При работе солнечной батареи происходит преобразование. Принцип работы солнечной батареи и ее устройство. Как работает солнечное отопление

При работе солнечной батареи происходит преобразование. Принцип работы солнечной батареи и ее устройство. Как работает солнечное отопление

Дорого отапливать дом газом? Или у вас на даче постоянно отключают свет? А может быть вы устали переплачивать за электроэнергию? Вам поможет установка солнечной батареи, которая обеспечит вас не только электричеством, но и отоплением. В этой статье мы рассмотрим принцип работы солнечной батареи, и ее отличия от солнечного коллектора.

В чем суть работы солнечной батареи?

Солнечная батарея, она же фотобатарея, представляет собой фотопластину, изменяющую под воздействием солнечных лучей проводимость в отдельных своих участках.

Это позволяет преобразовать энергию этих переходов в электрическую, которая либо используется сразу, либо накапливается.
Для того, чтобы понять принцип работы солнечной батареи, необходимо знать несколько моментов:


Итак, как же работает солнечная батарея?

На отрицательно заряженную панель падает солнечный свет. Он вызывает активное образование дополнительных отрицательных зарядов и «дырок». Под воздействием электрического поля, которое присутствует в p-n переходе, происходит разделение положительно и отрицательно заряженных частиц. Первые направляются в верхний слой, а вторые в нижний. Таким образом, появляется разность потенциалов, иными словами, постоянное напряжение (U). Исходя из этого видно, что один фотопреобразователь работает по принципу батарейки. И в случае, когда к нему подсоединяется нагрузка, в цепи возникает ток. Сила тока будет зависеть от таких параметров, как:


Выделяют несколько типов солнечных батарей: поли- и монокристаллические, а также аморфные.
Монокристаллические являются наименее продуктивными, но при этом самыми недорогими. В связи с этим их использование оправдано в качестве дополнительных источник энергии на случай отключения централизованной подачи электроэнергии.
Поликристаллы занимают промежуточные позиции по этим двум параметрам, в связи с чем могут быть использованы в отдаленных районах, лишенных централизованной подачи электроэнергии.

Аморфные солнечные батареи отличаются высокой эффективностью, однако и очень высокой стоимостью. В их основу входит аморфный кремний.

Данные разработки еще не вышли на промышленный уровень и находятся на экспериментальной стадии.

Зачем нужен контроллер в солнечной батарее?

Солнечные батареи, принцип работы которых был описан выше, не смогли бы эффективно заменить системы центральной подачи электроэнергии, если бы не были оснащены контроллерами, способными контролировать степень заряда солнечной батареи.

Контролеры позволяют перераспределять энергию, полученную от солнечных батарей, направляя ее при необходимости напрямую к источнику потребления, либо сохраняя ее в аккумуляторе.
Выделяют несколько типов контроллеров солнечных батарей, отличающихся между собой степенью увеличения общей эффективности системы солнечных батарей.

Для того, чтобы приобщиться к использованию альтернативных источников энергии, вовсе не обязательно приобретать дорогостоящую солнечную батарею. Есть более доступные примеры использования солнечной энергии для получения электрической. Речь идет о популярных в настоящее время садовых фонарях на солнечных батареях.

Такие фонарики позволяют освещать приусадебный участок в темное время суток, не затрачивая на это дополнительную электроэнергию.

Принцип работы таких фонарей заключается в том, что посредством фитопластины, вмонтированной в верхнюю часть фонарика, происходит улавливание и преобразование солнечной энергии, которая аккумулируется в небольшой батарее, расположенной в основании фонарика. Расход накопившейся энергии происходит в темное время суток.

Альтернативные источники энергии с каждым днем становятся все актуальнее. Причина тому - экологичность, возобновляемость, дешевизна. Энергия солнца - один из самых выгодных источников энергии. Ближайшие несколько миллиардов лет оно будет продолжать освещать нашу планету, отдавая огромное количество энергии, в отличии от газа и нефти. Сегодня мы научились использовать этот источник с помощью системы солнечных панелей, но мало кто понимает принцип работы солнечной батареи. Давайте разберемся.

Для начала нужно понять, что система солнечного электроснабжения дома это не только те черные или синеватые панели, которые устанавливаются на крышах домов. Эти светоприемники лишь один из четырех составляющих общей системы, в которую входят:

Принцип работы солнечной батареи

Солнечная батарея или солнечный модуль - является ключевым элементом в гелиосистеме альтернативного электроснабжения. Именно он превращает солнечный свет в пригодное для использования электричество. Основа батареи - монокристалл искусственного кремния, на обе стороны которого нанесены слой бора и фосфора.

Электрический ток образуется там, где есть разность потенциалов или "+" и "-". Для этой цели и служит дополнительное покрытие. Их принято называть:

  • n-тип или покрытие с избытком электронов (фосфор);
  • p-тип или покрытие с недостатком электронов, так называемые "дырки" (бор);

При попадании фотонов солнечного света на покрытие n-типа , свободные электроны начинают перемещаться в зону p-типа генерируя электричество или т.н. pn-переход . Принципиальное значение имеет сторона на которую попадают солнечные лучи.

Строение солнечной батареи

  1. солнечный свет;
  2. верхний проводник;
  3. слой n-типа (фосфор);
  4. зона p-n перехода;
  5. слой p-типа (бор);
  6. нижний проводник;

Обе стороны солнечной батареи покрывают защитными слоями, предотвращающих механические повреждения. Верхнюю (солнечную) сторону дополнительно покрывают антибликовым светопоглощающим покрытием, которое увеличивает уровень светопоглощения.

Отдельные светоприемные блоки или модули соединяют между собой в панели, увеличивая общую мощность системы.

На сегодняшний день стоимость панелей - один из самых негативных факторов, определяющих покупку панелей. Срок окупаемости в зонах с продолжительным световым днем составляет 5-10 лет, но зачастую значительно больше. Китайцы значительно преуспели в стремлении удешевить фотоэлементы, за счет замены монокристалла кремния на поликристаллы, но это повлияло на и того не высокое КПД батарей. Среднее КПД работы солнечных батарей варьируется от 13 до 17%. Самым высокое достигнутое КПД составляло 24%.

Напоследок фильм о принципе работы солнечной батареи с комментариями специалистов:

Во все времена человечество стремилось использовать по максимуму блага предоставленные природой. Доказательство тому изобретённые солнечные батареи. Принцип работы солнечных батарей достаточно прост. Именно благодаря им ранее наши калькуляторы работали в любое время суток, летом и зимой, вне зависимости от вида и частой смены батарейки. Современный мир характеризуется применением солнечной энергии в разных сферах и масштабах, начиная от актуальных планшетов и заканчивая самолётами. О том, как устроена солнечная батарея, её виды и принцип работы Вас проинформирует данная статья.

  • Немного из истории
  • Классификация

Немного из истории

Как известно, солнечная батарея является не первым изобретением, использующим всеохватывающую энергию Солнца в качестве альтернативы электрической энергии. Первые попытки применения солнечного света — терминальные электростанции, которые имеют более распространённое название как «коллекторы». Принцип их действия заключался в нагревании воды до 100 ° С при помощи солнечных лучей, итогом чего становилась выработка электричества. Работа коллекторов состояла из многоступенчатой трансформации энергии: скопление солнечных лучей, кипячение жидкости, образование пара, движение парового двигателя и преобразование тепловой энергии в механическую.

В отличие от коллектора солнечная батарея напрямую трансформируют продукцию Солнца в электрическую энергию. Также следует отметить такую особенность солнечной батареи, как использование света, а не тепла, что позволяет образовывать электроэнергию даже зимой.

На сегодняшний день принцип работы этих приспособлений основывается на преобразовании действия лучей в электрический ток (фотоэлектрический эффект) при помощи специальных полупроводников, которые и составляют всю батарею.

Первооткрывателями фотоэлектрического эффекта являются три заслуженных учёных физика. Само явление такового процесса описал физик французского происхождения — Александр Эдмон Беккерель в 1839 году. Далее в 1873 году был открыт первый полупроводник для осуществления действия фотоэлектрического эффекта английским инженером-электриком Уиллоуби Смит. А более подробно были описаны принцип работы, схема солнечной батареи и подтверждены законы предыдущих открывателей в 1905 году всемирно известным лауреатом Нобелевской премии Альбертом Эйнштейном.

Определение и основы трансформации энергии

Устройство солнечной батареи состоит из пластины, оснащённой цепочкой соединённых полупроводников (фотоэлементов). Фотоэлементы выполняют функцию преобразования солнечного света в электрический ток. Поэтому для того, чтобы понять принцип действия данного приспособления, следует изучить его основы, а именно фотоэлементы.

Фотоэлементы – полупроводники, трансформирующие действие квантов электромагнитного излучения, способных двигаться лишь со скоростью света, в электрическую энергию. Процесс данной трансформации называется фотоэлектрическим эффектом, появляющимся под воздействием солнечного света на структуры фотоэлемента. Особенность структуры заключается в неоднородности, которую создают при помощи сплавов различных материалов и примесей для изменения её свойств с точки зрения физики и химии.

Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Эти самые примеси создают отрицательные и положительные переходы (р- n), которые являются основой работы двух полупроводников и проводимости между ними. Помимо этого метода, образующего неоднородность структуры фотоэлементов, применяются также такие:

  • объединение, различающихся по ширине запрещённой зоны, полупроводников;
  • изменение химического состава фотоэлемента с целью образования варизонной структуры;
  • комбинирование вышеперечисленных способов.

Трансформация энергии напрямую зависит от физических и электрических свойств структуры и электрической проводимости полупроводников (фотопроводимость). Фотоэлемент состоит из разного типа электронов и слоёв их. В качестве электрода, на котором возникает заряд, выступает отрицательный тип, и соответственно, анодом (приёмником) этого заряда является положительный тип. Накопление солнечной энергии происходит таким образом: выходящие из отрицательного слоя под воздействием солнечных лучей, электроны принимают аноды. Выходя из слоя положительных электронов, они возвращаются в исходное место. Далее действия повторяются. Ввиду чего энергия Солнца остаётся внутри устройства.

Классификация

В зависимости от материала и метода изготовления различают такие виды солнечных батарей: кремниевые и плёночные.

Кремневые батареи – приспособления, основным действующим материалом которых является кремний. Кремний характеризуется высокой производительностью сравнительно с другими материалами, используемыми для создания данных устройств, поэтому пользуется большим спросом. По своей структуре кремниевые устройства делятся на три подвида:


Плёночные устройства делятся на такие виды:

  • на основе теллурида кадмия с использованием плёночного технологии;
  • на основе сплава меди, индия и селена, КПД таких устройств составляет 16-20%;
  • полимерные плёночные устройства, производимые из органических фотоэлементов, КПД их составляет 5-6 %.

Схема подключения солнечных батарей заключается в расчете нагрузки и настройке контролёра заряда. Самую простую схему можно рассмотреть на примере садового фонаря. Такие садовые фонари постепенно обретают широкое распространение за счёт яркого освещения дорожек, газонов и приусадебных участков. Зимой свет садовых фонарей на солнечном питании отличается меньшей яркостью, чем в другую пору. Схема в данном случае состоит из светочувствительного элемента, накопительного аккумулятора, солнечной батареи.

На сегодняшний день ведутся разработки по производству масштабных полей солнечных батарей на территории Антарктики. Такие электростанции будут накапливать энергии в течение полугодового полярного дня, наступающего на северных территориях – в летнее время, а на юге – в зимнее. Солнечная энергия является достойной альтернативой электрическому току, поэтому спектр её применения широк. Батареи, работающие от солнечного света, используют даже для производства космических аппаратов.

Мы часто пишем про различные виды альтернативной энергетики, в том числе про солнечную. Этой статьей начинается цикл статей про принципы работы различных устройств работающих на возобновляемой энергии. И первое что будет рассмотрено - солнечные батареи. Солнечная энергия в последнее время используется повсюду: в естественном освещении помещений, нагрева воды, сушки и иногда даже в приготовлении пищи. Однако самым важным использованием энергии солнца является, пожалуй, генерация электричества. И главный элемент такой генерации - солнечная батарея!

Строение солнечных батарей


Солнечная батарея состоит из фотоэлементов, соединенных последовательно и параллельно. Все фотоэлементы располагаются на каркасе из непроводящих материалов. Такая конфигурация позволяет собирать солнечные батареи требуемых характеристик (тока и напряжения). Кроме того, это позволяет заменять вышедшие из строя фотоэлементы простой заменой.

Принцип работы

Принцип работы фотоэлементов из которых состоит солнечная батарея основан на фотогальваническом эффекте. Этот эффект наблюдал еще Александр Эдмонд Беккерель в 1839 году. Впоследствии работы Эйнштейна в области фотоэффекта позволили описать явление количественно. Опыты Беккереля показали, что лучистую энергию солнца можно трансформировать в электричество с помощью специальных полупроводников, которые позже получили название фотоэлементы.

Вообще такой способ получения электричества должен быть наиболее эффективным, потому что является одноступенчатым. По сравнению с другой технологией преобразования солнечной энергии через термодинамический переход (Лучи -> Нагревание воды -> Пар -> Вращение турбины -> Электричество), меньше энергии теряется на переходы.

Строение фотоэлемента


Фотоэлемент на основе полупроводников состоит из двух слоев с разной проводимостью. К слоям с разных сторон подпаиваются контакты, которые используются для подключения к внешней цепи. Роль катода играет слой с n-проводимостью (электронная проводимость), роль анода - p-слой (дырочная проводимость).

Ток в n-слоя создается движение электронов, которые «выбиваются» при попадании на них света за счет фотоэффекта. Ток в p-слое создается «движением дырок». «Дырка» - атом, который потерял электрон, соответственно, перескакивание электронов с «дырки» на «дырку» создает «движение» дырок, хотя в пространстве сами «дырки» конечно не двигаются.

На стыке слоев с n- и p-проводимостью создается p-n-переход. Получается своего рода диод, которые может создавать разность потенциалов за счет попадание лучей света.

Физический механизм действия

Когда лучи света попадают на n-слой, за счет фотоэффекта образуются свободные электроны. Кроме этого, они получают дополнительную энергию и способны «перепрыгнуть» через потенциальный барьер p-n-перехода. Концентрация электронов и дырок изменяется и образуется разность потенциалов. Если замкнуть внешнюю цепь через нее начнет течь ток.

Разность потенциалов (а соответственно и ЭДС) которую может создавать фотоэлемент зависит от многих факторов: интенсивности солнечного излучения, площади фотоэлемента, КПД конструкции, температуры (при нагревании проводимость падает).

Из чего делают фотоэлементы?

Самый первый в мире фотоэлемент появился в 1883 году в лаборатории Чарьза Фриттса. Он был изготовлен из селена, покрытого золотом. Увы, но такой набор материалов показал невысокие результаты - около 1% КПД.

Революция в использовании фотоэлементов произошла тогда, когда в недрах лаборатории компании «Bell Telephone» был создан первый элемент на кремнии. Компания нуждалась в источнике электроэнергии для телефонных станцией, и, можно сказать, была первой компанией, которая использовала альтернативный источник на солнечной энергии.

Кремний до сих пор остается основных материалом для производства фотоэлементов. Вообще кремний (Silicium, Silicon) - второй по распространенности элемент на Земле, запасы его огромны. Однако в промышленном его использовании есть одна большая проблема - его очистка. Процесс этот очень трудоемкий и затратный, поэтому чистый кремний стоит дорого. Сейчас ведется поиск аналогов, которые бы не уступали кремнию по КПД. Перспективными считаются соединения меди, индия, селена, галлия и кадмия, а также органические фотоэлементы.

Солнечные батареи (Сборки)


Однако разность потенциалов, создаваемая одним фотоэлементов, мала для промышленного применения. Чтобы иметь возможность использовать солнечные элементы для электропитания устройств, их соединяют вместе. Тем самым получаются солнечные батарей (солнечные сборки, солнечные модули). Кроме того, фотоэлементы покрывают различными защитными слоями из стекла, пластмассы, различных пленок. Это делают для того, чтобы защитить хрупкий элемент.

Основной рабочей характеристикой солнечной батареи является пиковая мощность, которую выражают в Ваттах (Вт, W). Эта характеристика показывает выходную мощность батареи в оптимальных условиях: солнечном излучении 1 кВт/м 2 , температуре окружающей среды 25 o C, солнечном спектре шириной 45 o (АМ1,5). В обычных условиях достичь таких показателей удается крайне редко, освещенность ниже, а модуль нагревается выше (до 60-70 градусов).

Соединяя фотоэлементы последовательно мы повышаем разность потенциалов, соединяя параллельно - ток. Таким образом комбинируя соединения можно добиться требуемых параметров по току и напряжению, а следовательно и по мощности. Кроме того, последовательно или параллельно можно соединять не только фотоэлементы в рамках одной солнечной батареи, но и солнечные батареи в целом.

Эффективное преобразование бесплатных лучей солнца в энергию, которую можно использовать для электроснабжения жилья и иных объектов, – заветная мечта многих апологетов зеленой энергетики.

Но принцип работы солнечной батареи, и ее КПД таковы, что о высокой эффективности таких систем пока говорить не приходится. Было бы неплохо обзавестись собственным дополнительным источником электроэнергии. Не так ли? Тем более что уже сегодня и в России с помощью гелиопанелей “дармовой” электроэнергией успешно снабжается немалое количество частных домохозяйств. Вы все еще не знаете с чего начать?

Ниже мы расскажем вам об устройстве и принципах работы солнечной панели, вы узнаете, от чего зависит эффективность гелиосистемы. А размещенные в статье видеоролики помогут собственноручно собрать солнечную панель из фотоэлементов.

В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.


По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.

Максимум отдачи от солнечной панели можно будет получить, только зная, как она работает, из каких компонентов и узлов состоит и как все это правильно подключается

Вначале следует разобраться в существующих разновидностях оборудования для гелиоэнергетики. Солнечные батареи и солнечные коллекторы – это два принципиально разных устройства. Оба они преобразуют энергию лучей солнца.

Однако в первом случае на выходе потребитель получает энергию электрическую, а во втором тепловую в виде нагретого теплоносителя.

Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.

Солнечной панелью генерируется постоянный электроток. Чтобы преобразовать его в переменный (используемый в быту), в схеме должен присутствовать инвертор

Солнечные батареи предназначены исключительно для генерации электрического тока. Он, в свою очередь, накапливается для снабжения дома электричеством ночью, когда солнце опускается за горизонт, уже в присутствующих дополнительно в схеме энергообеспечения объекта аккумуляторах.

Батарея здесь подразумевается в контексте некой совокупности однотипных компонентов, собранных в нечто единое целое. Фактически это просто панель из нескольких одинаковых фотоэлементов.

Внутреннее устройство гелиобатареи

Постепенно солнечные батареи становятся все дешевле и эффективней. Сейчас они применяются для подзарядки аккумуляторов в уличных фонарях, смартфонах, электроавтомобилях, частных домах и на спутниках в космосе. Из них стали даже строить полноценные солнечные электростанции (СЭС) с большими объемами генерации.

Гелиобатарея состоит из множества фотоэлементов (фотоэлектрических преобразователей ФЭП), преобразующих энергию фотонов с солнца в электроэнергию

Каждая солнечная батарея устроена как блок из энного количества модулей, которые объединяют в себе последовательно соединенные полупроводниковые фотоэлементы. Чтобы понять принципы функционирования такой батареи, необходимо разобраться в работе этого конечного звена в устройстве гелиопанели, созданного на базе полупроводников.

Виды кристаллов фотоэлементов

Вариантов ФЭП из разных химических элементов существует огромное количество. Однако большая их часть – это разработки на начальных стадиях. В промышленных масштабах сейчас выпускаются пока что только панели из фотоэлементов на основе кремния.

Кремниевые полупроводники используются при изготовлении солнечных батарей из-за своей дешевизны, особо высоким КПД они похвастаться не могут

Обычный фотоэлемент в гелиопанели – это тонкая пластина из двух слоев кремния, каждый из которых имеет свои физические свойства. Это классический полупроводниковый p-n-переход с электронно-дырочными парами.

При попадании на ФЭП фотонов между этими слоями полупроводника из-за неоднородности кристалла образуется вентильная фото-ЭДС, в результате чего возникает разность потенциалов и ток электронов.

Кремниевые пластины фотоэлементов различаются по технологии изготовления на:

  1. Монокристаллические.
  2. Поликристаллические.

Первые имеют более высокий КПД, но и себестоимость их производства выше, нежели у вторых. Внешне один вариант от другого на солнечной панели можно различить по форме.

У монокристаллических ФЭП однородная структура, они выполняются в виде квадратов со срезанными углами. В отличие от них поликристаллические элементы имеют строго квадратную форму.

Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого.

Но производительность в плане выработки электроэнергии из солнечных лучей у них редко превышает 15%. Связано это с “нечистотой” получаемых кремниевых пластин и внутренней их структурой. Здесь чем чище p-слой кремния, тем более высокий выходит КПД у ФЭП из него.

Чистота монокристаллов в этом отношении гораздо выше, нежели у поликристаллических аналогов. Их делают не из расплавленного, а из искусственно выращенного цельного кристалла кремния. Коэффициент фотоэлектрического преобразования у таких ФЭП уже достигает 20-22%.

В общий модуль отдельные фотоэлементы собираются на алюминиевой раме, а для защиты их сверху закрывают прочным стеклом, которое нисколько не препятствует солнечным лучам

Обращенный к солнцу верхний слой пластинки-фотоэлемента делается из того же кремния, но уже с добавлением фосфора. Именно последний будет источником избыточных электронов в системе p-n-перехода.

Принцип работы солнечной панели

При падении солнечных лучей на фотоэлемент в нем генерируются неравновесные электронно-дырочные пары. Избыточные электроны и «дырки» частично переносятся через p-n-переход из одного слоя полупроводника в другой.

В итоге во внешней цепи появляется напряжение. При этом на контакте p-слоя формируется положительный полюс источника тока, а на n-слоя – отрицательный.

Разность потенциалов (напряжение) между контактами фотоэлемента появляется из-за изменения числа «дырок» и электронов с разных сторон p-n-перехода в результате облучения n-слоя солнечными лучами

Подключенные к внешней нагрузке в виде аккумулятора фотоэлементы образуют с ним замкнутый круг. В результате солнечная панель работает, как своеобразное колесо, по которому вместе белки “бегают” электроны. А аккумуляторная батарея при этом постепенно набирает заряд.

Стандартные кремниевые фотоэлектрические преобразователи являются однопереходными элементами. Переток в них электронов происходит только через один p-n-переход с ограниченной по энергетике фотонов зоной этого перехода.

То есть каждый такой фотоэлемент способен генерировать электроэнергию только от узкого спектра солнечного излучения. Вся остальная энергия пропадает впустую. Поэтому-то и эффективность у ФЭП так низка.

Чтобы повысить КПД солнечных батарей, кремниевые полупроводниковые элементы для них в последнее время стали делать многопереходными (каскадными). В новых ФЭП переходов уже несколько. Причем каждый из них в этом каскаде рассчитан на свой спектр солнечных лучей.

Суммарная эффективность преобразования фотонов в электроток у таких фотоэлементов в итоге возрастает. Но и цена их значительно выше. Здесь либо простота изготовления с невысокой себестоимостью и низким КПД, либо более высокая отдача вкупе с высокой стоимостью.

Солнечная батарея может работать как летом, так и зимой (ей нужен свет, а не тепло) – чем меньше облачность и ярче светит солнце, тем больше гелиопанель сгенерирует электрического тока

При работе фотоэлемент и вся батарея постепенно греется. Вся та энергия, что не пошла на генерацию электротока, трансформируется в тепло. Часто температура на поверхности гелиопанели поднимается до 50–55 0 С. Но чем она выше, тем менее эффективно работает фотогальванический элемент.

В итоге одна и та же модель солнечной батареи в жару генерирует тока меньше, нежели в мороз. Максимум КПД фотоэлементы показывают в ясный зимний день. Тут сказываются два фактора – много солнца и естественное охлаждение.

При этом если на панель будет падать снег, то электроэнергию она генерировать все равно продолжит. Более того, снежинки даже не успеют на ней особо полежать, растаяв от тепла нагретых фотоэлементов.

Эффективность батарей гелиосистемы

Один фотоэлемент даже в полдень при ясной погоде выдает совсем немного электроэнергии, достаточной разве что для работы светодиодного фонарика.

Чтобы повысить выходную мощность, несколько ФЭП объединяют по параллельной схеме для увеличения постоянного напряжения и по последовательной для повышения силы тока.

Эффективность солнечных панелей зависит от:

  • температуры воздуха и самой батареи;
  • правильности подбора сопротивления нагрузки;
  • угла падения солнечных лучей;
  • наличия/отсутствия антибликового покрытия;
  • мощности светового потока.

Чем ниже температура на улице, тем эффективней работают фотоэлементы и гелиобатарея в целом. Здесь все просто. А вот с расчетом нагрузки ситуация сложнее. Ее следует подбирать исходя из выдаваемого панелью тока. Но его величина меняется в зависимости от погодных факторов.

Гелиопанели выпускаются с расчетом на выходное напряжение, кратное 12 В – если на аккумулятор надо подать 24 В, то две панели к нему придется подсоединить параллельно

Постоянно отслеживать параметры солнечной батареи и вручную корректировать ее работу проблематично. Для этого лучше воспользоваться контроллером управления, который в автоматическом режиме сам подстраивает настройки гелиопанели, чтобы добиться от нее максимальной производительности и оптимальных режимов работы.

Идеальный угол падения лучей солнца на гелиобатарею – прямой. Однако при отклонении в пределах 30-ти градусов от перпендикуляра эффективность панели падает всего в районе 5%. Но при дальнейшем увеличении этого угла все большая доля солнечного излучения будет отражаться, уменьшая тем самым КПД ФЭП.

Если от батареи требуется, чтобы она максимум энергии выдавала летом, то ее следует сориентировать перпендикулярно к среднему положению Солнца, которое оно занимает в дни равноденствия по весне и осени.

Для московского региона – это приблизительно 40–45 градусов к горизонту. Если максимум нужен зимой, то панель надо ставить в более вертикальном положении.

И еще один момент – пыль и грязь сильно снижают производительность фотоэлементов. Фотоны сквозь такую “грязную” преграду просто не доходят до них, а значит и преобразовывать в электроэнергию нечего. Панели необходимо регулярно мыть либо ставить так, чтобы пыль смывалась дождем самостоятельно.

Некоторые солнечные батареи имеют встроенные линзы для концентрирования излучения на ФЭП. При ясной погоде это приводит к повышению КПД. Однако при сильной облачности эти линзы приносят только вред.

Если обычная панель в такой ситуации будет продолжать генерировать ток пусть и в меньших объемах, то линзовая модель работать прекратит практически полностью.

Панели устанавливать надо так, чтобы на пути солнечных лучей не оказалось деревьев, зданий и иных преград.

Схема электропитания дома от солнца

Система солнечного электроснабжения включает:

  1. Гелиопанели.
  2. Контроллер.
  3. Аккумуляторы.

Контроллер в этой схеме защищает как солнечные батареи, так и АКБ. С одной стороны он препятствует протеканию обратных токов по ночам и в пасмурную погоду, а с другой – защищает аккумуляторы от чрезмерного заряда/разряда.

Аккумуляторные батареи для гелиопанелей следует подбирать одинаковые по возрасту и емкости, иначе зарядка/разрядка будут происходить неравномерно, что приведет к резкому снижению срока их службы

Инвертор нужен для трансформации постоянного тока на 12, 24 либо 48 Вольта в переменный 220-вольтовый. Автомобильные аккумуляторы применять в такой схеме не рекомендуется из-за их неспособности выдерживать частые перезарядки. Лучше всего потратиться и приобрести специальные гелиевые AGM либо заливные OPzS АКБ.

Выводы и полезное видео по теме

Принципы работы и схемы подключения солнечных батарей не слишком сложны для понимания. А с собранными нами ниже видеоматериалами разобраться во всех тонкостях функционирования и установки гелиопанелей будет еще проще.

Доступно и понятно, как работает фотоэлектрическая солнечная батарея, во всех подробностях:

Как устроены солнечные батареи:

Сборка солнечной панели из фотоэлементов своими руками:

Каждый элемент в системе солнечного электроснабжения коттеджа должен быть подобран грамотно. Неизбежные потери мощности происходят на аккумуляторах, трансформаторах и контроллере. И их обязательно надо сократить до минимума, иначе и так достаточно низкая эффективность гелиопанелей окажется сведена вообще к нулю.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows