Касперский одноразовый. Одноразовые антивирусы для быстрой проверки компьютера. Минусы Kaspersky Virus Removal Tool

Касперский одноразовый. Одноразовые антивирусы для быстрой проверки компьютера. Минусы Kaspersky Virus Removal Tool

24.03.2019

Что мы будем делать? Мы попробуем создать простую и совсем маленькую нейронную сеть , которую мы объясним и научим что-нибудь различать. При этом не будем вдаваться в историю и математические дебри (такую информацию найти очень легко) — вместо этого постараемся объяснить задачу (не факт, что удастся) вам и самим себе рисунками и кодом.
Многие из терминов в нейронных сетях связаны с биологией, поэтому давайте начнем с самого начала:

Мозг — штука сложная, но и его можно разделить на несколько основных частей и операций:

Возбудитель может быть и внутренним (например, образ или идея):

А теперь взглянем на основные и упрощенные части мозга :

Мозг вообще похож на кабельную сеть.

Нейрон — основная единица исчислений в мозге, он получает и обрабатывает химические сигналы других нейронов, и, в зависимости от ряда факторов, либо не делает ничего, либо генерирует электрический импульс, или Потенциал Действия, который затем через синапсы подает сигналы соседним связанным нейронам:

Сны, воспоминания, саморегулируемые движения, рефлексы да и вообще все, что вы думаете или делаете — все происходит благодаря этому процессу: миллионы, или даже миллиарды нейронов работают на разных уровнях и создают связи, которые создают различные параллельные подсистемы и представляют собой биологическую нейронную сеть .

Разумеется, это всё упрощения и обобщения, но благодаря им мы можем описать простую
нейронную сеть:

И описать её формализовано с помощью графа:

Тут требуются некоторые пояснения. Кружки — это нейроны, а линии — это связи между ними, и, чтобы не усложнять на этом этапе, взаимосвязи представляют собой прямое передвижение информации слева направо . Первый нейрон в данный момент активен и выделен серым. Также мы присвоили ему число (1 — если он работает, 0 — если нет). Числа между нейронами показывают вес связи.

Графы выше показывают момент времени сети, для более точного отображения, нужно разделить его на временные отрезки:

Для создания своей нейронной сети нужно понимать, как веса влияют на нейроны и как нейроны обучаются. В качестве примера возьмем кролика (тестового кролика) и поставим его в условия классического эксперимента.

Когда на них направляют безопасную струю воздуха, кролики, как и люди, моргают:

Эту модель поведения можно нарисовать графами:

Как и в предыдущей схеме, эти графы показывают только тот момент, когда кролик чувствует дуновение, и мы таким образом кодируем дуновение как логическое значение. Помимо этого мы вычисляем, срабатывает ли второй нейрон, основываясь на значении веса. Если он равен 1, то сенсорный нейрон срабатывает, мы моргаем; если вес меньше 1, мы не моргаем: у второго нейрона предел — 1.

Введем еще один элемент — безопасный звуковой сигнал:

Мы можем смоделировать заинтересованность кролика так:

Основное отличие в том, что сейчас вес равен нулю , поэтому моргающего кролика мы не получили, ну, пока, по крайней мере. Теперь научим кролика моргать по команде, смешивая
раздражители (звуковой сигнал и дуновение):

Важно, что эти события происходят в разные временные эпохи , в графах это будет выглядеть так:

Сам по себе звук ничего не делает, но воздушный поток по-прежнему заставляет кролика моргать, и мы показываем это через веса, умноженные на раздражители (красным). Обучение сложному поведению можно упрощённо выразить как постепенное изменение веса между связанными нейронами с течением времени.

Чтобы обучить кролика, повторим действия:

Для первых трех попыток схемы будут выглядеть так:

Обратите внимание, что вес для звукового раздражителя растет после каждого повтора (выделено красным), это значение сейчас произвольное — мы выбрали 0.30, но число может быть каким угодно, даже отрицательным. После третьего повтора вы не заметите изменения в поведении кролика, но после четвертого повтора произойдет нечто удивительное — поведение изменится.

Мы убрали воздействие воздухом, но кролик все еще моргает, услышав звуковой сигнал! Объяснить это поведение может наша последняя схемка:

Мы обучили кролика реагировать на звук морганием.

В условиях реального эксперимента такого рода может потребоваться более 60 повторений для достижения результата.

Теперь мы оставим биологический мир мозга и кроликов и попробуем адаптировать всё, что
узнали, для создания искусственной нейросети. Для начала попробуем сделать простую задачу.

Допустим, у нас есть машина с четырьмя кнопками, которая выдает еду при нажатии правильной
кнопки (ну, или энергию, если вы робот). Задача — узнать, какая кнопка выдает вознаграждение:

Мы можем изобразить (схематично), что делает кнопка при нажатии следующим образом:

Такую задачу лучше решать целиком, поэтому давайте посмотрим на все возможные результаты, включая правильный:

Нажмите на 3-ю кнопку, чтобы получить свой ужин.

Чтобы воспроизвести нейронную сеть в коде, нам для начала нужно сделать модель или график, с которым можно сопоставить сеть. Вот один подходящий под задачу график, к тому же он хорошо отображает свой биологический аналог:

Эта нейронная сеть просто получает входящую информацию — в данном случае это будет восприятие того, какую кнопку нажали. Далее сеть заменяет входящую информацию на веса и делает вывод на основе добавления слоя. Звучит немного запутанно, но давайте посмотрим, как в нашей модели представлена кнопка:

Обратите внимание, что все веса равны 0, поэтому нейронная сеть, как младенец, совершенно пуста, но полностью взаимосвязана.

Таким образом мы сопоставляем внешнее событие с входным слоем нейронной сети и вычисляем значение на ее выходе. Оно может совпадать или не совпадать с реальностью, но это мы пока проигнорируем и начнем описывать задачу понятным компьютеру способом. Начнем с ввода весов (будем использовать JavaScript):

Var inputs = ; var weights = ; // Для удобства эти векторы можно назвать

Следующий шаг — создание функции, которая собирает входные значения и веса и рассчитывает значение на выходе:

Function evaluateNeuralNetwork(inputVector, weightVector){ var result = 0; inputVector.forEach(function(inputValue, weightIndex) { layerValue = inputValue*weightVector; result += layerValue; }); return (result.toFixed(2)); } // Может казаться комплексной, но все, что она делает — это сопоставляет пары вес/ввод и добавляет результат

Как и ожидалось, если мы запустим этот код, то получим такой же результат, как в нашей модели или графике…

EvaluateNeuralNetwork(inputs, weights); // 0.00

Живой пример: Neural Net 001 . Следующим шагом в усовершенствовании нашей нейросети будет способ проверки её собственных выходных или результирующих значений сопоставимо реальной ситуации, давайте сначала закодируем эту конкретную реальность в переменную:

Чтобы обнаружить несоответствия (и сколько их), мы добавим функцию ошибки:

Error = Reality - Neural Net Output

С ней мы можем оценивать работу нашей нейронной сети:

Но что более важно — как насчет ситуаций, когда реальность дает положительный результат?

Теперь мы знаем, что наша модель нейронной сети не работает (и знаем, насколько), здорово! А здорово это потому, что теперь мы можем использовать функцию ошибки для управления нашим обучением. Но всё это обретет смысл в том случае, если мы переопределим функцию ошибок следующим образом:

Error = Desired Output - Neural Net Output

Неуловимое, но такое важное расхождение, молчаливо показывающее, что мы будем
использовать ранее полученные результаты для сопоставления с будущими действиями
(и для обучения, как мы потом увидим). Это существует и в реальной жизни, полной
повторяющихся паттернов, поэтому оно может стать эволюционной стратегией (ну, в
большинстве случаев).

Var input = ; var weights = ; var desiredResult = 1;

И новую функцию:

Function evaluateNeuralNetError(desired,actual) { return (desired — actual); } // After evaluating both the Network and the Error we would get: // "Neural Net output: 0.00 Error: 1"

Живой пример: Neural Net 002 . Подведем промежуточный итог . Мы начали с задачи, сделали её простую модель в виде биологической нейронной сети и получили способ измерения её производительности по сравнению с реальностью или желаемым результатом. Теперь нам нужно найти способ исправления несоответствия — процесс, который как и для компьютеров, так и для людей можно рассматривать как обучение.

Как обучать нейронную сеть?

Основа обучения как биологической, так и искусственной нейронной сети — это повторение
и алгоритмы обучения , поэтому мы будем работать с ними по отдельности. Начнем с
обучающих алгоритмов.

В природе под алгоритмами обучения понимаются изменения физических или химических
характеристик нейронов после проведения экспериментов:

Драматическая иллюстрация того, как два нейрона меняются по прошествии времени в коде и нашей модели «алгоритм обучения» означает, что мы просто будем что-то менять в течение какого-то времени, чтобы облегчить свою жизнь. Поэтому давайте добавим переменную для обозначения степени облегчения жизни:

Var learningRate = 0.20; // Чем больше значение, тем быстрее будет процесс обучения:)

И что это изменит?

Это изменит веса (прям как у кролика!), особенно вес вывода, который мы хотим получить:

Как кодировать такой алгоритм — ваш выбор, я для простоты добавляю коэффициент обучения к весу, вот он в виде функции:

Function learn(inputVector, weightVector) { weightVector.forEach(function(weight, index, weights) { if (inputVector > 0) { weights = weight + learningRate; } }); }

При использовании эта обучающая функция просто добавит наш коэффициент обучения к вектору веса активного нейрона , до и после круга обучения (или повтора) результаты будут такими:

// Original weight vector: // Neural Net output: 0.00 Error: 1 learn(input, weights); // New Weight vector: // Neural Net output: 0.20 Error: 0.8 // Если это не очевидно, вывод нейронной сети близок к 1 (выдача курицы) — то, чего мы и хотели, поэтому можно сделать вывод, что мы движемся в правильном направлении

Живой пример: Neural Net 003 . Окей, теперь, когда мы движемся в верном направлении, последней деталью этой головоломки будет внедрение повторов .

Это не так уж и сложно, в природе мы просто делаем одно и то же снова и снова, а в коде мы просто указываем количество повторов:

Var trials = 6;

И внедрение в нашу обучающую нейросеть функции количества повторов будет выглядеть так:

Function train(trials) { for (i = 0; i < trials; i++) { neuralNetResult = evaluateNeuralNetwork(input, weights); learn(input, weights); } }

Ну и наш окончательный отчет:

Neural Net output: 0.00 Error: 1.00 Weight Vector: Neural Net output: 0.20 Error: 0.80 Weight Vector: Neural Net output: 0.40 Error: 0.60 Weight Vector: Neural Net output: 0.60 Error: 0.40 Weight Vector: Neural Net output: 0.80 Error: 0.20 Weight Vector: Neural Net output: 1.00 Error: 0.00 Weight Vector: // Chicken Dinner !

Живой пример: Neural Net 004 . Теперь у нас есть вектор веса, который даст только один результат (курицу на ужин), если входной вектор соответствует реальности (нажатие на третью кнопку). Так что же такое классное мы только что сделали?

В этом конкретном случае наша нейронная сеть (после обучения) может распознавать входные данные и говорить, что приведет к желаемому результату (нам всё равно нужно будет программировать конкретные ситуации):

Кроме того, это масштабируемая модель, игрушка и инструмент для нашего с вами обучения. Мы смогли узнать что-то новое о машинном обучении , нейронных сетях и искусственном интеллекте . Предостережение пользователям:

  • Механизм хранения изученных весов не предусмотрен, поэтому данная нейронная сеть забудет всё, что знает. При обновлении или повторном запуске кода нужно не менее шести успешных повторов, чтобы сеть полностью обучилась, если вы считаете, что человек или машина будут нажимать на кнопки в случайном порядке… Это займет какое-то время.
  • Биологические сети для обучения важным вещам имеют скорость обучения 1, поэтому нужен будет только один успешный повтор.
  • Существует алгоритм обучения, который очень напоминает биологические нейроны, у него броское название: правило widroff-hoff , или обучение widroff-hoff .
  • Пороги нейронов (1 в нашем примере) и эффекты переобучения (при большом количестве повторов результат будет больше 1) не учитываются, но они очень важны в природе и отвечают за большие и сложные блоки поведенческих реакций. Как и отрицательные веса.

Заметки и список литературы для дальнейшего чтения

Я пытался избежать математики и строгих терминов, но если вам интересно, то мы построили перцептрон , который определяется как алгоритм контролируемого обучения (обучение с учителем) двойных классификаторов — тяжелая штука. Биологическое строение мозга — тема не простая, отчасти из-за неточности, отчасти из-за его сложности. Лучше начинать с Neuroscience (Purves) и Cognitive Neuroscience (Gazzaniga). Я изменил и адаптировал пример с кроликом из Gateway to Memory (Gluck), которая также является прекрасным проводником в мир графов. Еще один шикарный ресурс An Introduction to Neural Networks (Gurney), подойдет для всех ваших нужд, связанных с ИИ.
А теперь на Python! Спасибо Илье Андшмидту за предоставленную версию на Python:

Inputs = weights = desired_result = 1 learning_rate = 0.2 trials = 6 def evaluate_neural_network(input_array, weight_array): result = 0 for i in range(len(input_array)): layer_value = input_array[i] * weight_array[i] result += layer_value print("evaluate_neural_network: " + str(result)) print("weights: " + str(weights)) return result def evaluate_error(desired, actual): error = desired - actual print("evaluate_error: " + str(error)) return error def learn(input_array, weight_array): print("learning...") for i in range(len(input_array)): if input_array[i] > 0: weight_array[i] += learning_rate def train(trials): for i in range(trials): neural_net_result = evaluate_neural_network(inputs, weights) learn(inputs, weights) train(trials)

А теперь на GO! За эту версию благодарю Кирана Мэхера.

Package main import ("fmt" "math") func main() { fmt.Println("Creating inputs and weights ...") inputs:= float64{0.00, 0.00, 1.00, 0.00} weights:= float64{0.00, 0.00, 0.00, 0.00} desired:= 1.00 learningRate:= 0.20 trials:= 6 train(trials, inputs, weights, desired, learningRate) } func train(trials int, inputs float64, weights float64, desired float64, learningRate float64) { for i:= 1; i < trials; i++ { weights = learn(inputs, weights, learningRate) output:= evaluate(inputs, weights) errorResult:= evaluateError(desired, output) fmt.Print("Output: ") fmt.Print(math.Round(output*100) / 100) fmt.Print(" Error: ") fmt.Print(math.Round(errorResult*100) / 100) fmt.Print(" ") } } func learn(inputVector float64, weightVector float64, learningRate float64) float64 { for index, inputValue:= range inputVector { if inputValue > 0.00 { weightVector = weightVector + learningRate } } return weightVector } func evaluate(inputVector float64, weightVector float64) float64 { result:= 0.00 for index, inputValue:= range inputVector { layerValue:= inputValue * weightVector result = result + layerValue } return result } func evaluateError(desired float64, actual float64) float64 { return desired - actual }

Правильная постановка вопроса должна быть такой: как натренировать сою собственную нейросеть? Писать сеть самому не нужно, нужно взять какую-то из готовых реализаций, которых есть множество, предыдущие авторы давали ссылки. Но сама по себе эта реализация подобна компьютеру, в который не закачали никаких программ. Для того, чтобы сеть решала вашу задачу, ее нужно научить.

И тут возникает собственно самое важное, что вам для этого потребуется: ДАННЫЕ. Много примеров задач, которые будут подаваться на вход нейросети, и правильные ответы на эти задачи. Нейросеть будет на этом учиться самостоятельно давать эти правильные ответы.

И вот тут возникает куча деталей и нюансов, которые нужно знать и понимать, чтобы это все имело шанс дать приемлемый результат. Осветить их все здесь нереально, поэтому просто перечислю некоторые пункты. Во-первых, объем данных. Это очень важный момент. Крупные компании, деятельность которых связана с машинным обучением, обычно содержат специальные отделы и штат сотрудников, занимающихся только сбором и обработкой данных для обучения нейросетей. Нередко данные приходится покупать, и вся эта деятельность выливается в заметную статью расходов. Во-вторых, представление данных. Если каждый объект в вашей задаче представлен относительно небольшим числом числовых параметров, то есть шанс, что их можно прямо в таком сыром виде дать нейросети, и получить приемлемый результат на выходе. Но если объекты сложные (картинки, звук, объекты переменной размерности), то скорее всего придется потратить время и силы на выделение из них содержательных для решаемой задачи признаков. Одно только это может занять очень много времени и иметь гораздо более влияние на итоговый результат, чем даже вид и архитектура выбранной для использования нейросети.

Нередки случаи, когда реальные данные оказываются слишком сырыми и непригодными для использования без предварительной обработки: содержат пропуски, шумы, противоречия и ошибки.

Данные должны быть собраны тоже не абы как, а грамотно и продуманно. Иначе обученная сеть может вести себя странно и даже решать совсем не ту задачу, которую предполагал автор.

Также нужно представлять себе, как грамотно организовать процесс обучения, чтобы сеть не оказалась переученной. Сложность сети нужно выбирать исходя из размерности данных и их количества. Часть данных нужно отложить для теста и при обучении не использовать, чтобы оценить реальное качество работы. Иногда различным объектам из обучающего множества нужно приписать различный вес. Иногда эти веса полезно варьировать в процессе обучения. Иногда полезно начинать обучение на части данных, а по мере обучения добавлять оставшиеся данные. В общем, это можно сравнить с кулинарией: у каждой хозяйки свои приемы готовки даже одинаковых блюд.

Нейросети сейчас в моде, и не зря. С их помощью можно, к примеру, распознавать предметы на картинках или, наоборот, рисовать ночные кошмары Сальвадора Дали. Благодаря удобным библиотекам простейшие нейросети создаются всего парой строк кода, не больше уйдет и на обращение к искусственному интеллекту IBM.

Теория

Биологи до сих пор не знают, как именно работает мозг, но принцип действия отдельных элементов нервной системы неплохо изучен. Она состоит из нейронов - специализированных клеток, которые обмениваются между собой электрохимическими сигналами. У каждого нейрона имеется множество дендритов и один аксон. Дендриты можно сравнить со входами, через которые в нейрон поступают данные, аксон же служит его выходом. Соединения между дендритами и аксонами называют синапсами. Они не только передают сигналы, но и могут менять их амплитуду и частоту.

Преобразования, которые происходят на уровне отдельных нейронов, очень просты, однако даже совсем небольшие нейронные сети способны на многое. Все многообразие поведения червя Caenorhabditis elegans - движение, поиск пищи, различные реакции на внешние раздражители и многое другое - закодировано всего в трех сотнях нейронов. И ладно черви! Даже муравьям хватает 250 тысяч нейронов, а то, что они делают, машинам определенно не под силу.

Почти шестьдесят лет назад американский исследователь Фрэнк Розенблатт попытался создать компьютерную систему, устроенную по образу и подобию мозга, однако возможности его творения были крайне ограниченными. Интерес к нейросетям с тех пор вспыхивал неоднократно, однако раз за разом выяснялось, что вычислительной мощности не хватает на сколько-нибудь продвинутые нейросети. За последнее десятилетие в этом плане многое изменилось.

Электромеханический мозг с моторчиком

Машина Розенблатта называлась Mark I Perceptron. Она предназначалась для распознавания изображений - задачи, с которой компьютеры до сих пор справляются так себе. Mark I был снабжен подобием сетчатки глаза: квадратной матрицей из 400 фотоэлементов, двадцать по вертикали и двадцать по горизонтали. Фотоэлементы в случайном порядке подключались к электронным моделям нейронов, а они, в свою очередь, к восьми выходам. В качестве синапсов, соединяющих электронные нейроны, фотоэлементы и выходы, Розенблатт использовал потенциометры. При обучении перцептрона 512 шаговых двигателей автоматически вращали ручки потенциометров, регулируя напряжение на нейронах в зависимости от точности результата на выходе.

Вот в двух словах, как работает нейросеть. Искусственный нейрон, как и настоящий, имеет несколько входов и один выход. У каждого входа есть весовой коэффициент. Меняя эти коэффициенты, мы можем обучать нейронную сеть. Зависимость сигнала на выходе от сигналов на входе определяет так называемая функция активации.

В перцептроне Розенблатта функция активации складывала вес всех входов, на которые поступила логическая единица, а затем сравнивала результат с пороговым значением. Ее минус заключался в том, что незначительное изменение одного из весовых коэффициентов при таком подходе способно оказать несоразмерно большое влияние на результат. Это затрудняет обучение.

В современных нейронных сетях обычно используют нелинейные функции активации, например сигмоиду. К тому же у старых нейросетей было слишком мало слоев. Сейчас между входом и выходом обычно располагают один или несколько скрытых слоев нейронов. Именно там происходит все самое интересное.

Чтобы было проще понять, о чем идет речь, посмотри на эту схему. Это нейронная сеть прямого распространения с одним скрытым слоем. Каждый кружок соответствует нейрону. Слева находятся нейроны входного слоя. Справа - нейрон выходного слоя. В середине располагается скрытый слой с четырьмя нейронами. Выходы всех нейронов входного слоя подключены к каждому нейрону первого скрытого слоя. В свою очередь, входы нейрона выходного слоя связаны со всеми выходами нейронов скрытого слоя.

Не все нейронные сети устроены именно так. Например, существуют (хотя и менее распространены) сети, у которых сигнал с нейронов подается не только на следующий слой, как у сети прямого распространения с нашей схемы, но и в обратном направлении. Такие сети называются рекуррентными. Полностью соединенные слои - это тоже лишь один из вариантов, и одной из альтернатив мы даже коснемся.

Практика

Итак, давай попробуем построить простейшую нейронную сеть своими руками и разберемся в ее работе по ходу дела. Мы будем использовать Python с библиотекой Numpy (можно было бы обойтись и без Numpy, но с Numpy линейная алгебра отнимет меньше сил). Рассматриваемый пример основан на коде Эндрю Траска.

Нам понадобятся функции для вычисления сигмоиды и ее производной:

Продолжение доступно только подписчикам

Вариант 1. Оформи подписку на «Хакер», чтобы читать все материалы на сайте

Подписка позволит тебе в течение указанного срока читать ВСЕ платные материалы сайта. Мы принимаем оплату банковскими картами, электронными деньгами и переводами со счетов мобильных операторов.

С нейронными сетями я познакомился довольно давно. Отношение к ним, как к средству решения прикладных задач, у меня довольно противоречивое. С одной стороны, ни одной задачи, для которых я использовал сети, решить с удовлетворяющим меня результатом я так и не смог (но нужно оговориться, что и задачи были сверхсложные), а с другой стороны, удалось в достаточной степени оценить мощь аналитического потенциала нейронных сетей и их способность давать оценки и прогнозы на самых разнообразных множествах.

Так как интерес мой к сетям периодически возникал на протяжении последних лет, то идея написать обработку для построения и обучения нейронной сети витала, что называется, в воздухе. Однако, реализовать идею удалось только в последние несколько (честно, даже не помню сколько) месяцев. Борьба за себя - это прежде всего борьба с собой, а точнее, с собственной ленью и невежеством. И этот раунд остался за мной:) Так как делал прежде всего для себя - выкладываю то, что получилось, совершенно даром.

Что из себя представляет данная разработка? Перечислю основные возможности и функционал. При этом имеем в виду и помним, что реализована она только на управляемых формах.

1. Панель управления проектом . В принятых мной терминах под заданием понимается совокупность собственно нейронной сети, исходных данных для обучения, настроек параметров обучения и сохранения результатов. Панель управления проектом позволяет редактировать компоненты задания (кроме нейронной сети), управлять процессом обучения и контролировать результаты обучения сети. Также присутствуют возможности сохранения и загрузки заданий и готовых сетей. Отдельно отмечу наличие опции сохранения результатов. Если в проекте имеется загруженная / созданная сеть и загружен массив исходных данных то по параметрам сети происходит расчет и выгрузка результатов во внешний файл (таблицу значений или книгу Excel). Аналогично можно узнать результаты возвращаемые сетью для любого набора интерактивно введенных аргументов.

2. Редактор нейронной сети (многослойного персептона). Дает возможность создавать и редактировать нейронную сеть. Визуально сеть отображается в виде структуры из разноцветных шаров. Зеленые шары - входные ядра, красные - выходные, а желтые - ядра внутренних слоев. Имеется возможность устанавливать количество слоев и ядер в них. Для загруженных заданий и сетей, а также в случае, когда для обучения проекта уже были загружены данные, количество входных и выходных ядер принимается равным количеству существующих аргументов и результатов. При нажатии кнопки "Сохранить сеть" происходит сохранение сети в параметрах обработки и инициализация начальных весов ребер случайным образом. То есть даже если мы не изменяли структуру сети ее можно очистить от результатов предыдущего обучения заново сохранив в редакторе.

3. Подсистема анализа хода обучения . Подсистема очень проста и представляет собой график, демонстрирующий ход обучения сети в данном проекте. Шаг сбора статистики и общее число шагов обучения настраиваются в "Панели управления проектом". Статистику нельзя видеть в real time по ходу обучения. Она является такой же составной частью проекта, как сеть и массивы данных для обучения и будет обновлена и записана в проект по завершению обучения вместе с новыми параметрами сети. Соответственно если в загруженном проекте при предыдущем обучении была включена опция ведения статистики то просмотр графиков ошибок аппроксимации доступен сразу после загрузки задания (проекта).

4. Модуль обработки . Модуль обработки я также выделяю в отдельную подсистему из-за наличия экспортных функций и процедур, позволяющих проводить обучение сетей и получать результаты расчетов из сети, используя внешние вызовы. Собственно для меня эти функции и являются самыми важными в разработке. Файл со спецификацией проекта прилагается и любой проект, созданный любым способом в соответствии с данной спецификацией может быть обучен, и может быть получен нужный результат из созданной в соответствии со спецификацией сети. Но так как на практике создание, редактирование и обучение сетей довольно трудоемкий и творческий процесс, то визуальные редакторы и панель управления - вполне логичный шаг для упрощения и повышения качества работы. Но еще раз повторюсь - в теории можно было бы обойтись без них, так как модуль обработки представляет собой полностью достаточный функционал для работы с готовыми заданиями и сетями. Остальные подсистемы это лишь мой вариант дизайна кухни для их приготовления.

Теперь немного расскажу о параметрах сети и о процессе обучения.

Среди множества активационных функций нейронов для данного проекта я выбрал логистический сигмоид Ферми. Самая популярная функция в нейронных сетях и (если понимаете в чем суть обучения) очень просто дифференцируема.

Алгоритм обучения - обратное распространение ошибки. За подробностями, если интересно, к Google.

Норма скорости обучения - адаптивная. На страте принимается значение, указанное в параметрах, но по ходу обучения скорость обучения может меняться. Принцип модификации скорости состоит в том, что в случае когда между шагами обучения направление градиента для ребра сети не меняется скорость обучения умножается на коэффициент К>1, а в случае изменения знака градиента множитель К становится <1. Таким образом, норма обучения хотя и остается важнейшим параметром обучения, но ее неправильный выбор может быть в значительной степени скорректирован модификаторами.

Обучающая выборка . Все переданные в качестве аргументов и результатов данные рандомно делятся перед началом обучения на 3 части (Тренировочная, Тестовая и Верификационная) в соотношении 7:2:1. Причем этот рандом каждый раз разный и данные делятся перед каждым циклом обучения. В итоге Вы видите картину, что при запуске второго (третьего и т.д.) цикла обучения одного и того же проекта ошибки аппроксимации могут на первых шагах резко просесть или подскочить. Это не от того что была взята не та сеть - просто новый рандом выборок и новые значения ошибок.

Что же это за выборки? Тренировочная - понятно. Тестовая - не участвует прямо в обучении, но ее ошибка видна в процессе. Судя по значению тренировочной ошибки, а точнее видя ее динамику в сравнении с ошибкой тренировки можно судить о том не переучена ли сеть (ошибки расходятся) и вообще насколько адекватно данным построена модель сети.

Верификационная выборка - не видна пользователю до самого конца обучения. Так как в процессе обучения мы можем следить за тестовой выборкой, то она тоже косвенно является объектом обучения. В данном случае верификация - финальный и самый непредвзятый судья качества получившейся сети.

Классический пример переучившейся сети это когда ошибки тренировки и теста сначала снижаются, а потом расходятся и ошибка теста бесконечно возрастает. Сеть, возможно, сумела "запомнить" всю тренировочную выборку и теперь подстраивается не под обобщающие характеристики всей выборки, а "шлифует" только тренировочные данные. Как правило это случается когда исходная выборка слишком мала или слишком однородна и / или количество внутренних слоев и нейронов при этом слишком велико.

Теперь о способах запуска процесса обучения из формы обработки. Их всего 3:

1. Обычный запуск процесса. Стартуем обучение в текущем сеансе и ждем окончания. Так как до окончания вызова сервера ничего на клиент вернуть нельзя - ждем и надеемся, что все будет хорошо.

2. Запуск через фоновое задание из внешней обработки. Думаю, что здесь все более или менее понятно. Естественно, что обработка должна быть зарегистрирована в справочнике дополнительных отчетов и обработок и в конфигурации должна присутствовать БСП версии не ниже 1.2.1.4. В этом случае у меня все прекрасно работает.

3. Запуск через фоновое задание обработки конфигурации. Это если Вам так понравится обработка, что Вы начнете ее регулярно использовать и встроите в конфигурацию. Здесь, конечно, можно было бы рекомендовать Вам сделать запускающий фоновое задание допил, но можно попробовать и через БСП. Вот только версия должна быть даже не знаю уже какая, но довольно свежая.

Варианты с запуском в фоновом задании наиболее удобны и информативны, так как на форме все-таки что-то можно еще делать, да и информация по ходу обучения периодически обновляется за счет получения и обработки сообщений от фонового задания.

Пару слов скажу еще об опции предварительного обучения. Не буду давать ссылку на умную статью, где доказывается, что предварительный подбор весов нейронных синапсов дает существенный прирост в качестве и сокращение времени обучения сети. Скажу лишь что поверил уважаемым кандидатам наук на слово. Написал блок предварительного подбора и оценки начальных весов и... существенного прогресса не заметил. Здесь уж или лыжи не едут или со мной не все так как нужно, но опцию сохранил. Можете пользоваться перед началом обучения новой сети, а можете не пользоваться.

Что в приложенном архиве? Описание состава проекта сети (спецификация) для самостоятельной разработки проектов (MS Word ), демо-файлы проекта и сети, а также набор из 2-х файлов демо данных. Данные - это таблицы значений с наборами аргументов и результатов.

Обработка выложена отдельным файлом для удобства обновления и замены новыми версиями. Самая важная часть дополнительных материалов - спецификация проекта сети содержится в справке обработки, так что в принципе можно скачивать только саму обработку для экономии $ m . Функционал и документацию при этом Вы получите в полном объеме.

На этом, думаю, стоит заканчивать. Текста и так получилось многовато. Естественно, что по ходу использования обработки на конкретных данных и реальных примерах, у Вас будет возникать множество вопросов и замечаний. Основные ответы и советы приведены выше - то есть сначала внимательно читаем описание. Есть также справка в главной форме обработки. Ее тоже можно почитать. Ну а для всего остального, что не описано или не понятно - комменты.

Всем привет!

Буквально вчера нашел книгу Тарика Рашида «Создай свою нейросеть». Книга является бестселлером (топ 1 продаж) в разделе «Искусственный интеллект». Книга свежая, вышла в прошлом году.

Впечатления от первых разделов замечательные. Одно из лучших введений в сферу нейросетей из всех мною виденных. Книга мне так понравилась, что я решил перевести ее на русский язык и выкладывать сюда в виде статей. Часть материала из книги пойдет на улучшение уже существующих глав, часть на следующие.

Перевел уже два первых раздела 1 главы. Вы можете этих разделов.

Читайте - наслаждайтесь!

1 Глава. Как они работают.

1.1 Легко для меня, тяжело для тебя

Все компьютеры являются калькуляторами в душе. Они умеют очень быстро считать.

Не стоит их в этом упрекать. Они отлично выполняют свою работу: считают цену с учетом скидки, начисляют долговые проценты, рисуют графики по имеющимся данным и так далее.

Даже просмотр телевизора или прослушивание музыки с помощью компьютера представляют собой выполнение огромного количества арифметических операций снова и снова. Это может прозвучать удивительно, но отрисовка каждого кадра изображения из нулей и единиц, полученных через интернет задействует вычисления, которые не сильно сложнее тех задач, которые мы все решали в школе.

Однако, способность компьютера складывать тысячи и миллионы чисел в секунду вовсе не является искусственным интеллектом. Человеку сложно так быстро складывать числа, но согласитесь, что эта работа не требует серьезных интеллектуальных затрат. Надо придерживаться заранее известного алгоритма по складыванию чисел и ничего более. Именно этим и занимаются все компьютеры - придерживаются четкого алгоритма.

С компьютерами все ясно. Теперь давайте поговорим о том, в чем мы хороши по сравнению с ними.

Посмотрите на картинки ниже и определите, что на них изображено:

Вы видите лица людей на первой картинке, морду кошки на второй и дерево на третьей. Вы распознали объекты на этих картинках. Заметьте, что вам хватило лишь взгляда, чтобы безошибочно понять, что на них изображено. Мы редко ошибаемся в таких вещах.

Мы мгновенно и без особого труда воспринимаем огромное количество информации, которое содержат изображения и очень точно определяем объекты на них. А вот для любого компьютера такая задача встанет поперек горла.

У любого компьютера вне зависимости от его сложности и быстроты нет одного важного качества - интеллекта, которым обладает каждый человек.

Но мы хотим научить компьютеры решать подобные задачи, потому что они быстрые и не устают. Искусственный интеллект как раз занимается решением подобного рода задач.

Конечно компьютеры и дальше будут состоять из микросхем. Задача искусственного интеллекта - найти новые алгоритмы работы компьютера, которые позволят решать интеллектуальные задачи. Эти алгоритмы не всегда идеальны, но они решают поставленные задачи и создают впечатление, что компьютер ведет себя как человек.

Ключевые моменты

  • Есть задачи легкие для обычных компьютеров, но вызывающие трудности и людей. Например, умножение миллиона чисел друг на друга.
  • С другой стороны, существуют не менее важные задачи, которые невероятно сложны для компьютера и не вызывают проблем у людей. Например, распознавание лиц на фотографиях.

1.2 Простая предсказательная машина

Давайте начнем с чего-нибудь очень простого. Дальше мы будет отталкиваться от материала, изученного в этом разделе.

Представьте себе машину, которая получает вопрос, «обдумывает» его и затем выдает ответ. В примере выше вы получали картинку на вход, анализировали ее с помощью мозгов и делали вывод об объекте, который на ней изображен. Выглядит это как-то так:

Компьютеры на самом деле ничего не «обдумывают». Они просто применяют заранее известные арифметические операции. Поэтому давайте будем называть вещи своими именами:

Компьютер принимает какие-то данные на вход, производит необходимые вычисления и выдает готовый результат. Рассмотрим следующий пример. Если на вход компьютеру поступает выражение ​\(3 \times 4 \) ​, то оно преобразуется в более простую последовательность сложений. Как итог, получаем результат - 12.

Выглядит не слишком впечатляюще. Это нормально. С помощью этих тривиальных примеров вы увидите идею, которую реализуют нейросети.

Теперь представьте себе машину, которая преобразует километры в мили:

Теперь представьте, что мы не знаем формулу, с помощью которой километры переводятся в мили. Мы знаем только, что зависимость между двумя этими величинами линейная . Это означает, что если мы в два раза увеличим дистанцию в милях, то дистанция в километрах тоже увеличится в два раза. Это интуитивно понятно. Вселенная была бы очень странной, если бы это правило не выполнялось.

Линейная зависимость между километрами и милями дает нам подсказку, в какой форме надо преобразовывать одну величину в другую. Мы можем представить эту зависимость так:

\[ \text{мили} = \text{километры} \times C \]

В выражении выше ​\(C \) ​ выступает в роли некоторого постоянного числа - константы. Пока мы не знаем, чему равно ​\(C \) ​.

Единственное, что нам известно - несколько заранее верно отмеренных расстояний в километрах и милях.

И как же узнать значение ​\(C \) ​? А давайте просто придумаем случайное число и скажем, что ему-то и равна наша константа. Пусть ​\(C = 0.5 \) ​. Что же произойдет?

Принимая, что ​\(C = 0.5 \) ​ мы из 100 километров получаем 50 миль. Это отличный результат принимая во внимания тот факт, что ​\(C = 0.5 \) ​ мы выбрали совершенно случайно! Но мы знаем, что наш ответ не совсем верен, потому что согласно таблице верных замеров мы должны были получить 62.137 мили.

Мы промахнулись на 12.137 миль. Это наша погрешность - разница между полученным ответом и заранее известным правильным результатом, который в данном случае мы имеем в таблице.

\[ \begin{gather*} \text{погрешность} = \text{правильное значение} — \text{полученный ответ} \\ = 62.137 — 50 \\ = 12.137 \end{gather*} \]

Вновь смотрим на погрешность. Полученное расстояние короче на 12.137. Так как формула по переводу километров в мили линейная (​\(\text{мили} = \text{километры} \times C \) ​), то увеличение значения ​\(C \) ​ увеличит и выходной результат в милях.

Давайте теперь примем, что ​\(C = 0.6 \) ​ и посмотрим, что произойдет.

Так как ​\(C=0.6 \) ​, то для 100 километров имеем ​\(100 \times 0.6 = 60 \) ​ миль. Это гораздо лучше предыдущей попытки (в тот раз было 50 миль)! Теперь наша погрешность очень мала - всего 2.137 мили. Вполне себе точный результат.

Теперь обратите внимание на то, как мы использовали полученную погрешность для корректировки значения константы ​\(C \) ​. Нам нужно было увеличить выходное число миль и мы немного увеличили значение ​\(C \) ​. Заметьте, что мы не используем алгебру для получения точного значения ​\(C \) ​, а ведь мы могли бы. Почему? Потому что на свете полно задач, которые не имеют простой математической связи между полученным входом и выдаваемым результатом.

Именно для задач, которые практически не решаются простым подсчетом нам и нужны такие изощренные штуки, как нейронные сети.

Боже мой! Мы хватанули слишком много и превысили правильный результат. Наша предыдущая погрешность равнялась 2.137, а теперь она равна -7.863. Минус означает, что наш результат оказался больше правильного ответа, так как погрешность вычисляется как правильный ответ — (минус) полученный ответ.

Получается, что при ​\(C=0.6 \) ​ мы имеем гораздо более точный выход. На этом можно было бы и закончить. Но давайте все же увеличим ​\(C \) ​, но не сильно! Пусть ​\(C=0.61 \) ​.

Так-то лучше! Наша машина выдает 61 милю, что всего на 1.137 милю меньше, чем правильный ответ (62.137).

Из этой ситуации с превышением правильного ответа надо вынести важный урок. По мере приближения к правильному ответу параметры машины стоит менять все слабее и слабее. Это поможет избежать неприятных ситуаций, которые приводят к превышению правильного ответа.

Величина нашей корректировки ​\(C \) ​ зависит от погрешности. Чем больше наша погрешность, тем более сильно мы меняем значение ​\(C \) ​. Но когда погрешность становиться маленькой, необходимо менять ​\(C \) ​ по чуть-чуть. Логично, не так ли?

Верьте или нет, но только что вы поняли самую суть работы нейронных сетей. Мы тренируем «машины» постепенно выдавать все более и более точный результат.

Важно понимать и то, как мы решали эту задачу. Мы не решали ее в один заход, хотя в данном случае так можно было бы поступить. Вместо этого, мы приходили к правильному ответу по шагам так, что с каждым шагом наши результаты становились лучше.

Не правда ли объяснения очень простые и понятные? Лично я не встречал более лаконичного способа объяснить, что такое нейросети.

Если вам что-то непонятно, задавайте вопросы на форуме.

Мне важно ваше мнение - оставляйте комментарии 🙂



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows