Внешние HDD-накопители. Контрольная работа

Внешние HDD-накопители. Контрольная работа

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Ставропольский технологический институт сервиса

Филиал ЮРГУЭС

Контрольная работа

тема___________________________________________________________________

_______________________________________________________________________

по дисциплине Информатика


Выполнила студентка группы ИСТ 031 ЗУ _______________ « »

Проверил к. т. н., доцент _______________ « »

Ставрополь 2003

Введение................................................................................................

1. Виды магнитных дисковых накопителей.........................................

2. Накопители на гибких магнитных дисках.......................................

3. Накопители на жестких магнитных дисках.....................................

Заключение............................................................................................

Используемые источники информации..............................................

Введение.

Выпускаемые накопители информации представляют собой гамму запоминающих устройств с различным принципом действия физическими и технически эксплуатационными характеристиками. Основным свойством и назначением накопителей информации является ее хранение и воспроизведение. Запоминающие устройства принято делить на виды и категории в связи с их принципами функционирования, эксплуатационно-техническими, физическими, программными и др. характеристиками. Так, например, по принципам функционирования различают следующие виды устройств: электронные, магнитные, оптические и смешанные – магнитооптические. Каждый тип устройств организован на основе соответствующей технологии хранения воспроизведения/записи цифровой информации. Поэтому, в связи с видом и техническим исполнением носителя информации различают: электронные, дисковые и ленточные устройства. Обратим особое внимание на дисковые магнитные накопители – накопители на жестких магнитных дисках.

1. Виды накопителей на магнитных дисках

Магнитные диски используются как запоминающие устройства,позволяющие хранить информацию долговременно, при отключенном питании. Для работы с Магнитными Дисками используется устройство, называемое накопителем на магнитных дисках (НМД).

Основные виды накопителей:

· накопители на гибких магнитных дисках (НГМД);

· накопители на жестких магнитных дисках (НЖМД);

· накопители на магнитной ленте (НМЛ);

· накопители CD-ROM, CD-RW, DVD.

Им соответствуют основные виды носителей:

· гибкие магнитные диски (Floppy Disk ) (диаметром 3,5’’ и ёмкостью 1,44 Мб; диаметром 5,25’’ и ёмкостью 1,2 Мб (в настоящее время устарели и практически не используются, выпуск накопителей, предназначенных для дисков диаметром 5,25’’, тоже прекращён)), диски для сменных носителей;

· жёсткие магнитные диски (Hard Disk );

· кассеты для стримеров и других НМЛ;

· диски CD-ROM, CD-R, CD-RW, DVD.

Запоминающие устройства принято делить на виды и категории в связи с их принципами функционирования, эксплуатационно-техническими, физическими, программными и др. характеристиками. Так, например, по принципам функционирования различают следующие виды устройств: электронные, магнитные, оптические и смешанные – магнитооптические. Каждый тип устройств организован на основе соответствующей технологии хранения/воспроизведения/записи цифровой информации. Поэтому, в связи с видом и техническим исполнением носителя информации, различают: электронные, дисковые и ленточные устройства.

Основные характеристики накопителей и носителей:

· информационная ёмкость;

· скорость обмена информацией;

· надёжность хранения информации;

· стоимость.

Остановимся подробнее на рассмотрении вышеперечисленных накопителей и носителей.

Принцип работы магнитных запоминающих устройств основан на способах хранения информации с использованием магнитных свойств материалов. Как правило, магнитные запоминающие устройства состоят из собственно устройств чтения/записи информации и магнитного носителя , на который, непосредственно осуществляется запись и с которого считывается информация. Магнитные запоминающие устройства принято делить на виды в связи с исполнением, физико-техническими характеристиками носителя информации и т.д. Наиболее часто различают: дисковые и ленточные устройства. Общая технология магнитных запоминающих устройств состоит в намагничивании переменным магнитным полем участков носителя и считывания информации, закодированной как области переменной намагниченности. Дисковые носители, как правило, намагничиваются вдоль концентрических полей – дорожек, расположенных по всей плоскости дискоидального вращающегося носителя. Запись производится в цифровом коде. Намагничивание достигается за счет создания переменного магнитного поля при помощи головок чтения/записи. Головки представляют собой два или более магнитных управляемых контура с сердечниками, на обмотки которых подается переменное напряжение. Изменение величины напряжения вызывает изменение направления линий магнитной индукции магнитного поля и, при намагничивании носителя, означает смену значения бита информации с 1 на 0 или с 0 на 1.

Обычно НМД состоит из следующих частей:

  • контроллер дисковода,
  • собственно дисковод,
  • интерфейсные кабеля,
  • магнитный диск

Магнитный диск представляет собой основу с магнитным покрытием, которая вращается внутри дисковода вокруг оси.

Магнитное покрытие используется в качестве запоминающего устройства.

Магнитные Диски бывают: жесткие(Винчестер) и гибкие(Флоппи).
Накопитель на жестких магнитных дисках - НЖМД(HDD).
Накопитель на гибких магнитных дисках - НГМД(FDD).

Кроме НЖМД и НГМД довольно часто используют сменные носители. Довольно популярным накопителем является Zip. Он выпускается в виде встроенных или автономных блоков, подключаемых к параллельному порту. Эти накопители могут хранить 100 и 250 Мб данных на картриджах, напоминающих дискету формата 3,5’’, обеспечивают время доступа, равное 29 мс, и скорость передачи данных до 1 Мб/с. Если устройство подключается к системе через параллельный порт, то скорость передачи данных ограничена скорость параллельного порта.

К типу накопителей на сменных жёстких дисках относится накопитель Jaz. Ёмкость используемого картриджа - 1 или 2 Гб. Недостаток - высокая стоимость картриджа. Основное применение - резервное копирование данных.

В накопителях на магнитных лентах (чаще всего в качестве таких устройств выступают стримеры ) запись производится на мини-кассеты. Ёмкость таких кассет - от 40 Мб до 13 Гб, скорость передачи данных - от 2 до 9 Мб в минуту, длина ленты - от 63,5 до 230 м, количество дорожек - от 20 до 144.


2. Накопители на гибких магнитных дисках.

Накопители на гибких дисках (дискетах, флоппи-дисках) позволяют переносить документы с одного компьютера на другой, хранить информацию. Основным недостатком накопителя служит его малая емкость (всего 1,44 Мб) и ненадежность хранения информации. Однако именно этот способ для многих российских пользователей является единственной возможностью перенести информацию на другой компьютер. На компьютерах последних лет выпуска устанавливаются дисководы для дискет размером 3,5 дюйма (89мм). Раньше использовались накопители размером 5,25 дюймов. Они, не смотря на свои размеры, обладают меньшей емкостью и менее надежны и долговечны. Оба типа дискет обладают защитой от записи (перемычка на защитном корпусе дискеты). В последнее время стали появляться альтернативные устройства: внешние дисководы, с дисками емкостью до 1,5 Гб и намного большей скоростью чтения, нежели дисковод флоппи-дисков, однако они ещё мало распространены и весьма недёшевы.

Накопитель на съемном гибком магнитном диске (флоппи). Флоппи-диск имеет пластиковую основу и находится в специальном пластиковом кожухе. Флоппи-диск вставляется в FDD вместе с кожухом. Флоппи-диск (в FDD) вращается внутри кожуха со скоростью 300 об/мин. На данный момент в IBM PC используются 2 типа FDD: 5.25" и 3.5". Дискета 5.25" заключена в гибкий пластиковый кожух. Дискета 3.5" заключена в жесткий пластиковый кожух. HDD являются более скоростными устройствами, чем FDD.

Дискета или гибкий диск - компактное низкоскоростное малой ёмкости средство хранение и переноса информации. Различают дискеты двух размеров: 3.5”, 5.25”, 8” (последние два типа практически вышли из употребления).

3.5” дискета 5.25” дискета

Конструктивно дискета представляет собой гибкий диск с магнитным покрытием, заключенный в футляр. Дискета имеет отверстие под шпиль привода, отверстие в футляре для доступа головок записи-чтения (в 3.5” закрыто железной шторкой), вырез или отверстие защиты от записи. Кроме того 5.25” дискета имеет индексное отверстие, а 3.5” дискета высокой плотности - отверстие указанной плотности (высокая/низкая). 5.25” дискета защищена от записи, если соответствующий вырез закрыт. 3.5” дискета наоборот - если отверстие защиты открыто. В настоящее время практически только используются 3.5” дискеты высокой плотности.


Для дискет используются следующие обозначения:

SS single side - односторонний диск (одна рабочая поверхность).

DS double side - двусторонний диск.

SD single density - одинарная плотность.

DD double density - двойная плотность.

HD high density - высокая плотность.

Накопитель на гибких дисках принципиально похож на накопитель на жестких дисках. Скорость вращения гибкого диска примерно в 10 раз медленнее, а головки касаются поверхности диска. В основном структура информации на дискете, как физическая так и логическая, такая же как на жестком диске. С точки зрения логической структуры на дискете отсутствует таблица разбиения диска.

Работу контроллера НГМД удобно рассмотреть отдельно в режимах записи и считывания байта данных.

Режим записи включается низким уровнем линии РС0(вывод 14 DD1). При этом НГМД переводится в режим "Запись" (активен сигнал WRDATA). Записываемый байт заносится в порт А и его восьмиразрядный код поступает на вход многофункционального регистра DD2. Управление режимом работы этого регистра осуществляется битовым счетчиком DD9 и дешифратором DD10. После записи предыдущего байта, счетчик находится в состоянии сброса, и на всех его выходах присутствуют сигналы логического нуля. При таком состоянии входных сигналов дешифратор DD10 на выводе 7 формирует сигнал логического нуля, который совместно с низким уровнем на выводе 2 элемента DD17.1 разрешает запись параллельного кода в регистр DD2. При любом другом состоянии счетчика регистр переводится в режим сдвига.

Низким уровнем РС0 на элементе DD13. 4 блокируется канал считывания информации с НГМД RDDATA. Логический нуль, поступающий на входы S триггера DD11.1 после инвертирования элементом DD14.1 сигнала блокировки, устанавливает логическую единицу на выводе 5 триггера DD11.1. Через инвертор DD14.3 на входы сброса счетчиков DD7 и DD8 поступает сигнал низкого уровня, что обеспечивает их непрерывную работу. Сигналы, снимаемые с 8 и 9 вывода счетчика DD8, на элементах DD14.4,DD15.1, DD15.2 формируют соответственно последовательности ИСС и ИСД. Импульс ИСД после инвертирования элементом DD14.6 поступает на тактовый вход регистра DD2. При поступлении тактового импульса происходит сдвиг вправо параллельного кода, записанного в регистр, и на выводе 20 появляется очередной бит этого кода. Сигналы записи формируются элементами DD13.1,DD13.2 и DD13.3. В момент действия высокого уровня ИСД на выводе 2 DD13.1 присутствует записываемый бит. Через элементы DD13.1 и DD13.2 бит поступает на вход буферного усилителя DD6, а затем и на линию сигнала записи НГМД (WRDATA). Согласно временной диаграмме, приведенной на рис. 8, сигнал ИСС находится в это время в состоянии логического нуля. Поэтому прохождение сигналов через элемент DD133 запрещено. После того, как сигнал ИСД перейдет в состояние логического нуля, прохождение информационного бита на запись через элемент DD13.1 станет невозможно. При активном уровне ИСС через открытые элементы DD13.3, DD13.2 и буфер DD6 на линию WR DATA поступит логическая единица, сформированная на выводе 12 дешифратора DD10. Таким образом, в момент действия ИСД на линию записи НГМД будут поступать информационные биты, а в момент действия ИСС - единичные синхробиты. Подсчет количества записанных бит ведет счетчик DD9. После прохождения восьмого импульса ИСД его выводы перейдут в нулевое состояние, что вызовет установку триггера готовности: на выводе 9 DD12.2 появится логическая единица. Состояние триггера готовности программно опрашивается ДОС по линии РВ7. При обнаружении единицы в этом разряде ПЭВМ запишет новый байт в порт А DD1 (адрес F000H), при этом на элементах DD15.4, DD16.4, DD16.1, DD16.2 сформируется сигнал сброса триггера готовности. Таким образом, происходит записывание и считывание информации на НГМД.

3. Накопители на жестком магнитном диске (HDD)

Накопители на жёстком диске (винчестеры ) предназначены для постоянного хранения информации, используемой при работе с компьютером: программ операционной системы, часто используемых пакетов программ, редакторов документов, трансляторов с языков программирования и т.д. Наличие жёсткого диска значительно повышает удобство работы с компьютером. Для пользователя накопители не жёстком диске отличаются друг от друга, прежде всего, своей ёмкостью, т.е. тем, сколько информации помещается на диске. Сейчас компьютеры в основном оснащаются винчестерами от 520 Мбайт и более. Компьютеры, работающие, как файл серверы, могут оснащаться винчестером 4 - 8 Мбайт и не одним.

Накопитель на несъемном магнитном диске, созданный на основе спец. технологии (винчестерская технология - отсюда название). Магнитный диск Винчестера (на металлической основе) имеет большую плотность записи и большое число дорожек. Винчестер может иметь несколько Магнитных Дисков. НЖМД типа Винчестер созданы в 1973 г. Все магнитные диски Винчестера (объединенные в пакет дисков) - герметически упакованы в общий кожух. Магнитные диски НЕ могут изыматься из HDD и заменяться на аналогичные!!!

Магнитные головки объединены в единый блок (блок магнитных головок). Этот блок по отношению к дискам перемещается радиально. Во время работы PC Пакет Дисков все время вращается с постоянной скоростью (3600 об/мин). При считывании/записи информации блок магнитных головок перемещается (позиционируется) в заданную область, где производиться посекторное считывание/запись информации. В силу инерционности процесса обработки информации и большой скорости вращения пакета дисков возможна ситуация, когда блок магнитных головок не успеет считать очередной сектор. Для решения этой проблемы используется метод чередования секторов (секторы нумеруются не по порядку, а с пропусками). Например, вместо того, чтобы нумеровать секторы по порядку: 1 2 3 4 5 6 7 ... , их нумеруют так: 1 7 13 2 8 14 3 9 ...
В последнее время появились более скоростные SCSI-контроллеры, которые обеспечивают достаточную скорость обработки информации, и необходимость в чередовании секторов - отпадает.

Итак, накопитель содержит один или несколько дисков (Platters), т.е. это носитель, который смонтирован на оси - шпинделе, приводимом в движение специальным двигателем (часть привода). Скорость вращения двигателя для обычных моделей составляет около 3600 об/мин. Понятно, чем выше скорость вращения, тем быстрее считывается информация с диска (разумеется, при постоянной плотности записи), однако пластины носителя при больших оборотах могут просто физически разрушиться. Тем не менее в современных моделях винчестеров скорость вращения достигает 4500, 5400 или даже 7200 об/мин.

Сами диске представляют собой обработанные с высокой точностью керамические или алюминиевые пластины, на которые нанесен специальный магнитный слой (покрытие). В некоторых случаях используются даже стеклянные пластины. Надо отметить, что за последние годы технология изготовления этих деталей ушла далеко вперед. В старых накопителях магнитное покрытие обычно выполнялось из оксида железа. В настоящее время для покрытий используются гамма-феррит-оксид, изотропный оксид и феррит бария, однако наиболее широкое распространение получили диски с напыленным магнитным слоем, а точнее, с металлической пленкой (например, кобальта).

Количество дисков может быть различным - от 1 до 5 и выше, число рабочих поверхностей при этом соответственно в 2 раза больше, правда, не всегда. Иногда наружные поверхности крайних дисков или одного из них не используются для хранения данных, при этом число рабочих поверхностей уменьшается и может оказаться нечетным.

Наиболее важной частью любого накопителя являются головки чтения/записи (read/write head). Как правило, они находятся на специальном позиционере, который напоминает рычаг звукоснимателя на проигрывателе грампластинок (тонарм). Это и есть вращающийся позиционер головок (head actuator). К слову сказать, существуют также и линейные позиционеры, по своему принципу движения напоминающие тангенциальные тонармы.

В настоящее время известно по крайней мере несколько типов головок, используемых в винчестерах: монолитные, композитные, тонкопленочные и магнитно-резистивные (magneto-resistance, MR). Монолитные головки, как правило изготовлены из феррита, которые является достаточно хрупким материалом. К тому же конструкция таких головок принципиально не допускает высоких плотностей записей. Композитные головки меньше и легче, чем монолитные. Обычно это стекло на керамическом основании; например, используются сплавы, включающие в себя такие материалы, как железо, алюминий и кремний. Керамические головки более прочные и обеспечивают более близкое расстояние до магнитной поверхности носителя, что в свою очередь ведет к увеличению плотности записи. При изготовлении тонкопленочных головок используют метод фотолитографии, хорошо известный полупроводниковой промышленности. В этом случае слой проводящего материала осаждается на неметаллическом основании.

Одним из самых перспективных в настоящее время считают магнитно-резистивные головки, разработанные фирмой IBM. Их производство начали также компании Fujitsu и Seagate. Собственно магнитно-резистивная головка представляет из себя сборку из двух головок: тонкопленочной для записи и магнитно-резистивной для чтения. Каждая из головок оптимизирована под свою задачу. Оказывается, магнитно-резистивная головка при чтении как минимум в три раза эффективнее тонкопленочной. Если тонкопленочная головка имеет обычный индуктивный принцип действия, т.е. переменный ток рождает магнитное поле, то в магнитно-резистивном (по определению) изменение магнитного потока меняет сопротивление чувствительного элемента. Магнитно-резистивные головки по сравнению с другими позволяют почти на 50% увеличить плотность записи на носителе. Все современные винчестеры от IBM оснащаются только этими головками. Новые разработки IBM в области жестких дисков позволяют обеспечить плотность записи 10 Гбит на квадратный дюйм, что примерно в 30 раз больше, чем сейчас. Речь идет о Giant MR-головках.

Заметим, что в современных винчестерах головки как бы “летят” на расстоянии доли микрона (обычно около 0,13 мкм) от поверхности дисков, не касаясь их. Кстати, в жестких дисках выпуска 80 года это расстояние составляло еще 1,4 мкм, в перспективных же моделях ожидается его уменьшение до 0,05 мкм.

На первых моделях винчестеров позиционер головок перемещался обычно с помощью шагового двигателя. В настоящее время для этой цели используются преимущественно линейные (типа voice coil, или “звуковая катушка”) двигатели, иначе называемые соляноидными. К их преимуществам можно отнести относительно высокую скорость перемещения, практическую нечувствительность к изменениям температуры и положения привода. Кроме того при использовании соляноидных двигателей реализуется автоматическая парковка головок записи/чтения при отключении питании винчестера. В отличие от накопителей с шаговым двигателем не требуется периодическое переформатирование поверхности носителя.

Привод движения головок представляет из себя замкнутую сервосистему, для нормального функционирования которой необходимо предварительно записанная сервоинформация. Именно она позволяет позиционеру постоянно знать свое точное местоположение. Для записи в сервоинформации система позиционирования может использовать выделенные и/или рабочие поверхности носителя. В зависимости от этого различают выделенные, встроенные и гибридные сервосистемы. Выделенные системы достаточно дороги, однако имеют высокое быстродействие, поскольку практически не тратят времени для получения сервоинформации. Встроенные сервосистемы существенно дешевле и менее критичны к механическим ударам и колебаниям температуры. К тому же они позволяют сохранять на диске больше полезной информации. Тем не менее такие системы, как правило медленнее выделенных. Гибридные сервоситемы используют преимущества двух вышеназванных, т.е. большую емкость и высокую скорость. Большинство современных винчестеров массового применения используют встроенную сервоинформацию.

Кроме всего перечисленного, внутри любого винчестера обязательно находится печатная плата с электронными компонентами, которые необходимы для нормального функционирования устройства привода. Например, электроника расшифровывает команды контроллера жесткого диска, стабилизирует скорость вращения двигателя, генерирует сигналы для головок записи и усиливает их от головок чтения и т.п. В настоящее время в ряде винчестеров применяются даже цифровые сигнальные процессоры DSP (Digital Signal Processor).

Непременными компонентами большинства винчестеров являются специальные внутренние фильтры. По понятным причинам большое значение для работы жестких дисков имеет частота окружающего воздуха, поскольку грязь или пыль могут вызвать соударение головки с диском, что однозначно приведет к выходу его из строя.

Как известно, для установки дисковых накопителей в системном блоке любого персонального компьютера предусмотрены специальные монтажные отсеки. Габаритные размеры современных винчестеров характеризуются форм-фактором. Форм-фактор указывает горизонтальные и вертикальные размеры винчестера. В настоящее время горизонтальный размер жесткого диска может быть определен одним из следующих значений: 1,8; 2,5; 3,5 или 5,25 дюйма (действительный размер корпуса винчестера чуть больше). Вертикальный размер характеризуется обычно такими параметрами, как Full Height (FH), Half-Height (HH), Third-Height (или Low-Profile, LP). Винчестеры “полной” высоты имеют вертикальный размер более 3,25’’(82,5 мм), “половинной” - 1,63’’ и “низкопрофильной” - около 1’’. Необходимо помнить, что для установки привода, имеющего меньший форм-фактор, чем монтажный отсек в системном блоке, придется использовать специальные крепления.

Заключение

Развитие электронной промышленности осуществляется такими быстрыми темпами, что буквально через один год, сегодняшнее "чудо техники" становится морально устаревшим. Однако принципы устройства компьютера остаются неизменными.

По словам специалистов, в скором времени компании не будет комплектовать персональные компьютеры дисководами - их заменят USB-накопители на флэш-памяти емкостью 16 мегабайт, которые сначала предполагается устанавливать на компьютеры класса hi-end, а затем, при положительной реакции покупателей, на все десктопы. Dell уже исключила дисководы из стандартной комплектации ноутбуков. В компьютеры Macintosh уже пять лет не устанавливаются флоппи-дисководы.

CD и DVD-диски могут занимать передовые позиции в технологиях хранения данных, однако достаточно старомодные механические ленточные накопители до сих пор играют важную роль в хранении больших объемов информации. Мало того, эта роль столь велика, что ученые IBM разработали механизм записи 1 терабайта(что составляет 1 триллион байт данных) на линейном цифровом ленточном катридже. Это величина, по утверждению разработчиков, приблизительно в 10 раз больше любого другого доступного сейчас объема ленточных накопителей. Такой объем информации равносилен 16 дням непрерывного воспроизведения DVD-видео, или в 8 000 раз больше того объема информации, который человеческий мозг сохраняет за время всей жизни. Хотя накопитель на магнитной ленте сложно представить в домашнем интерьере на настольных ПК, для среднего и крупного бизнеса эта технология остается вполне актуальной при резервном хранении данных, к тому же лента менее уязвима для взлома и воровства информации. Новейшая технология позволяет упаковать накопитель с высокой плотностью записи данных так, что он становится довольно компактным. В долгосрочной перспективе, возможно снижение затрат компаний на хранение данных. В то время, как сейчас средняя стоимость хранения информации на магнитной ленте составляет около $1 за 1Гб, возможно снижение этих затрат до 5 центов за Гб. Для сравнения, стоимость хранения 1 Гб информации на жестком диске составляет сейчас $8-10, а на устройствах на основе полупроводников - около $100 за Гб. Новые технологии хранения данных на МЛ приобретут важную роль в таких информационное емких отраслях, как, например, горное дело или архивы. Также необходимость увеличения объемов хранимой информации возникает у корпораций и ученых во всех дисциплинах, от геофизики до социологии. К примеру, академические занятия требуют системы, позволяющей осуществлять долгосрочный повторный доступ к данным с возможностью создания множества копий и их легкого перемещения в любое место. Первый накопитель на магнитной ленте был создан 50 лет назад, тогда разработка IBM Model 726 могла хранить всего 1,4МБ информации, приблизительно столько, сколько сейчас помещается на обычный гибкий диск, а катушка для ленты имела около 12 дюймов в диаметре. Для сравнения, последняя разработка специалистов IBM с возможностью хранения 1ТБ помещается в картридж размером с почтовый конверт, а объем хранимой в нем информации эквивалентен содержимому 1.500 CD. По словам представителей компании, план возможного массового выпуска терабайтных картриджей будет включать выпуск промежуточных продуктов в течение нескольких лет. За это время планируется выпустить картриджи объемом 200,400, а потом и 600ГБ.

Исследователям удалось изготовить магнитную пленку из сплава кобальта, хрома и платины. Затем с помощью сфокусированного ионного пучка они разрезали пленку на прямоугольные магнитные «островки» размером всего в 26 миллионных долей миллиметра в поперечнике. Это соответствует плотности записи, составляющей 206 ГБ на квадратный дюйм. Правда, запись и считывание информации в этом случае не удастся осуществлять непосредственно, поскольку размер головок намного превышает размер «островков». Следовательно, необходимы новые, более миниатюрные головки. Кроме того, потребуется эффективная синхронизация процедур записи и считывания с движением головок. В прототипе, разработанном в IBM, подобная синхронизация реализована, однако широкое распространение подобных систем потребует значительного усовершенствования технологий создания жестких дисков.

Используемые источники информации


1. Леонтьев В.П. ПК: универсальный справочник пользователя Москва 2000.

2. Фигурнов В.Э. IBM PC для пользователя. изд.5-е С.-Перетбург, АО «Коруна» 1994.

Заказ работы

Наши специалисты помогут написать работу с обязательной проверкой на уникальность в системе «Антиплагиат»
Отправь заявку с требованиями прямо сейчас, чтобы узнать стоимость и возможность написания.

Магнитные диски.

Дисковые накопители информации. Типы, виды, свойства дисковых накопителей информации. Магнитные дисковые накопители информации.

Дисковые накопители информации. Выпускаемые накопители информации представляют собой гамму запоминающих устройств с различным принципом действия физическими и технически-эксплуатационными характеристиками. Основным свойством и назначением накопителей информации является ее хранение и воспроизведение.

Типы, виды, свойства дисковых накопителей информации. Основные виды накопителей:

    накопители на гибких магнитных дисках (НГМД);

    накопители на жестких магнитных дисках (НЖМД);

    накопители на магнитной ленте (НМЛ);

    накопители CD-ROM, CD-RW, DVD.

Им соответствуют основные виды носителей:

    гибкие магнитные диски (Floppy Disk ) (диаметром 3,5’’ и ёмкостью 1,44 Мб; диаметром 5,25’’ и ёмкостью 1,2 Мб (в настоящее время устарели и практически не используются, выпуск накопителей, предназначенных для дисков диаметром 5,25’’, тоже прекращён)), диски для сменных носителей;

    жёсткие магнитные диски (Hard Disk );

    кассеты для стримеров и других НМЛ;

    диски CD-ROM, CD-R, CD-RW, DVD.

Запоминающие устройства принято делить на виды и категории в связи с их принципами функционирования, эксплуатационно-техническими, физическими, программными и др. характеристиками. Так, например, по принципам функционирования различают следующие виды устройств: электронные, магнитные, оптические и смешанные – магнитооптические. Каждый тип устройств организован на основе соответствующей технологии хранения/воспроизведения/записи цифровой информации. Поэтому, в связи с видом и техническим исполнением носителя информации, различают: электронные, дисковые и ленточные устройства. Основные характеристики накопителей и носителей:

    информационная ёмкость;

    скорость обмена информацией;

    надёжность хранения информации;

    стоимость.

Магнитные дисковые накопители информации.

Принцип работы магнитных запоминающих устройств основан на способах хранения информации с использованием магнитных свойств материалов. Как правило, магнитные запоминающие устройства состоят из собственноустройств чтения/записи информации имагнитного носителя , на который, непосредственно осуществляется запись и с которого считывается информация. Магнитные запоминающие устройства принято делить на виды в связи с исполнением, физико-техническими характеристиками носителя информации и т.д. Наиболее часто различают: дисковые и ленточные устройства. Общая технология магнитных запоминающих устройств состоит в намагничивании переменным магнитным полем участков носителя и считывания информации, закодированной как области переменной намагниченности. Дисковые носители, как правило, намагничиваются вдоль концентрических полей – дорожек, расположенных по всей плоскости дискоидального вращающегося носителя. Запись производится в цифровом коде. Намагничивание достигается за счет создания переменного магнитного поля при помощи головок чтения/записи. Головки представляют собой два или более магнитных управляемых контура с сердечниками, на обмотки которых подается переменное напряжение. Изменение величины напряжения вызывает изменение направления линий магнитной индукции магнитного поля и, при намагничивании носителя, означает смену значения бита информации с 1 на 0 или с 0 на 1.

Обычно НМД состоит из следующих частей:

    контроллер дисковода,

    собственно дисковод,

    интерфейсные кабеля,

    магнитный диск

Магнитный диск представляет собой основу с магнитным покрытием, которая вращается внутри дисковода вокруг оси.

Магнитное покрытие используется в качестве запоминающего устройства.

Магнитные Диски бывают: жесткие(Винчестер) и гибкие(Флоппи). Накопитель на жестких магнитных дисках - НЖМД(HDD). Накопитель на гибких магнитных дисках - НГМД(FDD).

Кроме НЖМД и НГМД довольно часто используют сменные носители. Довольно популярным накопителем является Zip. Он выпускается в виде встроенных или автономных блоков, подключаемых к параллельному порту. Эти накопители могут хранить 100 и 250 Мб данных на картриджах, напоминающих дискету формата 3,5’’, обеспечивают время доступа, равное 29 мс, и скорость передачи данных до 1 Мб/с. Если устройство подключается к системе через параллельный порт, то скорость передачи данных ограничена скорость параллельного порта.

К типу накопителей на сменных жёстких дисках относится накопитель Jaz. Ёмкость используемого картриджа - 1 или 2 Гб. Недостаток - высокая стоимость картриджа. Основное применение - резервное копирование данных.

В накопителях на магнитных лентах (чаще всего в качестве таких устройств выступают стримеры ) запись производится на мини-кассеты. Ёмкость таких кассет - от 40 Мб до 13 Гб, скорость передачи данных - от 2 до 9 Мб в минуту, длина ленты - от 63,5 до 230 м, количество дорожек - от 20 до 144.

Томский государственный университет

систем управления и радиоэлектроники (ТУСУР)

Кафедра автоматизированных систем управления (АСУ)

по дисциплине "Информатика"

Выполнил:

студент ТМЦДО

гр.: з-348б-32

специальности 230105

Нурпеисов Жанболат Кикбаевич

г. Томск 2011 г.

Список литератур

Жесткий магнитный диск (винчестер)

Хотя в последнее время жесткий диск "винчестером" называют все реже, История появлении этого названия связана с моделью диска фирмы IBM, имевшей обозначение "30/30", сходное с названием широко распространенной в Америке винтовки тридцатого калибра фирмы Winchester. Однако существуют разночтения в том, когда был разработан диск этой модели (называют 60-е годы, начало и середину 70-х), был ли он выпущен или остался прототипом, а также что в нем соответствовало обозначению "30/30". В одних источниках утверждается, что диск позволял записывать 30 дорожек по 30 секторов каждая, в других говорится об объединении 30-Мбайтного фиксированного диска и 30-Мбайтного сменного диска в одном устройстве.

Винчестеры - это одни из самых важных, а также, самых интересных компонентов в компьютере. Возможно, самое обворожительное, что можно увидеть в истории винчестеров, это то, как в последние два десятилетия инженеры улучшали НЖМД в сторону удобности использования, емкости, скорости, потребления энергии и т.д.

Самые первые компьютеры вообще не имели постоянного хранилища данных. Каждый раз, когда вы хотели поработать с программой, ее надо было вводить в ручную. Довольно быстро стало понятно, что компьютерам нужно какое-то постоянное хранилище данных . Первым носителем данных, используемым в компьютерах, была бумага! (перфокарты? Программы и данные были записаны, используя дырки в бумажных карточках. Использовался специальный считыватель, который использовал луч света для сканирования карточек: где находилась дырка, она воспринималась как "1", а где дырки не было, воспринимался "0". По сравнению с ручным вводом программы каждый раз при включении компьютера, это был большой шаг вперед, оставаясь, между тем очень неудобным методом ввода программ в компьютер. Тем не менее, перфокарты использовались довольно продолжительное время. Следующим важным улучшением хранилища программ было изобретение магнитной ленты. Информация записывалась методом, похожим на запись аудиокассет, магнитные ленты были более гибким, надежным и более быстрым хранилищем информации по сравнению с перфокартами. Конечно, накопители на лентах и сейчас используются в компьютерах, но в качестве вторичного накопителя данных, как правило, для хранения резервных копий. Главный минус данного устройства в том, что данные располагались линейно, и требовались минуты, чтобы перемотать ленту из одного конца в другой, делая медленным случайный доступ к данным. Позже появились НГМД, они были медленными, малыми в размере и очень ненадежными устройствами хранения данных, даже по сравнению с первыми жесткими дисками.

Для многих людей жесткий диск представляется как черный ящик, который как-то хранит информацию.

Физическая архитектура и логическая структура дисковых накопителей

Многолетнее развитие накопителей на жестких магнитных дисках не смогло изменить базовую схему этих устройств, одним из ключевых элементов которой является вращающийся диск с информационным слоем.

Весь винчестер, как устройство, делится на две крупные составляющие: плату электроники и гермозону или "камеру", внутри которой находятся магнитные диски (пластины) в просторечье именуемые "блинами", блок магнитных головок, шпиндельный двигатель и другие устройства. Внутреннее устройство большинства накопителей на жестких дисках практически одинаково (см. рис.1).

То, что скрывается под крышкой жесткого диска

Плата электроники или контроллер на жестком диске, по - сути, маленький компьютер. Любой современный жесткий диск на собственной плате контроллера обязательно имеет оперативную память, которую называют кэшем или буфером. Обычно размер кэша колеблется от 512 Кб до 8 Мб (в современных), в зависимости от модели диска. Кэш влияет на производительность жесткого диска самым непосредственным образом, так как скорость чтения данных из него в два-три, а то и более раз может превышать скорость считывания информации с пластин. В кэш записываются данные, к которым чаще всего обращается программа, и таким образом скорость работы некоторых программ с дисками может достигать совершенно фантастических величин. Некоторые производители устанавливают на свои диски не только кэши чтения, но и кэши записи. Помимо кэш-памяти, на собственной плате контроллера любого жесткого диска расположены схемы интерфейсной логики и процессор, управляющий вводом-выводом и кодированием данных. Также процессор управляет программой самодиагностики, которая стала обязательной для современных жестких дисков. Большинство дисков использует для самодиагностики технологию SMART (Self-Monitoring Analysis and Reporting Technology - технология самоанализа и информирования), предложенную несколько лет назад фирмами IBM и Compaq. Процессор занимается обработкой полученных с головок данных и преобразованием их в понятный компьютеру "язык". Делает он это, как и компьютер в оперативной памяти ОЗУ. ПЗУ необходимо для старта, как БИОС на материнской плате. Чем занимается микросхема управления электродвигателем понятно из её названия. При включении плата контроллера считывает служебную информацию и если она корректна, то жесткий диск начинает работу.

Весь винчестер должен быть произведен с особой точностью в силу очень большой миниатюрности компонентов. Пластины, головки, шпиндель, привода закрыты в специальном объеме, называемом гермозоной, или "камерой". Это сделано для того, чтобы гермозона была защищена от пыли, которая может разрушить головки или стать причиной царапин на пластинах. Внутри гермозоны находится воздух, а не вакуум, как думают многие. Она связана с внешним миром системой выравнивания давления, в которой имеется воздушный фильтр. Таким образом, давление воздуха внутри гермозоны всегда выровнено с окружающим воздухом, этим же образом решена проблема с выпадением конденсата.

Гермозона (герметичная зона) - полость жесткого диска, ограниченная "камерой" и крышкой, внутри которой находиться очищенный от частиц пыли воздух. Герметичная камера предохраняет носители не только от проникновения механических частиц пыли, но и от воздействия электромагнитных полей. Обеспечение чистого без пыльного пространства внутри жесткого диска необходимое условие для поддержания работоспособности жесткого диска, т.к. малейшие частички могут привести к порче магнитного покрытия дисков и потере данных и работоспособности устройства.

В винчестерах используются круглые диски (пластины) из немагнитных поверхностей, на которые нанесён тонкий слой магнитного материала. Все пластины насажены на шпиндель электродвигателя, и вращаются на большой скорости (у разных моделей современных дисков эта скорость колеблется от 5400 до 12000 об/мин). Чем выше скорость вращения, тем выше скорость обмена данными. Между пластинами перемещается вилка, на которой расположены магнитные головки , выполняющие запись и считывание информации. Головки позиционируются строго на определённых расстояниях от оси вращения пластин. Поверхность пластин в жестких дисках имеют специальную структуру, для обеспечения упорядоченной записи и хранения информации. На каждой пластине информация записывается на концентрических окружностях, называемых треками (track-дорожка). Треки на различных поверхностях находятся на одинаковых расстояниях от оси вращения. Совокупность треков, расположенных на разных поверхностях, но имеющих один и тот же диаметр, называется цилиндром.

Каждый трек разбивается на части, называемые секторами (см. рис 2).

Современные жесткие диски имеют различное количество секторов на дорожке в зависимости от того, внешняя ли это дорожка или внутренняя. Внешняя дорожка длиннее и на ней можно разместить больше секторов, чем на более короткой внутренней дорожке. Данные на чистый диск начинают записываться также с внешней дорожки. Все современные жёсткие магнитные диски имеют одинаковый логический размер сектора, позволяющий записать в сектор 512 байт информации. Секторы имеют номера, начинающиеся с 1. Секторы с одинаковыми номерами на всех дорожках цилиндра находятся "друг под другом", так что возможно одновременное чтение из всех таких секторов (или одновременная запись в них). Секторы с одинаковыми номерами разных цилиндров не находятся на одном радиусе (как можно было бы предположить), а расположены вдоль некоторой кривой, обеспечивающей переход к сектору с тем же номером, расположенному на соседней дорожке, с учётом времени, необходимого для перемещения головки к оси вращения диска (за это время диск успевает повернуться). Такое расположение секторов называется "перекосом цилиндров".

Самый первый сектор жесткого диска (сектор 1, дорожка 0, поверхность (головка) 0) содержит так называемую главную загрузочную запись (Master Boot Record - MBR ). Эта запись занимает не весь сектор, а только его начальную часть. Сама по себе главная загрузочная запись является программой. Эта программа во время начальной загрузки операционной системы с жесткого диска помещается в оперативную память ПК. Загрузочная запись продолжает процесс загрузки операционной системы.

В конце самого первого сектора жесткого диска располагается таблица разделов диска (Partition Table ).

Разметка пластин на треки и сектора производится низкоуровневым форматированием.

Низкоуровневое форматирование - это процесс нанесения информации о позиции треков и секторов, а также запись служебной информации для сервосистемы. Этот процесс иногда называется "настоящим" форматированием, потому что он создает физический формат, который определяет дальнейшее расположение данных. Когда в первый раз запускается процесс низкоуровневого форматирования винчестера, пластины жесткого диска пусты, т.е. не содержат абсолютно никакой информации о секторах, треках и т.п.

Форматирование жесткого диска включает в себя три этапа :

1. Форматирование диска на низком уровне (низкоуровневое форматирование). Это единственный "настоящий" метод форматирования диска. При этом процессе на жестком диске создаются физические структуры: треки, сектора, управляющая информация. Этот процесс выполняется заводом-изготовителем на пластинах, которые не содержат еще никакой информации.

2. Разбиение на разделы. Этот процесс разбивает объем винчестера на логические диски (C, D, и т.д.). Этим обычно занимается операционная система, и метод разбиения сильно зависит от операционной системы.

3. Высокоуровневое форматирование. Этот процесс также контролируется операционной системой и зависит как от типа операционной системы, так и от утилиты, используемой для форматирования. Процесс записывает логические структуры, ответственные за правильное хранение файлов, а также, в некоторых случаях, системные загрузочные файлы в начало диска. Это форматирование можно разделить на два вида: быстрое и полное. При быстром форматировании перезаписывается лишь таблица файловой системы, при полном сначала производится верификация (проверка) поверхности накопителя, а уже потом производится запись таблицы файловой системы.

В настоящее время наиболее распространены 4 файловые системы - FAT, NTFS, FAT32 и HPFS (OS/2). Все операционные системы используют различные программы для высокоуровневого форматирования, т.к. они используют различные типы файловых систем. Тем не менее, низкоуровневое форматирование, как процесс разметки треков и секторов на диске, одинаков.

Основные функции файловой системы

Поддержание отображения файлов на физические и логические структуры носителя данных (например, на кластеры и секторы жёсткого диска).

Обеспечение доступа к файлам по их символическим именам.

Гарантирование корректности данных, содержащихся в файле.

Оптимизация производительности как с точки зрения ОС (пропускная способность), так и с точки зрения пользователя (время отклика).

Обеспечение поддержки использования файлов несколькими пользователями для многопользовательской системы.

Основные физические и логические параметры жестких дисков

Все накопители соответствуют стандартам, определяемым либо независимыми комитетами и группами стандартизации, либо самими производителями. Среди множества технических характеристик отличающих одну модель от другой можно выделить некоторые, наиболее важные с точки зрения пользователей и производителей, которые, так или иначе используются при сравнении накопителей различных производителей и выборе устройства.

Диаметр дисков (disk diameter) - параметр довольно свободный от каких-либо стандартов, ограничиваемый лишь форм-факторами корпусов.

Число поверхностей (sides number) - определяет количество физических дисков установленных на шпиндель.

Число цилиндров (cylinders number) - определяет сколько дорожек (треков) будет располагаться на одной поверхности.

Число секторов (sectors count) - общее число секторов на всех дорожках всех поверхностей накопителя.

Число секторов на дорожке (sectors per track) - общее число секторов на одной дорожке.

Частота вращения шпинделя (rotational speed или spindle speed) - определяет, сколько времени будет затрачено на последовательное считывание одной дорожки или цилиндра.

Время перехода от одной дорожки к другой (track-to-track seek time)

жесткий магнитный дисковый накопитель

Время успокоения головок (head latency time) - время, проходящее с момента окончания позиционирования головок на требуемую дорожку до момента начала операции чтения/записи.

Время установки или время поиска (seek time) - время, затрачиваемое устройством на перемещение головок чтения/записи к нужному цилиндру из произвольного положения.

Среднее время установки или поиска (average seek time) - усредненный результат большого числа операций позиционирования на разные цилиндры, часто называют средним временем позиционирования.

Время ожидания (latency) - время, необходимое для прохода нужного сектора к головке, усредненный показатель - среднее время ожидания (average latency), получаемое как среднее от многочисленных тестовых проходов.

Время доступа (access time) - суммарное время, затрачиваемое на установку головок и ожидание сектора.

Среднее время доступа к данным (average access time) - время, проходящее с момента получения запроса на операцию чтения/записи от контроллера до физического осуществления операции - результат сложения среднего время поиска и среднего времени ожидания.

Скорость передачи данных (data transfer rate), называемая также пропускной способностью (throughput), определяет скорость, с которой данные считываются или записываются на диск после того, как головки займут необходимое положение.

Внешняя скорость передачи данных (external data transfer rate или burst data transfer rate) показывает, с какой скоростью данные считываются из буфера, расположенного на накопителе в оперативную память компьютера.

Внутренняя скорость передачи данных (internal transfer rate или sustained transfer rate) отражает скорость передачи данных между головками и контроллером накопителя и определяет общую скорость передачи данных в тех случаях, когда буфер не используется или не влияет (например, когда загружается большой графический или видеофайл).

Размер кеш-буфера контроллера (internal cash size).

Средняя потребляемая мощность (capacity).

Уровень шума (noise level), разумеется, является эргономическим показателем.

Среднее время наработки на отказ (MTBF) - определяет сколько времени способен проработать накопитель без сбоев.

Сопротивляемость ударам (G-shock rating) - определяет степень сопротивляемости накопителя ударам и резким изменениям давления, измеряется в единицах допустимой перегрузки g во включенном и выключенном состоянии.

Физический и логический объем накопителей. Носители жестких дисков, в отличие от гибких, имеют постоянное число дорожек и секторов, изменить которое невозможно. Эти числа определяются типом модели и производителем устройства. Поэтому, физический объем жестких дисков определен изначально и состоит из объема, занятого служебной информацией (разметка диска на дорожки и сектора) и объема, доступного пользовательским данным.

Жесткий диск конструктивно сложное устройство. Механическая составляющая винчестера это слабое звено во всем системном блоке. Ведь если остальные элементы компьютера можно безболезненно поменять, купив новые, то жесткий диск так просто не заменишь, ведь на нем хранится информация. Не смотря на то, что некоторые компании занимаются разработкой альтернативных носителей информации, в которых не будет механических элементов, все же в настоящее время отказываться от производства жестких дисков на основе магнитного принципа записи никто не собирается. Подтверждением тому служит появление винчестеров использующих перпендикулярный принцип записи, что позволило добиться более высокой плотности записи. Вследствие этого уже появились НЖМД емкостью более 1 Тб.

В серии Seagate Barracuda® 7200.11 Используется технология перпендикулярной записи второго поколения, которая позволяет достичь ещё большей плотности записи на единицу поверхности. Благодаря этому максимальная емкость достигла значения в 1,5 Тб. Все жесткие диски Seagate Barracuda® 7200.11 обладают интерфейсом SATA-II с поддержкой технологии NCQ. Новейшая серия Seagate Barracuda® XT представленная на рынке пока единственной моделью с рекордным объемом 2 Тб. Самый быстрый и самый ёмкий - именно такие эпитеты заслуживает эта модель. Жесткий диск Seagate Barracuda XT для настольных компьютеров имеет ёмкость 2 Тб, скорость вращения шпинделя 7200 об/мин, размер кэш-памяти - 64 Мб, а также оснащён скоростным интерфейсом нового поколения SATA III (с пропускной способностью до 6 Гбит/с). Всё это в комплексе обеспечивает широкие возможности для хранения огромного количества информации и высочайшую производительность. Области применения HDD Seagate Barracuda XT разнообразны: высокопроизводительные игровые ПК, системы для создания и обработки видео в формате высокого разрешения HD, домашние серверы и рабочие станции, настольные RAID-массивы, внешние устройства хранения данных со скоростными интерфейсами FireWire 800 или eSATA.

Некоторые ключевые моменты в развитии жестких магнитных дисков:

· Первый жесткий диск (1956): IBM RAMAC, имел емкость порядка 5 мегабайт, хранящихся на пятидесяти 24-х дюймовых дисках. Плотность записи составляла порядка 2000 бит на квадратный дюйм, скорость передачи данных - 8800 бит в секунду.

· Первые головки на воздушной подушке (1962): IBM model 1301 впервые использовал магнитные головки, летящие на воздушной подушке, снизив таким образом расстояние между головками и дисками до 250 микродюймов. Жесткий диск имел емкость в 28 мегабайт, используя половину от количества головок IBM RAMAC, и его плотность записи и скорость работы была увеличена на 1000%.

· Первый переносимый жесткий диск (1965): IBM model 2310 был первым винчестером с переносимым пакетом дисков.

· Первые ферритовые головки (1966): IBM model 2314 был первым жестким диском, который использовал ферритовый сердечник в головках.

· Первый современный дизайн жесткого диска (1973): IBM model 3340 имел емкость в 60 мегабайт и использовал много ключевых технологий, которые до сих пор используются в современных жестких дисках.

· Первые тонкопленочные головки (1979): IBM model 3370 был первым жестким диском, использующим тонкопленочные головки, которые намного позже станут применяться повсеместно в дисках для ПК.

· Первый жесткий диск в 8" форм-факторе (1979): IBM model 3310 был первым жестким диском, использующим 8-дюймовые диски, до этого почти на протяжении десятилетия использовались 14-ти дюймовые диски.

· Первый жесткий диск в 5,25" форм-факторе (1980): Seagate ST-506 был первым жестким диском, представленном в 5.25" форм-факторе, который использовался в первых ПК.

· Первый жесткий диск в 3.5" форм-факторе (1983): фирма Rodime представила RO352, первый жесткий диск, который был выполнен в 3,5" форм-факторе, который стал одним из самых важных форм-факторов в индустрии ПК.

· Первый жесткий диск, использующий соленоидный привод перемещения головок (1986): Conner Peripherals CP340.

· Первый "низкопрофильный" 3,5" жесткий диск (1988): Conner Peripherals CP3022, имевший высоту в 1 дюйм, все современные жесткие диски выполнены именно в этом, "низкопрофильном" дизайне.

· Первый 2,5" жесткий диск (1988): PrairieTek представил первый жесткий диск, использующий 2,5" пластины. Именно этот форм-фактор стал стандартом для жестких дисков, используемых в ноутбуках.

· Первый жесткий диск, использующий магниторезистивные головки и PRML декодирование данных (1990): IBM model 681, имел емкость в 857 мегабайт и впервые использовал магниторезистивные головки и PRML.

· Первые тонкопленочные диски (1991): IBM "Pacifica" диск для мэйнфремов был первым, использующим тонкопленочные диски.

Между тем, жесткие магнитные диски могут однажды отступить перед "прямоугольными жесткими дисками" (Hard Rectangular Disk, HRD). В последнее время у HDD появился конкурент с более привлекательными показателями быстродействия, за которые, впрочем, приходится платить, в буквальном смысле слова. Есть разработчики, не теряющие надежды создать собственную альтернативу HDD. Компания DataSlide представила прототип нового накопителя, который, не исключено, однажды составит конкуренцию HDD и SSD. Используемая в нем технология получила название "прямоугольный жесткий диск" (Hard Rectangular Disk, HRD). По словам DataSlide, запатентованная технология позволит накопителю достичь показателей производительности 160000 IOPS и 500 МБ/с при потребляемой мощности менее 4 Вт. Для сравнения - у современных SSD эти показатели равны 35000 IOPS (в режиме чтения, в режиме записи - 3000 IOPS) и 220 МБ/с соответственно. По сведениям одного из источников, объем прототипа равен 36 ГБ, сами разработчики утверждают, что накопители HRD смогут иметь объем от 80 ГБ до 2 ТБ.

Концепция HRD позаимствована у разработки IBM под названием Millipede. В конструкцию накопителя входит пьезоэлектрический привод, приводящий в прецизионное колебательное движение прямоугольную пластину с магнитным носителем, и двухмерные массивы головок для чтения и записи. Контактирующие поверхности покрыты твердой алмазной "смазкой", гарантирующей, по словам компании, многолетнюю работу без износа. До 64 магнитных головок массива могут вести чтение или запись одновременно.

Пока нет данных о том, сколько времени пройдет до превращения прототипа в серийное изделие, доступное на рынке, и сколько такие накопители будут стоить. Известно лишь, что преимуществом разработки является применение технологий и материалов, уже используемых в серийном производстве ЖК-панелей и магнитных носителей.

Список литератур

1. Основы современных компьютерных технологий: Учебное пособие. / Под ред. Хомоненко Д.А. - СПб.: КРОНА принт, 1998.

2. Смирнов А.Д. Архитектура вычислительных систем. М.: Наука, 1990.

3. Скот Мюлер. Модернизация и ремонт персональных компьютеров. /пер. с англ. - М: Зао "Издательство Бином". 1998 г.

4. Для подготовки данной работы так же были использованы материалы из интернета: http://www.nodevice.ru/, http://spas-info.ru/articles/

5. http://www.datalabs.ru/kb/000021.html

6. http://spas-info.ru/articles/print/? ch=articl&page=11_arranged

7. http://www.xard.ru/post/10731/? page=123

Томский межвузовский центр дистанционного образования

Томский государственный университет

систем управления и радиоэлектроники (ТУСУР)

Кафедра автоматизированных систем управления (АСУ)

по дисциплине "Информатика"


Выполнил:

студент ТМЦДО

гр.: з-348б-32

специальности 230105

Нурпеисов Жанболат Кикбаевич

г. Томск 2011 г.


Список литератур


Жесткий магнитный диск (винчестер)

Хотя в последнее время жесткий диск "винчестером" называют все реже, История появлении этого названия связана с моделью диска фирмы IBM, имевшей обозначение "30/30", сходное с названием широко распространенной в Америке винтовки тридцатого калибра фирмы Winchester. Однако существуют разночтения в том, когда был разработан диск этой модели (называют 60-е годы, начало и середину 70-х), был ли он выпущен или остался прототипом, а также что в нем соответствовало обозначению "30/30". В одних источниках утверждается, что диск позволял записывать 30 дорожек по 30 секторов каждая, в других говорится об объединении 30-Мбайтного фиксированного диска и 30-Мбайтного сменного диска в одном устройстве.

Винчестеры - это одни из самых важных, а также, самых интересных компонентов в компьютере. Возможно, самое обворожительное, что можно увидеть в истории винчестеров, это то, как в последние два десятилетия инженеры улучшали НЖМД в сторону удобности использования, емкости, скорости, потребления энергии и т.д.

Самые первые компьютеры вообще не имели постоянного хранилища данных. Каждый раз, когда вы хотели поработать с программой, ее надо было вводить в ручную. Довольно быстро стало понятно, что компьютерам нужно какое-то постоянное хранилище данных. Первым носителем данных, используемым в компьютерах, была бумага! (перфокарты? Программы и данные были записаны, используя дырки в бумажных карточках. Использовался специальный считыватель, который использовал луч света для сканирования карточек: где находилась дырка, она воспринималась как "1", а где дырки не было, воспринимался "0". По сравнению с ручным вводом программы каждый раз при включении компьютера, это был большой шаг вперед, оставаясь, между тем очень неудобным методом ввода программ в компьютер. Тем не менее, перфокарты использовались довольно продолжительное время. Следующим важным улучшением хранилища программ было изобретение магнитной ленты. Информация записывалась методом, похожим на запись аудиокассет, магнитные ленты были более гибким, надежным и более быстрым хранилищем информации по сравнению с перфокартами. Конечно, накопители на лентах и сейчас используются в компьютерах, но в качестве вторичного накопителя данных, как правило, для хранения резервных копий. Главный минус данного устройства в том, что данные располагались линейно, и требовались минуты, чтобы перемотать ленту из одного конца в другой, делая медленным случайный доступ к данным. Позже появились НГМД, они были медленными, малыми в размере и очень ненадежными устройствами хранения данных, даже по сравнению с первыми жесткими дисками.

Для многих людей жесткий диск представляется как черный ящик, который как-то хранит информацию.

Физическая архитектура и логическая структура дисковых накопителей

Многолетнее развитие накопителей на жестких магнитных дисках не смогло изменить базовую схему этих устройств, одним из ключевых элементов которой является вращающийся диск с информационным слоем.

Весь винчестер, как устройство, делится на две крупные составляющие: плату электроники и гермозону или "камеру", внутри которой находятся магнитные диски (пластины) в просторечье именуемые "блинами", блок магнитных головок, шпиндельный двигатель и другие устройства. Внутреннее устройство большинства накопителей на жестких дисках практически одинаково (см. рис.1).

То, что скрывается под крышкой жесткого диска

Плата электроники или контроллер на жестком диске, по - сути, маленький компьютер. Любой современный жесткий диск на собственной плате контроллера обязательно имеет оперативную память, которую называют кэшем или буфером. Обычно размер кэша колеблется от 512 Кб до 8 Мб (в современных), в зависимости от модели диска. Кэш влияет на производительность жесткого диска самым непосредственным образом, так как скорость чтения данных из него в два-три, а то и более раз может превышать скорость считывания информации с пластин. В кэш записываются данные, к которым чаще всего обращается программа, и таким образом скорость работы некоторых программ с дисками может достигать совершенно фантастических величин. Некоторые производители устанавливают на свои диски не только кэши чтения, но и кэши записи. Помимо кэш-памяти, на собственной плате контроллера любого жесткого диска расположены схемы интерфейсной логики и процессор, управляющий вводом-выводом и кодированием данных. Также процессор управляет программой самодиагностики, которая стала обязательной для современных жестких дисков. Большинство дисков использует для самодиагностики технологию SMART (Self-Monitoring Analysis and Reporting Technology - технология самоанализа и информирования), предложенную несколько лет назад фирмами IBM и Compaq. Процессор занимается обработкой полученных с головок данных и преобразованием их в понятный компьютеру "язык". Делает он это, как и компьютер в оперативной памяти ОЗУ. ПЗУ необходимо для старта, как БИОС на материнской плате. Чем занимается микросхема управления электродвигателем понятно из её названия. При включении плата контроллера считывает служебную информацию и если она корректна, то жесткий диск начинает работу.

Весь винчестер должен быть произведен с особой точностью в силу очень большой миниатюрности компонентов. Пластины, головки, шпиндель, привода закрыты в специальном объеме, называемом гермозоной, или "камерой". Это сделано для того, чтобы гермозона была защищена от пыли, которая может разрушить головки или стать причиной царапин на пластинах. Внутри гермозоны находится воздух, а не вакуум, как думают многие. Она связана с внешним миром системой выравнивания давления, в которой имеется воздушный фильтр. Таким образом, давление воздуха внутри гермозоны всегда выровнено с окружающим воздухом, этим же образом решена проблема с выпадением конденсата.

Гермозона (герметичная зона) - полость жесткого диска, ограниченная "камерой" и крышкой, внутри которой находиться очищенный от частиц пыли воздух. Герметичная камера предохраняет носители не только от проникновения механических частиц пыли, но и от воздействия электромагнитных полей. Обеспечение чистого без пыльного пространства внутри жесткого диска необходимое условие для поддержания работоспособности жесткого диска, т.к. малейшие частички могут привести к порче магнитного покрытия дисков и потере данных и работоспособности устройства.

В винчестерах используются круглые диски (пластины) из немагнитных поверхностей, на которые нанесён тонкий слой магнитного материала. Все пластины насажены на шпиндель электродвигателя, и вращаются на большой скорости (у разных моделей современных дисков эта скорость колеблется от 5400 до 12000 об/мин). Чем выше скорость вращения, тем выше скорость обмена данными. Между пластинами перемещается вилка, на которой расположены магнитные головки, выполняющие запись и считывание информации. Головки позиционируются строго на определённых расстояниях от оси вращения пластин. Поверхность пластин в жестких дисках имеют специальную структуру, для обеспечения упорядоченной записи и хранения информации. На каждой пластине информация записывается на концентрических окружностях, называемых треками (track-дорожка). Треки на различных поверхностях находятся на одинаковых расстояниях от оси вращения. Совокупность треков, расположенных на разных поверхностях, но имеющих один и тот же диаметр, называется цилиндром.

Каждый трек разбивается на части, называемые секторами (см. рис 2).

Современные жесткие диски имеют различное количество секторов на дорожке в зависимости от того, внешняя ли это дорожка или внутренняя. Внешняя дорожка длиннее и на ней можно разместить больше секторов, чем на более короткой внутренней дорожке. Данные на чистый диск начинают записываться также с внешней дорожки. Все современные жёсткие магнитные диски имеют одинаковый логический размер сектора, позволяющий записать в сектор 512 байт информации. Секторы имеют номера, начинающиеся с 1. Секторы с одинаковыми номерами на всех дорожках цилиндра находятся "друг под другом", так что возможно одновременное чтение из всех таких секторов (или одновременная запись в них). Секторы с одинаковыми номерами разных цилиндров не находятся на одном радиусе (как можно было бы предположить), а расположены вдоль некоторой кривой, обеспечивающей переход к сектору с тем же номером, расположенному на соседней дорожке, с учётом времени, необходимого для перемещения головки к оси вращения диска (за это время диск успевает повернуться). Такое расположение секторов называется "перекосом цилиндров".

Самый первый сектор жесткого диска (сектор 1, дорожка 0, поверхность (головка) 0) содержит так называемую главную загрузочную запись (Master Boot Record - MBR). Эта запись занимает не весь сектор, а только его начальную часть. Сама по себе главная загрузочная запись является программой. Эта программа во время начальной загрузки операционной системы с жесткого диска помещается в оперативную память ПК. Загрузочная запись продолжает процесс загрузки операционной системы.

В конце самого первого сектора жесткого диска располагается таблица разделов диска (Partition Table).

Разметка пластин на треки и сектора производится низкоуровневым форматированием.

Низкоуровневое форматирование - это процесс нанесения информации о позиции треков и секторов, а также запись служебной информации для сервосистемы. Этот процесс иногда называется "настоящим" форматированием, потому что он создает физический формат, который определяет дальнейшее расположение данных. Когда в первый раз запускается процесс низкоуровневого форматирования винчестера, пластины жесткого диска пусты, т.е. не содержат абсолютно никакой информации о секторах, треках и т.п.

Форматирование жесткого диска включает в себя три этапа:

1. Форматирование диска на низком уровне (низкоуровневое форматирование). Это единственный "настоящий" метод форматирования диска. При этом процессе на жестком диске создаются физические структуры: треки, сектора, управляющая информация. Этот процесс выполняется заводом-изготовителем на пластинах, которые не содержат еще никакой информации.

2. Разбиение на разделы. Этот процесс разбивает объем винчестера на логические диски (C, D, и т.д.). Этим обычно занимается операционная система, и метод разбиения сильно зависит от операционной системы.

3. Высокоуровневое форматирование. Этот процесс также контролируется операционной системой и зависит как от типа операционной системы, так и от утилиты, используемой для форматирования. Процесс записывает логические структуры, ответственные за правильное хранение файлов, а также, в некоторых случаях, системные загрузочные файлы в начало диска. Это форматирование можно разделить на два вида: быстрое и полное. При быстром форматировании перезаписывается лишь таблица файловой системы, при полном сначала производится верификация (проверка) поверхности накопителя, а уже потом производится запись таблицы файловой системы.

В настоящее время наиболее распространены 4 файловые системы - FAT, NTFS, FAT32 и HPFS (OS/2). Все операционные системы используют различные программы для высокоуровневого форматирования, т.к. они используют различные типы файловых систем. Тем не менее, низкоуровневое форматирование, как процесс разметки треков и секторов на диске, одинаков.

Основные функции файловой системы

Поддержание отображения файлов на физические и логические структуры носителя данных (например, на кластеры и секторы жёсткого диска).

Обеспечение доступа к файлам по их символическим именам.

Гарантирование корректности данных, содержащихся в файле.

Оптимизация производительности как с точки зрения ОС (пропускная способность), так и с точки зрения пользователя (время отклика).

Обеспечение поддержки использования файлов несколькими пользователями для многопользовательской системы.

Основные физические и логические параметры жестких дисков

Все накопители соответствуют стандартам, определяемым либо независимыми комитетами и группами стандартизации, либо самими производителями. Среди множества технических характеристик отличающих одну модель от другой можно выделить некоторые, наиболее важные с точки зрения пользователей и производителей, которые, так или иначе используются при сравнении накопителей различных производителей и выборе устройства.

Диаметр дисков (disk diameter) - параметр довольно свободный от каких-либо стандартов, ограничиваемый лишь форм-факторами корпусов.

Число поверхностей (sides number) - определяет количество физических дисков установленных на шпиндель.

Число цилиндров (cylinders number) - определяет сколько дорожек (треков) будет располагаться на одной поверхности.

Число секторов (sectors count) - общее число секторов на всех дорожках всех поверхностей накопителя.

Число секторов на дорожке (sectors per track) - общее число секторов на одной дорожке.

Частота вращения шпинделя (rotational speed или spindle speed) - определяет, сколько времени будет затрачено на последовательное считывание одной дорожки или цилиндра.

Время перехода от одной дорожки к другой (track-to-track seek time)

жесткий магнитный дисковый накопитель

Время успокоения головок (head latency time) - время, проходящее с момента окончания позиционирования головок на требуемую дорожку до момента начала операции чтения/записи.

Время установки или время поиска (seek time) - время, затрачиваемое устройством на перемещение головок чтения/записи к нужному цилиндру из произвольного положения.

Среднее время установки или поиска (average seek time) - усредненный результат большого числа операций позиционирования на разные цилиндры, часто называют средним временем позиционирования.

Время ожидания (latency) - время, необходимое для прохода нужного сектора к головке, усредненный показатель - среднее время ожидания (average latency), получаемое как среднее от многочисленных тестовых проходов.

Время доступа (access time) - суммарное время, затрачиваемое на установку головок и ожидание сектора.

Среднее время доступа к данным (average access time) - время, проходящее с момента получения запроса на операцию чтения/записи от контроллера до физического осуществления операции - результат сложения среднего время поиска и среднего времени ожидания.

Скорость передачи данных (data transfer rate), называемая также пропускной способностью (throughput), определяет скорость, с которой данные считываются или записываются на диск после того, как головки займут необходимое положение.

Внешняя скорость передачи данных (external data transfer rate или burst data transfer rate) показывает, с какой скоростью данные считываются из буфера, расположенного на накопителе в оперативную память компьютера.

Внутренняя скорость передачи данных (internal transfer rate или sustained transfer rate) отражает скорость передачи данных между головками и контроллером накопителя и определяет общую скорость передачи данных в тех случаях, когда буфер не используется или не влияет (например, когда загружается большой графический или видеофайл).

Размер кеш-буфера контроллера (internal cash size).

Средняя потребляемая мощность (capacity).

Уровень шума (noise level), разумеется, является эргономическим показателем.

Среднее время наработки на отказ (MTBF) - определяет сколько времени способен проработать накопитель без сбоев.

Сопротивляемость ударам (G-shock rating) - определяет степень сопротивляемости накопителя ударам и резким изменениям давления, измеряется в единицах допустимой перегрузки g во включенном и выключенном состоянии.

Физический и логический объем накопителей. Носители жестких дисков, в отличие от гибких, имеют постоянное число дорожек и секторов, изменить которое невозможно. Эти числа определяются типом модели и производителем устройства. Поэтому, физический объем жестких дисков определен изначально и состоит из объема, занятого служебной информацией (разметка диска на дорожки и сектора) и объема, доступного пользовательским данным.

Жесткий диск конструктивно сложное устройство. Механическая составляющая винчестера это слабое звено во всем системном блоке. Ведь если остальные элементы компьютера можно безболезненно поменять, купив новые, то жесткий диск так просто не заменишь, ведь на нем хранится информация. Не смотря на то, что некоторые компании занимаются разработкой альтернативных носителей информации, в которых не будет механических элементов, все же в настоящее время отказываться от производства жестких дисков на основе магнитного принципа записи никто не собирается. Подтверждением тому служит появление винчестеров использующих перпендикулярный принцип записи, что позволило добиться более высокой плотности записи. Вследствие этого уже появились НЖМД емкостью более 1 Тб.

В серии Seagate Barracuda® 7200.11 Используется технология перпендикулярной записи второго поколения, которая позволяет достичь ещё большей плотности записи на единицу поверхности. Благодаря этому максимальная емкость достигла значения в 1,5 Тб. Все жесткие диски Seagate Barracuda® 7200.11 обладают интерфейсом SATA-II с поддержкой технологии NCQ. Новейшая серия Seagate Barracuda® XT представленная на рынке пока единственной моделью с рекордным объемом 2 Тб. Самый быстрый и самый ёмкий - именно такие эпитеты заслуживает эта модель. Жесткий диск Seagate Barracuda XT для настольных компьютеров имеет ёмкость 2 Тб, скорость вращения шпинделя 7200 об/мин, размер кэш-памяти - 64 Мб, а также оснащён скоростным интерфейсом нового поколения SATA III (с пропускной способностью до 6 Гбит/с). Всё это в комплексе обеспечивает широкие возможности для хранения огромного количества информации и высочайшую производительность. Области применения HDD Seagate Barracuda XT разнообразны: высокопроизводительные игровые ПК, системы для создания и обработки видео в формате высокого разрешения HD, домашние серверы и рабочие станции, настольные RAID-массивы, внешние устройства хранения данных со скоростными интерфейсами FireWire 800 или eSATA.

Некоторые ключевые моменты в развитии жестких магнитных дисков:

· Первый жесткий диск (1956): IBM RAMAC, имел емкость порядка 5 мегабайт, хранящихся на пятидесяти 24-х дюймовых дисках. Плотность записи составляла порядка 2000 бит на квадратный дюйм, скорость передачи данных - 8800 бит в секунду.

· Первые головки на воздушной подушке (1962): IBM model 1301 впервые использовал магнитные головки, летящие на воздушной подушке, снизив таким образом расстояние между головками и дисками до 250 микродюймов. Жесткий диск имел емкость в 28 мегабайт, используя половину от количества головок IBM RAMAC, и его плотность записи и скорость работы была увеличена на 1000%.

· Первый переносимый жесткий диск (1965): IBM model 2310 был первым винчестером с переносимым пакетом дисков.

· Первые ферритовые головки (1966): IBM model 2314 был первым жестким диском, который использовал ферритовый сердечник в головках.

· Первый современный дизайн жесткого диска (1973): IBM model 3340 имел емкость в 60 мегабайт и использовал много ключевых технологий, которые до сих пор используются в современных жестких дисках.

· Первые тонкопленочные головки (1979): IBM model 3370 был первым жестким диском, использующим тонкопленочные головки, которые намного позже станут применяться повсеместно в дисках для ПК.

· Первый жесткий диск в 8" форм-факторе (1979): IBM model 3310 был первым жестким диском, использующим 8-дюймовые диски, до этого почти на протяжении десятилетия использовались 14-ти дюймовые диски.

· Первый жесткий диск в 5,25" форм-факторе (1980): Seagate ST-506 был первым жестким диском, представленном в 5.25" форм-факторе, который использовался в первых ПК.

· Первый жесткий диск в 3.5" форм-факторе (1983): фирма Rodime представила RO352, первый жесткий диск, который был выполнен в 3,5" форм-факторе, который стал одним из самых важных форм-факторов в индустрии ПК.

· Первый жесткий диск, использующий соленоидный привод перемещения головок (1986): Conner Peripherals CP340.

· Первый "низкопрофильный" 3,5" жесткий диск (1988): Conner Peripherals CP3022, имевший высоту в 1 дюйм, все современные жесткие диски выполнены именно в этом, "низкопрофильном" дизайне.

· Первый 2,5" жесткий диск (1988): PrairieTek представил первый жесткий диск, использующий 2,5" пластины. Именно этот форм-фактор стал стандартом для жестких дисков, используемых в ноутбуках.

· Первый жесткий диск, использующий магниторезистивные головки и PRML декодирование данных (1990): IBM model 681, имел емкость в 857 мегабайт и впервые использовал магниторезистивные головки и PRML.

· Первые тонкопленочные диски (1991): IBM "Pacifica" диск для мэйнфремов был первым, использующим тонкопленочные диски.

Между тем, жесткие магнитные диски могут однажды отступить перед "прямоугольными жесткими дисками" (Hard Rectangular Disk, HRD). В последнее время у HDD появился конкурент с более привлекательными показателями быстродействия, за которые, впрочем, приходится платить, в буквальном смысле слова. Есть разработчики, не теряющие надежды создать собственную альтернативу HDD. Компания DataSlide представила прототип нового накопителя, который, не исключено, однажды составит конкуренцию HDD и SSD. Используемая в нем технология получила название "прямоугольный жесткий диск" (Hard Rectangular Disk, HRD). По словам DataSlide, запатентованная технология позволит накопителю достичь показателей производительности 160000 IOPS и 500 МБ/с при потребляемой мощности менее 4 Вт. Для сравнения - у современных SSD эти показатели равны 35000 IOPS (в режиме чтения, в режиме записи - 3000 IOPS) и 220 МБ/с соответственно. По сведениям одного из источников, объем прототипа равен 36 ГБ, сами разработчики утверждают, что накопители HRD смогут иметь объем от 80 ГБ до 2 ТБ.

Концепция HRD позаимствована у разработки IBM под названием Millipede. В конструкцию накопителя входит пьезоэлектрический привод, приводящий в прецизионное колебательное движение прямоугольную пластину с магнитным носителем, и двухмерные массивы головок для чтения и записи. Контактирующие поверхности покрыты твердой алмазной "смазкой", гарантирующей, по словам компании, многолетнюю работу без износа. До 64 магнитных головок массива могут вести чтение или запись одновременно.

Пока нет данных о том, сколько времени пройдет до превращения прототипа в серийное изделие, доступное на рынке, и сколько такие накопители будут стоить. Известно лишь, что преимуществом разработки является применение технологий и материалов, уже используемых в серийном производстве ЖК-панелей и магнитных носителей.


Список литератур

1. Основы современных компьютерных технологий: Учебное пособие. / Под ред. Хомоненко Д.А. - СПб.: КРОНА принт, 1998.

2. Смирнов А.Д. Архитектура вычислительных систем. М.: Наука, 1990.

3. Скот Мюлер. Модернизация и ремонт персональных компьютеров. /пер. с англ. - М: Зао "Издательство Бином". 1998 г.

4. Для подготовки данной работы так же были использованы материалы из интернета: http://www.nodevice.ru/, http://spas-info.ru/articles/

5. http://www.datalabs.ru/kb/000021.html

6. http://spas-info.ru/articles/print/? ch=articl&page=11_arranged

7. http://www.xard.ru/post/10731/? page=123


Частота окружающего воздуха, поскольку грязь или пыль могут вызвать соударение головки с диском, что однозначно приведет к выходу его из строя. Как известно, для установки дисковых накопителей в системном блоке любого персонального компьютера предусмотрены специальные монтажные отсеки. Габаритные размеры современных винчестеров характеризуются форм-фактором. Форм-фактор указывает горизонтальные...

Загрузочные сектора жестких дисков. Физическое и логическое подключение жестких дисков Какие же необходимо подключить разъемы и установить перемычки и другие операции при физической установке накопителя на жестких дисках? Это - интерфейсный шлейф, кабель питания, перемычки выбора статуса логического устройства и, возможно, индикатор состояния устройства (обращения к устройству), а также...

Run Limited Length – ARLL) – улучшенный метод RLL, в котором, наряду с логическим уплотнением данных, производится повышение частоты обмена между контроллером и накопителем. Технология производства накопителей на гибких магнитных дисках Запись и считывание информации осуществляются с помощью магнитных головок плавающего типа. Они крепятся на рычагах, которые перемещаются по радиусу...

Распознается как жесткий диск, причем не требует установки драйвера. Объем флэш-дисков может составлять от 32 Мбайт до 8 Гбайт. Вопрос 2: EXCEL. Форматирование ячеек. Применение условного форматирования. 2.1. Форматирование ячеек. Границы ячеек и линии сетки представляют собой разные элементы таблицы. Линии сетки определяются для рабочего листа целиком. Границы применяются к отдельным...

Cтраница 1


Общекластерные дисковые накопители обеспечивают возможность быстрого перезапуска приложений на разных узлах кластера и одновременной работы прикладных программ с одними и теми же данными, получаемыми с разных узлов кластера так, как если бы эти программы находились в.  

Различия дисковых накопителей не исчерпываются только диаметром диска. Диски подразделяются на жесткие и гибкие, последние называют еще дискетами. Для форматирования дисков используется более 50 различных методов, но наиболее употребительны два из них: с жесткими секторами и с мягкими секторами. При использовании первого метода диски размечаются в процессе изготовления, и определение номера сектора, в котором находится магнитная головка, осуществляется с помощью фотодатчика и счетчика тактовых импульсов. Во втором случае диск форматируется магнитной головкой, выполняющей секторную разметку.  

Информация на дисковый накопитель вводится одновременно с четырех или восьми пультов в зависимости от того, сколькими пультами данное устройство укомплектовано. Управление работой операторов обеспечивается программно, при этом на пульт оператора выдаются соответствующие индикационные сигналы.  

Надежность работы дискового накопителя резко возрастает, если обеспечена его герметизация, исключающая попадание пыли на рабочую поверхность. Именно таким образом сконструирован накопитель типа Винчестер, в котором диски помещаются вместе с механизмом записи - чтения в один герметичный корпус.  

Сложные ПУ, например дисковые накопители, выполняют функции чтения блока данных, запись блока данных, позиционирование головки в прямом и обратном направлениях и др. Это требует наличия в контроллере ПУ регистра команды. Часто биты готовности и управления прерыванием, вектор состояния ПУ и команда объединяются в одно физическое слово, хранимое на регистре команды и состояния устройства. Сами функции команды частично выполня-ют.  

Высокая скорость работы дисковых накопителей позволяет экономить время. При работе с гибкими дисками приходится достаточно долго ждать, пока завершится обмен данными и программами между диском и памятью. Поэтому любой пользователь, даже если он никогда не работал с другими устройствами, скоро начинает понимать, насколько медленны НГМД.  

Файлы создаются на дисковых накопителях и на некоторых типах накопителей на магнитной ленте. Файлы состоят из последовательности блоков фиксированной длины. Все блоки на носителе пронумерованы, нумерация начинается с нулевого блока. Файл размещается в виде непрерывного участка смежных блоков.  

В отличие от этого дисковые накопители обеспечивают доступ к нескольким одновременно открытым файлам.  

Локальные отображения накопителей показывают на локальные дисковые накопители, подключенные к рабочей станции пользователя. При входе в сеть DOS резервирует нужное число букв для учета всех гибких и жестких дисков в рабочей станции. Числа локальных отображений накопителей зависит от рабочей версии DOS и числа дисковых накопителей в рабочей станции.  

Первая часть этой статьи посвящена современным дисковым накопителям и их внутренней работе, включая такие вопросы, как перемещение головок, зонирование, перекос дорожек, резервирование, кэширование, опережающее чтение и многое другое. Во второй части статьи описывается моделирование дисковых накопителей.  

Для хранения программ микродиагностики к пульту подключается стандартный дисковый накопитель ЕС5080, для чего в составе пульта имеется стандартный селекторный канал с выходом на интерфейс ввода-вывода ЕС ЭВМ.  

Персональная ЭВМ с соответствующими периферийными устройствами (дисковым накопителем, быстродействующим печатным устройством и графопостроителем) сегодня по цене сопоставима с обычными для химической лаборатории приборами. Преимущество персонального компьютера перед большой ЭВМ заключается в том, что он доступен в любой момент. Это позволяет использовать вычислительную технику для решения даже небольших задач. В области химии пока еще не созданы библиотеки программ. Пользователю не остается ничего другого, как писать свои программы самому. Однако это невозможно без определенных сведений о самой ЭВМ и о языке программирования, который она понимает. Усвоить такие сведения довольно просто. БЕЙСИК среди других языков программирования наиболее подходит для персональных ЭВМ.  



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows