и типами переменных.

Полупрозрачное тестирование

Метод серого ящика увеличивает охват проверки, позволяя сосредоточиться на всех уровнях сложной системы путем сочетания методов белого и черного.

При использовании этой техники тестировщик для разработки тестовых значений должен обладать знаниями о внутренних структурах данных и алгоритмах. Примерами методики тестирования серого ящика являются:

  • архитектурная модель;
  • унифицированный язык моделирования (UML);
  • модель состояний (конечный автомат).

В методе серого ящика для разработки тестовых случаев изучаются коды модулей по технике белого, а фактическое испытание выполняется на интерфейсах программы по технологии черного.

Такие методы тестирования обладают следующими преимуществами:

  • сочетание преимуществ техник белого и черного ящиков;
  • тестировщик опирается на интерфейс и функциональную спецификацию, а не на исходный код;
  • отладчик может создавать отличные тестовые сценарии;
  • проверка производится с точки зрения пользователя, а не дизайнера программы;
  • создание настраиваемых тестовых разработок;
  • объективность.

Недостатки:

  • тестовое покрытие ограничено, так как отсутствует доступ к исходному коду;
  • сложность обнаружения дефектов в распределенных приложениях;
  • многие пути остаются неисследованными;
  • если разработчик программного обеспечения уже запускал проверку, то дальнейшее исследование может быть избыточным.

Другое название техники серого ящика - полупрозрачная отладка.

1) ортогональный массив - использование подмножества всех возможных комбинаций;

2) матричная отладка с использованием данных о состоянии программы;

3) проводимая при внесении новых изменений в ПО;

4) шаблонный тест, который анализирует дизайн и архитектуру добротного приложения.

тестирования ПО

Использование всех динамических методов приводит к комбинаторному взрыву количества тестов, которые должны быть разработаны, воплощены и проведены. Каждую технику следует использовать прагматично, принимая во внимание ее ограничения.

Единственно верного метода не существует, есть только те, которые лучше подходят для конкретного контекста. Структурные техники позволяют найти бесполезный или вредоносный код, но они сложны и неприменимы к крупным программам. Методы на основе спецификации - единственные, которые способны выявить недостающий код, но они не могут идентифицировать посторонний. Одни техники больше подходят для конкретного уровня тестирования, типа ошибок или контекста, чем другие.

Ниже приведены основные отличия трех динамических техник тестирования - дана таблица сравнения между тремя формами отладки ПО.

Аспект

Метод черного ящика

Метод серого ящика

Метод белого ящика

Наличие сведений о составе программы

Анализируются только базовые аспекты

Частичное знание о внутреннем устройстве программы

Полный доступ к исходному коду

Степень дробления программы

Кто производит отладку?

Конечные пользователи, тестировщики и разработчики

Конечные пользователи, отладчики и девелоперы

Разработчики и тестировщики

Тестирование базируется на внешних внештатных ситуациях.

Диаграммы БД, диаграммы потока данных, внутренние состояния, знание алгоритма и архитектуры

Внутреннее устройство полностью известно

Степень охвата

Наименее исчерпывающая и требует минимума времени

Потенциально наиболее исчерпывающая. Требует много времени

Данные и внутренние границы

Отладка исключительно методом проб и ошибок

Могут проверяться домены данных и внутренние границы, если они известны

Лучшее тестирование доменов данных и внутренних границ

Пригодность для тестирования алгоритма

Автоматизация

Автоматические методы тестирования программных продуктов намного упрощают процесс проверки независимо от технической среды или контекста ПО. Их используют в двух случаях:

1) для автоматизации выполнение утомительных, повторяющихся или скрупулезных задач, таких как сравнение файлов в нескольких тысяч строк с целью высвобождения времени тестировщика для концентрации на более важных моментах;

2) для выполнения или отслеживания задач, которые не могут быть легко осуществимы людьми, таких как проверка производительности или анализ времени отклика, которые могут измеряться в сотых долях секунды.

Тестовые инструменты могут быть классифицированы по-разному. Следующее деление основано на поддерживаемых ими задачах:

  • управление тестированием, которое включает поддержку управления проектом, версиями, конфигурациями, риск-анализ, отслеживание тестов, ошибок, дефектов и инструменты создания отчетов;
  • управление требованиями, которое включает хранение требований и спецификаций, их проверку на полноту и многозначность, их приоритет и отслеживаемость каждого теста;
  • критический просмотр и статический анализ, включая мониторинг потока и задач, запись и хранение комментариев, обнаружение дефектов и плановых коррекций, управление ссылками на проверочные списки и правила, отслеживание связи исходных документов и кода, статический анализ с обнаружением дефектов, обеспечением соответствия стандартам написания кода, разбором структур и их зависимостей, вычислением метрических параметров кода и архитектуры. Кроме того, используются компиляторы, анализаторы связей и генераторы кросс-ссылок;
  • моделирование, которое включает инструменты моделирования бизнес-поведения и проверки созданных моделей;
  • разработка тестов обеспечивает генерацию ожидаемых данных исходя из условий и интерфейса пользователя, моделей и кода, управление ими для создания или изменения файлов и БД, сообщений, проверки данных исходя из правил управления, анализа статистики условий и рисков;
  • критический просмотр путем ввода данных через графический интерфейс пользователя, API, командные строки с использованием компараторов, помогающих определить успешные и неудавшиеся тесты;
  • поддержка сред отладки, которая позволяет заменить отсутствующее оборудование или ПО, в т. ч. симуляторы оборудования на основе подмножества детерминированного выхода, эмуляторы терминалов, мобильных телефонов или сетевого оборудования, среды для проверки языков, ОС и аппаратного обеспечения путем замены недостающих компонентов драйверами, фиктивными модулями и др., а также инструменты для перехвата и модификации запросов ОС, симуляции ограничений ЦПУ, ОЗУ, ПЗУ или сети;
  • сравнение данных файлов, БД, проверка ожидаемых результатов во время и по окончании тестирования, в т. ч. динамическое и пакетное сравнение, автоматические «оракулы»;
  • измерение покрытия для локализации утечек памяти и некорректного управления ею, оценки поведения системы в условиях симулированной нагрузки, генерации нагрузки приложений, БД, сети или серверов по реалистичным сценариям ее роста, для измерения, анализа, проверки и отчета о системных ресурсах;
  • обеспечение безопасности;
  • тестирование производительности, нагрузки и динамический анализ;
  • другие инструменты, в т. ч. для проверки правописания и синтаксиса, сетевой безопасности, наличия всех страниц веб-сайта и др.

Перспектива

С изменением тенденций в индустрии ПО процесс его отладки также подвержен изменениям. Существующие новые методы тестирования программных продуктов, такие как сервис-ориентированнае архитектура (SOA), беспроводные технологии, мобильные услуги и т. д., открыли новые способы проверки ПО. Некоторые из изменений, которые ожидаются в этой отрасли в течение следующих нескольких лет, перечислены ниже:

  • тестировщики будут предоставлять легковесные модели, с помощью которых разработчики смогут проверять свой код;
  • разработка методов тестирования, включающих просмотр и моделирование программ на раннем этапе, позволит устранить многие противоречия;
  • наличие множества тестовых перехватов сократит время обнаружения ошибок;
  • статический анализатор и средства обнаружения будут применяться более широко;
  • применение полезных матриц, таких как охват спецификации, охват модели и покрытие кода, будет определять разработку проектов;
  • комбинаторные инструменты позволят тестировщикам определять приоритетные направления отладки;
  • тестировщики будут предоставлять более наглядные и ценные услуги на протяжении всего процесса разработки ПО;
  • отладчики смогут создавать средства и методы тестирования программного обеспечения, написанные на и взаимодействующие с различными языками программирования;
  • специалисты по отладке станут более профессионально подготовленными.

На смену придут новые бизнес-ориентированные методы тестирования программ, изменятся способы взаимодействия с системами и предоставляемой ими информацией с одновременным снижением рисков и ростом преимуществ от бизнес-изменений.

При создании типичного программного проекта около 50 % общего времени и более 50 % общей стоимости расходуется на тестирование. Эти цифры могут вызвать целую дискуссию, однако основным здесь является вопрос: как сократить расходы и повысить качество программного обеспечения?

Ручное тестирование (manual testing) - часть процесса тестирования на этапе контроля качества в процессе разработки программного обеспечения. Оно проводится тестировщиками или обычными пользователи путем моделирования возможных сценариев действия пользователя.

Задача тестировщика заключается в поиске наибольшего количества ошибок. Он должен хорошо знать наиболее часто допускаемые ошибки и уметь находить их за минимально короткий период времени. Остальные ошибки, которые не являются типовыми, обнаруживаются только тщательно созданными наборами тестов. Однако, из этого не следует, что для типовых ошибок не нужно составлять тесты.

Ручное тестирование заключается в выполнении задокументированной процедуры, где описана методика выполнения тесто. Методика задает порядок тестов и для каждого теста – список значений параметров, который подается на вход со список результатов на выходе. Так как процедура предназначена для выполнения человеком, в ее описании для краткости могут использоваться некоторые значения по умолчанию, ориентированные на здравый смысл, или ссылки на информацию, хранящуюся в другом документе.

Пример фрагмента процедуры

  1. Подать на вход три разных целых числа;
  2. Запустить тестовое исполнение;
  3. Проверить, соответствует ли полученный результат таблице [ссылка на документ1] с учетом поправок [ссылка на документ2];
  4. Убедиться в понятности и корректности выдаваемой сопроводительной информации.

В этой процедуре тестировщик использует дополнительные документы и собственное понимание того, какую сопроводительную информацию считать “понятной и корректной”. Успех от использования процедурного подхода достигается в случае однозначного понимания тестировщиком всех пунктов процедуры. Например, в п.1 приведенной процедуры не уточняется, из какого диапазона должны быть заданы три целых числа, и не описывается дополнительно, какие числа считаются “разными”.

Попытка автоматизировать приведенный выше тест приводит к созданию скрипта, задающего тестируемому продукту три конкретных числа и перенаправляющего вывод продукта в файл с целью его анализа, а также содержащего конкретное значение желаемого результата, с которым сверяется получаемое при прогоне теста значение. Таким образом, вся необходимая информация должна быть явно помещена в текст (скрипт) теста, что требует дополнительных по сравнению с ручным подходом усилий. Также дополнительных усилий и времени требует создание разборщика вывода (программы согласования форматов представления эталонных значений из теста и вычисляемых при прогоне результатов) и, возможно, создание базы хранения состояний эталонных данных.

Методы ручного тестирования достаточно эффективны с точки зрения нахождения ошибок. Их обязательно следует использовать в каждом программном продукте. Описанные методы предназначены для периода разработки, когда программа закодирована, но активный этап тестирования еще не начался. Похожие методы могут применяться и на более ранних этапах процесса создания программ, в конце каждого этапа проектирования.

Данные методы способствуют существенному увеличению производительности и повышению надежности программы. Во-первых, они обычно позволяют раньше обнаружить ошибки, уменьшить стоимость исправления последних и увеличить вероятность того, что корректировка произведена правильно. Во-вторых, психология программистов, по-видимому, изменяется, когда начинается тестирование перед релизом. Возрастает внутреннее напряжение и появляется тенденция «исправлять ошибки так быстро, как только это возможно». В итоге программисты допускают больше промахов при корректировке ошибок, уже найденных во время тестирования, чем при корректировке ошибок, найденных на более ранних этапах. Кроме того, скептицизм связан с тем, что это «первобытный метод». Сейчас стоимость машинного времени очень низка, а стоимость труда тестировщиков высока и ряд руководителей пойдут на все, чтобы сократить расходы. Однако, есть другая сторона ручного тестирования – при тестировании за компьютером причины ошибок выявляются только в программе, а самая глубокая их причина – мышление программиста, как правило, не претерпевает изменений, при ручном же тестировании, программист глубоко анализирует свой код, попутно выявляя возможные пути его оптимизации, и изменяет собственный стиль мышления, повышая квалификацию. Таким образом, можно прийти к выводу, что ручное тестирование можно и нужно проводить на первичном этапе, особенно, если нет прессинга времени и бюджета.

Сравнение ручного и автоматизированного подхода к тестированию

Сравнение показывает тенденцию современного тестирования, ориентирующую на максимальную автоматизацию процесса тестирования и генерацию тестового кода, что позволяет справляться с большими объемами данных и тестов, необходимых для обеспечения качества при производстве программных продуктов.

Ручное Автоматизированное
Задание входных значений Гибкость в задании данных. Позволяет использовать разные значения на разных циклах прогона тестов, расширяя покрытие Входные значения строго заданы
Проверка результата Гибкая, позволяет тестировщику оценивать нечетко сформулированные критерии Строгая. Нечетко сформулированные критерии могут быть проверены только путем сравнения с эталоном
Повторяемость Низкая. Человеческий фактор и нечеткое определение данных приводят к неповторяемости тестирования Высокая
Надежность Низкая. Длительные тестовые циклы приводят к снижению внимания тестировщика Высокая, не зависит от длины тестового цикла
Чувствительность к незначительным изменениям в продукте Зависит от детальности описания процедуры. Обычно тестировщик в состоянии выполнить тест, если внешний вид продукта и текст сообщений несколько изменились Высокая. Незначительные изменения в интерфейсе часто ведут к коррекции эталонов
Скорость выполнения тестового набора Низкая Высокая
Возможность генерации тестов Отсутствует. Низкая скорость выполнения обычно не позволяет исполнить сгенерированный набор тестов Поддерживается

Инспекции и сквозные просмотры

Инспекции исходного текста и сквозные просмотры являются основными методами ручного тестирования. Так как эти два метода имеют много общего, они рассматриваются здесь совместно. Инспекции и сквозные просмотры включают в себя чтение или визуальную проверку программы группой лиц. Оба метода предполагают проведение подготовительной работы. Завершающим этапом является «обмен мнениями» – собрание, проводимое участниками проверки. Цель такого собрания – нахождение ошибок, но не их устранение (т. е. тестирование, а не отладка). Программа, тестируется не автором, а другими людьми и фактически «инспекция» и «сквозной просмотр» – просто новые названия старого метода «проверки за столом», однако они более эффективны потому что в процессе участвует не только автор программы, но и другие лица. Результатом использования этих методов является, обычно, точное определение природы ошибок. К тому же этим методом можно обнаруживать группы ошибок, что позволяет в дальнейшем корректировать сразу несколько ошибок.

Инспекции исходного текста это набор процедур и приемов обнаружения ошибок при изучении текста группой тестировщиков. Во время инспекции исходного текста внимание сосредоточено на методах, процедурах, формах выполнения и т. д. Группа включает обычно четыре человека, один из которых выполняет функции председателя. Председатель должен быть компетентным программистом, но не автором программы; он не должен быть знаком с ее деталями. В обязанности председателя входят подготовка материалов для заседаний инспектирующей группы и составление графика их проведения, ведение заседаний, регистрация всех найденных ошибок и принятие мер по их последующему исправлению.

Инспекционное заседание разбивается на две части:

  1. Программиста просят рассказать о логике работы программы. Во время беседы возникают вопросы, преследующие цель обнаружения ошибки. Практика показала, что даже только чтение своей программы слушателям представляется эффективным методом обнаружения ошибок и многие ошибки находит сам программист, а не другие члены группы.
  2. Программа анализируется по списку вопросов для выявления исторически сложившихся общих ошибок программирования. Ее участники должны сосредоточить свое внимание на нахождении ошибок, а не на их корректировке. Корректировка ошибок выполняется программистом после инспекционного заседания. Список ошибок анализируется и они распределяются по категориям, что позволяет совершенствовать его с целью повышения эффективности будущих инспекций. Можно вести учет типов ошибок, на основании которого следует проводить дополнительную стажировку программиста в слабых областях. Процесс инспектирования в дополнение к своему основному назначению, выполняет еще ряд полезных функций. Результаты инспекции позволяют программисту увидеть сделанные им ошибки и способствуют его обучению на собственных ошибках, он обычно получает возможность оценить свой стиль программирования и выбор алгоритмов и методов тестирования. Остальные участники приобретают опыт, рассматривая ошибки и стиль программирования других программистов. Инспекция является способом раннего выявления наиболее склонных к ошибкам частей программы, позволяющим сконцентрировать внимание на этих частях в процессе выполнения тестирования.

Сквозной просмотр, представляет собой набор процедур и способов обнаружения ошибок, осуществляемых группой лиц, просматривающих текст программы. Метод имеет много общего с процессом инспектирования, но их процедуры несколько отличаются и в нем используются другие методы обнаружения ошибок. Сквозной просмотр проводится как непрерывное заседание, группа состоит из 3–5 человек. Процедура отличается от процедуры инспекционного заседания тем, что участники «выполняют роль компьютера». Комиссии предлагают небольшое число написанных на бумаге тестов, представляющих собой наборы входных данных и ожидаемых выходных данных для программы или модуля. Тестовые данные подвергаются обработке в соответствии с логикой программы, состояние программы и значения переменных отслеживается на бумаге или доске.Тесты сами по себе не играют критической роли, а служат средством для первоначального понимания программы и основой для вопросов программисту о логике проектирования и принятых допущениях.

Проверка за столом может рассматриваться как проверка исходного текста или сквозные просмотры, осуществляемые одним человеком, который читает текст программы, проверяет его по списку ошибок или пропускает через программу тестовые данные. Большей частью проверка за столом является относительно непродуктивной, так как представляет собой полностью неупорядоченный процесс. К тому же проверка за столом противопоставляется одному из принципов тестирования, согласно которому программист обычно неэффективно тестирует собственные программы. Поэтому проверка за столом наилучшим образом может быть выполнена человеком, не являющимся автором программы, например, два программиста могут обмениваться программами вместо того, чтобы проверять за столом свои собственные программы. Однако даже в этом случае такая проверка менее эффективна, чем сквозные просмотры или инспекции. Данная причина является главной для образования группы при сквозных просмотрах или инспекциях исходного текста. Заседание группы благоприятствует созданию атмосферы здоровой конкуренции: участники хотят показать себя с лучшей стороны при нахождении ошибок. При проверке за столом этот, безусловно, ценный эффект отсутствует. Короче говоря, проверка за столом, конечно, полезна, но она гораздо менее эффективна, чем инспекция исходного текста или сквозной просмотр.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows