Анализ и моделирование информационных процессов. Моделирование информационных процессов. Направление «Информационные технологии»

Анализ и моделирование информационных процессов. Моделирование информационных процессов. Направление «Информационные технологии»

30.03.2019

Модель – одна из основных категорий теории познания. В широком смысле модель – любой образ (изображение, карта, описание, схема, чертёж, график, план и другое) какого-либо объекта, процесса или явления, используемый в качестве их “заместителя” или “представителя”.

Модель (лат. “modulus” – мера) – это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств последнего; упрощённое представление системы для её анализа и предсказания, для получения качественных и количественных результатов, необходимых для принятия правильного управленческого решения.

Моделирование – это представление объекта моделью для получения информации о нём путём проведения экспериментов с его моделью.

Моделирование облегчает изучение объекта с целью его создания, дальнейшего преобразования и развития. Существует два основных вида моделирования: аналитическое и имитационное.

Для управления бизнес процессами (англ. “Business Process Management”, BPM) в современных системах используют методы имитационного моделирования.

На идее модели по существу базируется любой метод научного исследования , как теоретический (при котором используются различного рода знаковые, абстрактные модели), так и экспериментальный , использующий предметные модели.

Модели предметной области – это совокупность описаний, обеспечивающих взаимопонимание между пользователями: специалистами организации и разработчиками.

Модели всегда проще реальных объектов, но они позволяют выделить главное, не отвлекаясь на детали. Различают математические, физические, ситуационные, электрические, информационные модели.

Так, например, математические модели используют для описания объектов и процессов живой и неживой природы и технологии, в том числе – в физике, биологии, экономике.

Наиболее очевидными с точки зрения применения методов моделирования, несомненно, являются процессы управления, где на основе полученной информации необходимо принимать соответствующие решения. Обычно моделирование используется для исследования существующей системы, когда реальный эксперимент проводить нецелесообразно из-за значительных финансовых и трудовых затрат, а также при необходимости проведения анализа проектируемой системы, т.е. которая ещё физически не существует в данной организации. Для человека информационная модель является источником информации, на основе которой он формирует образ реальной обстановки.

Однозначного понятия системы нет. В общем виде под системой понимают совокупность взаимосвязанных элементов, образующих определённую целостность, единство.

Процесс построения модели является творческой процедурой, трудно поддающейся формализации. Модельные представления являются абстрактными образами элементов системы (объектов, технических средств, программного обеспечения и др.). Вместе они позволяют получить достаточно полное представление о создаваемой системе.

Количество групп элементов информационной модели определяется степенью детализации описания состояний и условий функционирования объекта управления. Как правило, элемент информационной модели связан с каким-либо параметром объекта управления.

Модель данных является способом отображения самих данных и их связей. Выделяют модели иерархических, сетевых и реляционных данных, как правило, входящих в состав систем управления базами данных (СУБД). В СУБД реализуются модели процессов накопления и применения информации и знаний.

В качестве инструментальных многофункциональных информационных моделей применяют, например, модели VIEW (англ. “Virtual Instruments Engineering Workbench”).

Для формирования модели используются:

· структурная схема объекта, подлежащего автоматизации;

· структурно-функциональная схема автоматизируемого объекта;

· алгоритмы функционирования системы;

· схема расположения технических средств на объекте;

· схема связи и др.

Главная цель проведения моделирования любой системы – изыскание вариантов решений, которые позволяют улучшить основные показатели её деятельности.

Необходимым элементом моделирования является анализ потоков данных. Спрос на средства аналитической обработки данных постоянно растёт. При этом пользователи заинтересованы в получении средств, позволяющих автоматически искать не только заданные данные, но неочевидные правила и неизвестные закономерности. Для реализации подобных систем используют методы интеллектуального анализа данных , позволяющие на основе накопленной информации принимать нетривиальные решения и генерировать качественно новые знания, способствующие повышению эффективности решений и деятельности людей, предприятий, организаций и т.п. Логика интеллектуально решаемых аналитических задач заключается в том, что первичные документы, отчёты и сводные таблицы анализируются с целью выявления полученных показателей. Исследование произошедших событий и полученных результатов (Что произошло?) происходит с целью ответа на вопрос “Почему?”. В результате проведённого анализа формируются прогностические (прогнозные) модели, в которых даются варианты развития ситуации.

Сбор, обработка и анализ реальных данных функционирования системы или объекта моделирования даёт требуемые количественные оценки для разработки вариантов программно-технического обеспечения автоматизированных систем.

При моделировании сложных объектов нельзя разобщать решаемые задачи. В противном случае получатся значительные затраты ресурсов и потери при реализации модели на конкретном объекте. Использование моделирования применительно к таким объектам требует одновременного исследования их взаимосвязей с внешней средой и другими элементами метасистемы.

Под сложными системами понимаются системы, обладающие большим числом элементов, свойства которых не могут быть предсказаны, опираясь на знания свойств отдельных частей системы и способы их соединения.

Конец работы -

Эта тема принадлежит разделу:

Информация и информатика

Информационные технологии.. Результаты освоения темы.. Изучая данную тему вы будете знать основные термины связанные с определением информации и информационных..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Информация, данные, сведения, сообщения и знания
Как только на Земле появились люди, они стали собирать, осмысливать, обрабатывать, хранить и передавать разнообразную информацию. Человечество (социум) постоянно имеет дело с информацией.

Свойства информации
Информация обладает различными свойствами. Для их систематизации используют разные варианты её деления (классификации). Классификация - деление объектов на классы

Информатика
Многовековое общение людей с информацией, изучение её видов, свойств и возможностей применения привело к созданию науки – информатики. Термином “Информатика” (франц. “informatique”

Информационные технологии
Способности и возможности людей обрабатывать информацию ограничены, особенно в условиях всё возрастающих массивов (объёмов) информации. Поэтому появилась необходимость использовать способы хранения

Эволюция информационных технологий
Хотя информационные технологии существовали с момента формирования умственной и физической деятельности человека, эволюцию информационных технологий принято рассматривать с момента изобретения в Ге

Платформа информационных технологий
Данный термин не имеет однозначного определения. Платформой называют функциональный блок, интерфейс и сервис которого определяется некоторым стандартом. К платформе (англ. “Platform”) или ба

Роль информационных технологий в развитии экономики и общества
Развитие экономики тесно связано с развитием любого общества потому, что невозможно рассматривать какие-либо экономические задачи и проблемы вне общества. В любом обществе одновременно создаётся и

Жизненный цикл информации. Информационная сфера
Информация может существовать кратковременно (например, в памяти калькулятора в процессе проводимых на нём вычислений), в течение некоторого времени (например, при подготовке какой-либо справки) ил

Негативные последствия внедрения информационных технологий
Наравне с “цифровым разрывом” и “виртуальным барьером”, изменения информационных технологий выполняемых работ часто могут оказывать негативное воздействие на людей (информационный шум и др.), участ

Виды информационных технологий
Любая информационная технология обычно нужна для того, чтобы пользователи могли получить нужную им информацию на определённом носителе данных. При рассмотрении информационных технологий вы

Технология поиска информации
Поиск – важный информационный процесс. Возможности организации и проведения поиска зависят от наличия информации, её доступности, а также от средств и навыков организации поиска. Цель любого поиска

Виды информационных технологий, используемых в различных предметных областях
Технология как некоторый процесс повсеместно присутствует в нашей жизни. Современные информационные технологии применяются практически в любых сферах, средах и областях жизнедеятельности людей. Обо

Информационные технологии управления
В большинстве случаев информационные технологии тем или иным образом связаны с обеспечением управления и принятием управленческих решений в различных предметных областях.

Информационные технологии экспертных систем
Решение специальных задач требует специальных знаний. Технологии, включающие экспертные информационные системы, позволяют специалистам оперативно получать консультации экспертов по проблемам, котор

Реализация информационных технологий в различных предметных областях
Первой исторически сложившейся информационной технологией, использовавшей ЭВМ, была осуществляемая в вычислительных центрах централизованная обработка информации. Для её реализации создавались круп

Электронные документы
Электронный документ - документ, представленный в электронной форме (оцифрованный или подготовленный на компьютере), имеющий электронную подпись, идентифицирующую (подтвер

Электронные книги
Электронная книга - это вид книги, хранящийся в электронном форме на любом машиночитаемом электронном носителе и включающий специальные средства навигации в ней.

Электронные библиотеки
Электронная библиотека (от англ. "digital library" - "цифровая библиотека") - вид, как правило, общедоступной автоматизированной информационной системы

Электронный офис
Практически в любых организациях, предприятиях, учреждениях, ведомствах, фирмах, учебных заведениях и т.п. функционируют различные информационные потоки. Если деятельность таких организаций в значи

Системный подход к решению функциональных задач
Наиболее эффективно моделирование осуществляется при использовании общих принципов системного подхода,лежащего в основе теории систем. Он возник в процессе изучения различных объек

Жизненный цикл информационных продуктов и услуг
Концепция жизненного цикла продукта или услуги подразумевает, что они ограниченны, по крайней мере, во времени. Жизненный цикл продукта определяется как модель движени

Жизненный цикл информационных технологий
Жизненный цикл информационных технологий является моделью их создания и использования, отражающей различные состояния информационных технологий, начиная с момента возникно

Результаты освоения темы
Изучая данную тему, вы будете знать: основные термины в данной области; что такое безопасность и защита и как они осуществляются; какие бывают несанкционированные д

Общие положения защиты информации
Практически вся современная информация готовится или может быть достаточно легко преобразована в машиночитаемую форму. Характерной особенностью такой информации является возможность посторонних лиц

Основные виды и причины несанкционированных воздействий на информацию, здания, помещения и людей
Несанкционированные действия наинформацию, здания, помещения и людей могут быть вызваны различными причинами и осуществляться с помощью различных методов воздействия. Подобные действия могут быть о

Воздействия на информацию, здания, помещения, личную безопасность пользователя и обслуживающий персонал
Типичными причинами нарушения безопасности на объекте являются: 1) ошибки индивидов или неточные их действия; 2) неисправность и (или) отказ используемого оборудования;

Основные средства и методы защиты информации
Средства и методы защиты информации обычно делят на две большие группы: организационные и технические. Подорганизационными подразумеваются законодательные, административные

Криптографические методы защиты информации
Криптография - это тайнопись, система изменения информации с целью её защиты от несанкционированных воздействий, а также обеспечения достоверности передаваемых данных.

Биометрические методы защиты
Наиболее чётко обеспечивают защиту средства идентификации личности, использующие биометрические системы. Понятие “биометрия” определяет раздел биологии, занимающийся количественным

Сетевые методы защиты
Для защиты информации в информационных компьютерных сетях используют специальные программные, технические и программно-технические средства. С целью защиты сетей и контроля доступа в них используют

Мероприятия по обеспечению сохранности и защиты
Комплексно мероприятия по обеспечению сохранности и защиты информации, объектов и людей включают организационные, физические, социально-психологические мероприятия и инженерно-технические средства

Применение информационных технологий
Выделим наиболее важные направления применения информационных технологий: 1. Ориентация на активное и эффективное использование информационных ресурсов общества, являющихся важным с

Обработки текстовой информации
Текстовая информация может возникать из различных источников и иметь различную степень сложности по форме представления. В зависимости от формы представления для обработки текстовых сообщений испол

Обработка табличных данных
Пользователям в процессе работы часто приходится иметь дело с табличными данными при создании и ведении бухгалтерских книг, банковских счетов, смет, ведомостей, при составлении планов и распределен

Обработка экономической и статистической информации
Экономическая информация используется главным образом в сфере материального производства. Она служит инструментом управления производством и по функциям управления подразделяется на: на прогнозную,

Средства оргтехники и полиграфии для копирования и тиражирования информации
Разновидностью информационных технологий является копирование и тиражирование информации, включающее изготовление и обработку, копирование и тиражное размножение информации. С древних врем

Методы копирования и тиражирования информации
Широко применяющиеся средства КМТ используют методы репрографии и оперативной полиграфии, состав которых представлен на Рис. 7.1. Метод репрографии предназначен для непосредственног

Трафаретная, офсетная и гектографическая печать
В полиграфии (в т.ч. оперативной) применяют оборудование и методы, обеспечивающие высокое качество печати и значительные тиражи выпускаемых документов за счёт применения печатных форм – трафаретов.

Копировально-множительная техника
По принципу действия КМТ делят на: светокопировальные, электрографические, термографические; использующие методы трафаретной и офсетной печати с мокрым, полусухим и сухим способами формирова

Оргтехника
Средства оргтехники, применяемые на конкретном рабочем месте, называют “малой оргтехникой”. Кроме так называемой “офисной мелочи” (карандаши, ручки, ластики, дыроколы, стиплеры, клей, скрепк

Средства обработки документов
Средства обработки документов состоят из: фальцевальных, биговальных и бумагорезательных машин (фольдеры); листоподборочных и сортировальных машин и устройств;

Оборудование для резки бумаги
Бумагорезательные аппараты (резаки) используют на любом этапе работы, например, резки рулонной или иной бумаги. С их помощью режут отпечатанные листы перед брошюровкой или тираж, если на каж

Результаты освоения темы
Изучая данную тему, вы будете знать: что такое компьютерная программа и для чего нужны компьютерные программы; какое бывает программное обеспечение компьютерных информационн

Программное обеспечение информационных технологий
Совокупность программ, используемых при работе на компьютере, составляет его программное обеспечение. Программное обеспечение (ПО) –

Открытые системы
Вычислительная техника развивалась стремительно. В результате было создано множество устройств и программ к ним. Такое обилие различных программно-аппаратных средств и систем привело к несовместимо

Распределенные базы данных
Распределённые базы данных (англ. "Distributed DataBase", DDB) представляют определённым образом связанные между собой БД, рассредоточенные на какой-либо тер

Результаты освоения темы
Изучая данную тему, вы будете знать: кто такие пользователи (потребители) информационных технологий и ресурсов; для чего нужен пользовательский интерфейс; как оцени

Пользовательский интерфейс
Взаимодействуя с устройствами вычислительной техники, пользователи как бы разговаривают с ними (ведут диалог). Реакция ЭВМ на запросы и команды пользователей носит формальный характер. Поэтому прог

Результаты освоения темы
Изучая данную тему, вы будете знать: как графическая информация отображается на экране дисплея компьютера и что такое графический пользовательский интерфейс; какие ис

Результаты освоения темы
Изучая данную тему, вы будете знать: что такое гипертекст и гипертекстовые информационные технологии; как и какие языки используются для гипертекстовой разметки документов;

Технологии мультимедиа
Мультимедиа (англ. "multimedia" от лат. "multum" - много и "media", "medium" - средоточие; средства) - это элек

Проекционное оборудование. Мультимедиапроекторы
В общем случае

Средства информирования
Основными средствами информирования являются различные автоответчики, стенды и табло. Простейшие автоответчикипредставляют аудиовоспроизводящие устройства (магнитофоны-приставки), подключённ

Результаты освоения темы
Изучая данную тему, вы будете знать: об автоматизированных системах и автоматизированных информационных системах, их видах; об основных принципах автоматизации информационны

Результаты освоения темы
Изучая данную тему, вы будете знать: что в себя включают сетевые информационные технологии; какие бывают виды сетевых информационных технологий; как коллективно раб

Обычно их делят по территориальному признаку на региональные и глобальные сети
Региональные сети обычно охватывают административную территорию города, области и т.п., а также производственные и иные объединения, расположенные в нескольких районах

Правила работы с пакетами данных называются протоколом TCP
TCP-протокол (Transmission Control Protocol) служит для организации надёжной полнодуплексной связи между конечными пунктами (узлами) обмена информацией в Интернете. Он преобразует сообщения

Web-технологии
“Web” (в дальнейшем – веб) построен на основе применения гипертекста. С его помощью создаются веб-страницы, которые размещаются на веб-сайтах. Таким образом, веб-технологии в значительной м


Электронная доска объявлений (англ. “Bulletin Board System”, BBS). Обычно так называют небольшие системы с доступом по телефонным каналам связи, предназначенные для местных пользователе

Результаты освоения темы
Изучая данную тему, вы будете знать: для чего нужна интеграция информационных технологий; как она осуществляется и что является её базой; о корпоративных информацио

Результаты освоения темы
Изучая данную тему, вы будете знать: что такое геоинформационная система и как она строится; какие существуют технологии распространения информации; о методах адрес

Развитие информационных технологий и средств информатизации способно кардинальным образом повлиять на интенсивность и качество обучения в любом учебном заведении. Компьютеры и связанные с ними программные средства не только расширяют возможную экспериментально-практическую базу для организации обучения самым разным дисциплинам, но и дополняют содержание образования за счет ознакомления обучаемых с особенностями функционирования, возможностями и направлениями практического использования средств информатизации в областях будущей профессиональной деятельности школьников и студентов.

Одной из возможных информационных технологий вносящих существенный вклад в информатизацию образования является технология информационного моделирования. Человек издавна использует моделирование для исследования объектов, процессов и явлений, непосредственное исследование которых затруднено, нецелесообразно или даже опасно. В качестве примера достаточно привести изучение работы синхрофазотрона или исследование сейсмоустойчивости зданий и сооружений.

Построение и исследование моделей необходимо для:

· определения и улучшения характеристик реальных объектов и процессов;

· понимания сути явлений и выработки умения приспосабливаться или управлять ими;

· конструирования новых или модернизация старых объектов;

· принятия обоснованных и продуманных решений;

· предвидения последствий своей деятельности;

· получение на основе модели новой информации об объекте;

· интеграция и систематизация информации об объекте;

· сохранение и передача информации об объекте моделирования.

В развитии теории и практики моделирования задействованы научные исследования из различных областей философии, философской и математической логики, психологии, педагогики, математики, семиотики и информатики. С помощью этих наук строятся и исследуются модели, используемые человеком для представления знаний и решения задач из разных предметных областей, специальные методы представления информации для построения электронных компьютерных средств, задействованных при автоматизации решения задач информационного характера.

Моделирование представляет собой метод познания окружающего мира, информационных процессов, протекающих в природе и обществе. В процессе моделирования в определенной предметной области человеческого знания строится модель, которая может рассматриваться как эмпирический или абстрактный образ предмета изучения. Более того, из психологии следует, что получение человеком знаний о предмете изучения предполагает формирование в сознании человека различных моделей этого предмета. Моделирование предполагает построение и изучение моделей реально существующих и идеальных предметов и явлений. На сегодняшний день моделирование приобрело общенаучный характер и применяется в исследованиях живой и неживой природы, в науках о человеке и обществе, в формировании подходов к построению новых педагогических систем и технологий информатизации образования.


Может возникнуть вопрос, почему бы не исследовать сам оригинал? Зачем создавать его модель? Но ведь в то время, когда происходит исследование объект, процесс или явление могут уже не существовать.

Для моделирования время не помеха. На основании известных фактов методом гипотез и аналогий, применяя средства информатизации, можно построить модель событий или природных катаклизмов далекого прошлого и использовать их в обучении истории или биологии. Так, например, родились возможно использование компьютерных информационных моделей демонстрирующих ход строительства пирамид в древнем Египте или процесс возникновения жизни на Земле. С помощью моделирования можно заглянуть в будущее и продемонстрировать возможные глобального потепления.

Моделируемый объект может быть очень большим (как, например, модель Земли), либо очень малым (модель движения электронов в атоме), либо абстрактным (моделирование процессов, происходящих в обществе).

Оригинал может иметь много свойств и взаимосвязей. Чтобы глубоко изучить какое-то одно конкретное свойство, иногда полезно отказаться от менее существенных свойств и не учитывать их. Примером может служить компьютерная модель траектории полета самолета, в рамках которой не учитываются тип самолета, его форма или цвет.

Моделирование оправданно и в том случае, если исследуемый процесс протекает слишком быстро (примером может служить модель функционирования двигателя внутреннего сгорания) или очень медленно (в качестве примера можно привести модель развития растения).

Информационная модель – это приближенное описание и возможная демонстрация какого либо объекта, процесса или явления, значимые с точки зрения целей изучения и реализованные с помощью средств информационных технологий

В ходе информатизации образования особое внимание должно быть уделено внедрению информационных моделей во все сферы образовательной деятельности. Использование компьютеров, информационных технологий и информационных моделей в сфере образования становится неразрывным. Естественно ввести понятие информационного моделирования, отражающего специфику использования информационных моделей.

Информационное моделирование – это исследование объектов, явлений или процессов на их информационных моделях

В настоящее время существует уже достаточно сформированная теория построения информационных моделей, основные положения которой представляют интерес с точки зрения исследования процессов информатизации образования. Из теории информационного моделирования следует, что информационная модель выступает как совокупность взаимосвязанных описаний понятий о предмете изучения на основе применения знаковых систем. В информационной модели отражаются качественные и количественные свойства объектов, составляющих предмет изучения, а также логические, функциональные, пространственные и временные отношения между ними.

Адекватность информационной модели фактическому состоянию моделируемой области или объекта может быть повышена за счет учета в структуре описания модели динамических свойств наряду со статическими свойствами оригинала. Кроме этого, в реализации адекватного описания объекта исследования на основе выбранной модели важную роль играет свойство ее непротиворечивости. Для выполнения этого свойства должна отсутствовать возможность существования избыточности в ее описании.

Технологии информационного моделирования могут быть различными. Так, например, в ходе изучения химии возможно использование компьютерных программ, реализующих информационные модели протекания химических реакций. При этом часть моделей может функционировать на уровне формул, не демонстрируя учащимся реальные химические процессы, которые происходили бы, если бы на занятии проводились химические опыты с настоящими веществами. Другой класс информационных моделей, используя возможности современных средств информатизации и, в частности, технологий мультимедиа и виртуальной реальности, позволяет наглядно продемонстрировать обучаемым все особенности реальных химических опытов. Важно отметить, что оба вида информационных моделей в равной степени могут допускать участие педагогов и обучаемых в выборе типов и особенностей исследуемых реакций.

Благодаря информационным моделям, реализуемым с помощью компьютеров, на занятиях по математике становится возможным наглядное изучение геометрических тел и построение их сечений согласно параметров, оперативно изменяемым педагогом или обучаемым. Эти же технологии, примененные на занятиях по физике, дают возможность исследовать оптические свойства линз, а при изучении истории – создать компьютерную «ленту времени».

В ходе информатизации образования следует акцентировать внимание на создании обобщенных мультимедийных информационных моделей целых классов технических объектов, на создании всевозможных имитационных лабораторных установок, тренажеров и виртуальных моделей.

Технологии информационного моделирования позволяют расширить границы экспериментальных и теоретических исследований, дополнить физический эксперимент вычислительным экспериментом. В одних случаях моделируются объекты исследования, в других – измерительные установки. Такие технологии и соответствующие средства информатизации позволяют сократить затраты на приобретение дорогостоящего лабораторного оборудования, снижается уровень безопасности работ в учебных лабораториях, появляется возможность исследования объектов, процессов или явлений, непосредственное изучение которых по тем или иным причинам невозможно в стенах учебного заведения.

Информационные модели, как правило, не являются универсальными. Каждая из них рассчитана на моделирование достаточно узкого круга объектов, явлений или процессов. Основанные на технологии математического моделирования, информационные модели могут быть использованы не только для демонстрации трудно воспроизводимых в учебной обстановке явлений, но и для интерактивного выяснения степени влияния тех или иных параметров на моделируемую ситуацию. Данное свойство позволяет использовать информационные модели в качестве имитаторов лабораторных установок, а также для отработки навыков управления моделируемыми процессами, как это происходит в случае с обучением пилотированию самолетов или космических кораблей.

Современные средства информатизации позволяют не только работать с готовыми информационными моделями объектов, явлений или процессов, но и производить конструирование таких моделей из отдельных элементов и модулей. В качестве примера можно привести возможное объединение отдельных информационных моделей функционирования устройств, входящих в состав компьютера в единую информационную модель работы компьютера. Использование такой модели позволило бы повысить эффективность обучения информатике.

Важно понимать, что создание технологий и средств информационного моделирования для системы образования должно проводиться с учетом того, что автоматизация учебных работ профессионального характера создает предпосылки для глубокого познания свойств изучаемых объектов и процессов, проведения параметрических исследований и оптимизации. Вместе с тем, осмысленное применение систем моделирования и автоматизации требует достаточно высокой профессиональной квалификации, которой учащиеся, как правило, еще не обладают.

Моделирование информационных процессов

Кафедра систем телекоммуникаций, факультет физико-математических и естественных наук

Направление «Информационные технологии»

Трудоемкость – 2 кредита, 2 часа лекций в неделю

Цель курса

Целью курса является изучение фундаментальных основ теории моделирования информационных систем и протекающих в них процессов, методики разработки компьютерных моделей, методов и средств осуществления имитационного моделирования и обработки результатов вычислительных экспериментов, а также формирование представления о работе с современными инструментальными системами моделирования.

В результате изучения курса решаются следующие задачи:

· освоение теоретических основ математического и компьютерного моделирования информационно-вычислительных систем;

· умение использовать основные классы моделей и методы моделирования, принципы построения моделей информационных процессов, методы формализации, алгоритмизации и реализации моделей с помощью современных компьютерных средств;

· представление о проведении вычислительных экспериментов с использованием техники имитационного моделирования, уметь планировать проведение экспериментов и обрабатывать их результаты;

· иметь представление о построения моделей систем различного класса с использованием инструментальных средств типа Simulink, GPSS и др.

Лекции

Тема 1. Основные понятия

Моделирование как метод научного познания, роль и место вычислительного эксперимента в исследовательской деятельности . Классификация моделей: понятия математической и компьютерной модели, имитационное моделирование. Моделирование непрерывных, дискретных и гибридных систем. Принципы системного подхода в моделировании. Стадии разработки моделей. Понятия компонентного и объектно ориентированного моделирования. Современные программные инструментальные средства моделирования систем. Перспективы развития теории моделирования и ее приложений.

Тема 2. Общие принципы построения моделей информационных процессов и систем.

Использование моделирования при исследовании и проектировании информационных систем. Основные подходы к математическому моделированию. Непрерывные и дискретные, детерминированные и стохастические модели. Сетевые модели и синхронизация событий. Сети Петри. Понятие нейронной сети. Общая последовательность разработки и реализации компьютерных моделей информационных систем. Алгоритмизация моделей. Понятие о статистическом имитационном моделировании. Применение основных предельных теорем теории вероятностей в статистическом моделировании. Псевдослучайные числа и процедуры их машинной реализации.

Тема 3. Объектно-ориентированное моделирование. Язык UML.

Объектно-ориентированное моделирование. Язык UML. ориентированном моделировании, типы данных и пакеты. Унифицированный язык моделирования UML. Использование объектно-ориентированного подхода и основные понятия и компоненты языка. Диаграммы классов. Диаграммы вариантов использования. Диаграммы взаимодействия. Диаграммы состояния и деятельности.

Тема 4. Моделирование динамических и гибридных систем

Понятие динамической и событийно-управляемой системы, гибридные системы. Принципы компонентного компьютерного моделирования. Иерархические системы. Блоки и связи между ними. Ориентированные и неориентированные блоки и связи. Неявные взаимодействия компонентов. Реализация компонентного моделирования в подсистемах Simulink и Stateflow математического пакета Matlab. Основные библиотечные блоки. Последовательность построения и отладки Simulink-моделей. Понятие карты состояния Харела. Диаграммы Stateflow Средства анализа результатов моделирования.

Тема 5. Моделирование систем массового обслуживания и функциональных процессов

Дискретно-событийный подход к моделированию. Проблемно-ориентированный язык и программная среда GPSS/PC. Предметная область GPSS – системы массового обслуживания (системы с очередями). Общие принципы моделирования информационных и вычислительных процессов в GPSS/PC. Базовые сведения о системе: объекты, переменные и выражения, функции. Модель системы: модельное время и статистика. Внутренняя организация: списки и общая внутренняя последовательность событий. Элементы языка моделирования GPSS/PC. Среда моделирования GPSS/PC: операторы, команды управления, интерактивное взаимодействие. Принципы автоматизированной разработки информационных систем с помощью инструментов анализа, проектирования и генерации кодов BPwin и ERwin. Основы методологии построения функциональных моделей и моделей данных, автоматизация написания кодов серверной и клиентской части приложения. Интеграция функциональной модели и модели данных, технология связывания объектной модели в UML и модели данных Erwin. Техника создания отчётов по моделям процессов и данных с помощью специализированного генератора отчетов RPTwin.

Тема 6. Планирование экспериментов с моделями систем

Задача планирования экспериментов с использованием компьютерных моделей. Основные понятия теории планирования экспериментов. Факторное пространство, классификация факторов и типы планов экспериментов. Построение матриц планирования. Стратегические планы проведения вычислительных экспериментов с компьютерными моделями. Тактические планы проведения имитационного моделирования: задание начальных условий и параметров и оценка их влияния на достижение установившегося результата. Вопросы обеспечения точности и достоверности результатов имитационного моделирования.

Тема 7. Обработка и анализ результатов моделирования

Особенности статистической обработки результатов вычислительных экспериментов использованием компьютерных моделей. Постановки задач обработки результатов имитационного моделирования. Статистические методы обработки результатов моделирования систем. Типовые критерии согласия при обработке результатов моделирования. Анализ и интерпретация результатов машинного моделирования: корреляционный и дисперсионный анализ .

Литература:

Обязательная

1. Советов Б. Я., Яковлев С. А. Моделирование систем. Учебник для ВУЗов. М.:Высшая школа, 1999. 319 с.

2. Бусленко Н. П. Моделирование сложных систем. М.: Наука, 1978. 399 с.

3. Питерсон Дж. Теория сетей Петри и моделирование систем. М.: Мир, 1984. 264 с.

4. Д. С. Кулябов, А. В. Королькова. Введение в формальные методы описания бизнес-процессов. - М.: РУДН, 2008.

5. Бычков С. П., Храмов А. А. Разработка моделей в системе моделирования GPSS. Учебное пособие. М.: МИФИ, 1997. 32с.

6. Кравченко П. П., Хусаинов Н. Ш. Имитационное моделирование вычислительных систем средствами GPSS/PC. Таганрог: ТРТУ, 2000 г. 116 с.

7. Бенькович Е. С., Колесов Ю. Б., Сениченков Ю. Б. Практическое моделирование динамических систем СПб.: БХВ-Петербург, 2002. 464 с.

Дополнительная

1. Кулябов Д. С., Королькова А. В. Архитектура и принципы построения современных сетей и систем телекоммуникаций. - М. 2008.

2. Семенов Ю. А. Протоколы Internet . - Изд-во "Горячая линия Телеком. - 2005г.

3. Таненбаум Э. Компьютерные сети (4 изд.) // Спб.: Изд-во «Питер», 2003

Программу составили

Королькова Анна Владиславовна

кандидат физико-математических наук,

доцент кафедры систем телекоммуникаций,

факультет физико-математических и естественных наук.

Кулябов Дмитрий Сергеевич,

кандидат физико-математических наук, доцент,

доцент кафедры систем телекоммуникаций,

факультет физико-математических и естественных наук.

Методы и технологии моделирования

Технология – совокупность методов и инструментов для достижения желаемого результата; метод преобразования данного в необходимое; способ производства.

Метод (лат. methodus, от греч. methodos - "путь, следование, способ исследования") - в науке - способ достижения поставленной цели, предполагающий совокупность приемов и средств.

Рассмотрим известные технологии моделирования некоторых предметных областей.

Базы данных

Базы данных представляют связанную совокупность структурированных данных, относящихся к определенному процессу или явлению, в конкретной предметной области. Система управления базами данных представляет собой программный комплекс для создания, организации необходимой обработки, хранения и передачи баз данных. Ядром любой БД является модель представления данных. Модель данных представляет множество структур данных и взаимосвязи между ними. Различают иерархическую, сетевую и реляционнуюмодели данных.

Иерархическая модель представляет связи между объектами (данными) в виде дерева. К основным понятиям иерархической модели относятся:

- узел - набор атрибутов данных, описывающих объект;

- связь - линия, связывающая узлы нижнего уровня с одним узлом вышележащего уровня. При этом узел вышележащего уровня называют предком для соответствующих ему узлов нижнего уровня, в свою очередь, узлы нижнего уровня называют потомками связанного с ними вышележащего узла (например, на рисунке 5.2 узел В1 - предок для узлов С1, С2, а узлы С1, С2 - потомки узла В1);

- уровень - номер слоя узлов, отсчитанный от корня.

Рисунок 5.2 – Иерархическая модель данных

Количество деревьев в БД определяется числом корневых записей. К каждому узлу существует единственный путь от корня.

Сетевая структура имеет те же составляющие, что и иерархическая, но каждый узел может быть связан с любым другим узлом (рисунок 5.3). Сетевой подход к организации данных является расширением иерархического. В иерархических моделях запись-потомок должна иметь только одного предка; в сетевых - потомок может иметь любое число предков.

Рисунок 5.3 – Сетевая модель данных

Обе эти модели не получили широкого распространения из-за сложности реализации графов в виде машинных структур данных, кроме того, в них сложно осуществить операции поиска информации. Набольшее распространение получила третья модель данных - реляционная , она может так же описывать иерархическую и сетевую модель. Реляционная модель ориентирована на организацию данных в виде двумерных таблиц.

Искусственный интеллект

Идеи моделирования человеческого разума известны с древнейших времен. Впервые об этом упоминается в сочинении философа и теолога Раймунда Луллия (ок.1235 - ок.1315) «Великое искусство», который не только высказал идею логической машины для решения разнообразных задач, исходя из всеобщей классификации понятий (XIV в.), но и попытался ее реализовать. Рене Декарт (1596-1650) и Готфрид Вильгельм Лейбниц (1646-1716) независимо друг от друга развивали учение о прирожденной способности ума к познанию и всеобщих и необходимых истин логики и математики, работали над созданием универсального языка классификации всех знаний. Именно на этих идеях базируются теоретические основы создания искусственного интеллекта. Толчком к дальнейшему развитию модели человеческого мышления стало появление в 40-х гг. XX в. ЭВМ. В 1948 г. американский ученый Норберт Винер (1894-1964) сформулировал основные положения новой науки - кибернетики. В 1956 г. в Стенфордском университете (США) на семинаре под названием «Artificial intelligence» (искусственный интеллект), посвященном решению логических задач, признано новое научное направление, связанное с машинным моделированием человеческих интеллектуальных функций и названное искусственный интеллект . Вскоре эта отрасль разделилась на два основных направления: нейрокибернетику и кибернетику «черного ящика».

Нейрокибернетика обратилась к структуре человеческого мозга как единственно мыслящему объекту и занялась его аппаратным моделированием. Физиологи давно выявили нейроны - связанные друг с другом нервные клетки как основу мозга. Нейрокибернетика занимается созданием элементов, аналогичных нейронам, и их объединением в функционирующие системы, эти системы называют нейросетями . В середине 80-х гг. XX в. в Японии был создан первый нейрокомпьютер, моделирующий структуру человеческого мозга. Его основная область применения - распознавание образов .

Кибернетика «черного ящика» использует другие принципы, структура модели не главное, важна ее реакция на заданные входные данные, на выходе модель должна реагировать как человеческий мозг. Ученые этого направления занимаются разработкой алгоритмов решения интеллектуальных задач для имеющихся вычислительных систем. Наиболее значимые результаты:

- Модель лабиринтного поиска (конец 50-х гг.), в которой рассматривается граф состояний объекта и в нем происходит поиск оптимального пути от входных данных к результирующим. На практике эта модель не нашла широкого применения.

- Эвристическое программирование (начало 60-х гг.) разрабатывало стратегии действий на основе заранее известных заданных правил (эвристик). Эвристика - теоретически не обоснованное правило, позволяющее уменьшить количество переборов в поиске оптимального пути.

- Методы математической логики . Метод резолюций, позволяющий на основе определенных аксиом автоматически доказывать теоремы. В 1973 г. создан язык логического программирования Пролог, позволяющий обрабатывать символьную информацию.

С середины 70-х гг. реализуется идея моделирования конкретных знаний специалистов-экспертов. В США появляются первые экспертные системы. Возникает новая технология искусственного интеллекта, основанная на представлении и использовании знаний. С середины 80-х гг. искусственный интеллект коммерциализируется. Растут капиталовложения в эту отрасль, появляются промышленные экспертные системы, повышается интерес к самообучающимся системам.

Базы знаний

С точки зрения искусственного интеллекта знания определяют как формализованную информацию, на которую ссылаются в процессе логического вывода. Для хранения знаний используют базы знаний . База знаний- основа любой интеллектуальной системы.

С точки зрения решения задач в некоторой предметной области знания удобно разделить на две категории - факты и эвристику . Первая категория описывает известные в данной области обстоятельства, знания этой категории иногда называют текстовыми, подчеркивая их достаточное описание в литературе. Вторая категория знаний опирается на практический опыт специалиста-эксперта данной предметной области.

Кроме того, знания делят на процедурныеи декларативные. Исторически первыми появились процедурные знания, «рассыпанные» в алгоритмах. Они управляли данными. Для их изменения требовалось вносить изменения в программы. С развитием искусственного интеллекта все большая часть знаний формировалась в структурах данных: таблицах, списках, абстрактных типах данных, знания все больше становились декларативными.

Декларативные знания - это совокупность сведений о характеристиках свойств конкретных объектов, явлений или процессов, представленных в виде фактов и эвристик. Исторически такие знания накапливались в виде разнообразных справочников, с появлением ЭВМ приобрели форму баз данных. Декларативные знания часто называют просто данными, они хранятся в памяти информационной системы (ИС) так, что имеют непосредственный доступ для использования.

Процедурные знания хранятся в памяти ИС в виде описаний процедур, с помощью которых их можно получить. В виде процедурных знаний обычно описывают способы решения задач предметной области, различные инструкции, методики и т.п. Процедурные знания - это методы, алгоритмы, программы решения различных задач в выбранной предметной области, они составляют ядро базы знаний. Процедурные знания образуются в результате осуществления процедур над фактами как исходными данными.

Одной из наиболее важных проблем, характерных для систем искусственного интеллекта, является представление знаний. Форма представления знаний существенно влияет на характеристики и свойства системы. Для манипуляции различными знаниями реального мира на компьютере необходимо провести их моделирование. Существует множество моделей представления знаний для различных предметных областей, но большинство из них относятся к следующим классам: логические модели; продукционные модели; семантические сети; фреймовые модели.

Традиционно в представлении знаний выделяют формальные логические модели , основанные на классическом исчислении предикатов первого порядка, когда предметная область описывается в виде набора аксиом. Вся информация, необходимая для решения задач, рассматривается как совокупность правил и утверждений, которые представляются как формулы в некоторой логике предикатов. Знания отражают совокупность таких формул, а получение новых знаний сводится к реализации процедур логического вывода. Эта логическая модель применима в основном в исследовательских «идеальных» системах, так как предъявляет высокие требования и ограничения предметной области. В промышленных экспертных системах используются ее различные модификации и расширения.

Исследования процессов принятия решений человеком показали, что рассуждая и принимая решение, человек использует продукционные правила (от англ. production - правило вывода, порождающее правило). Продукционная модель , основанная на правилах, позволяет представить знания в виде предложений: ЕСЛИ (список условие), ТО (следует выполнить перечень действий). Условие -это предложение, по которому происходит поиск в базе знаний, а действие есть некоторая операция, выполняемая при успешно осуществленном поиске. Действия могут быть как промежуточными, выступающими далее как условия, так и целевыми, завершающими работу ИС. В продукционной модели база знаний состоит из совокупности правил. Программа, управляющая перебором правил, называется машиной вывода. Механизм выводов связывает знания и создает из их последовательности заключение. Вывод бывает прямой (метод сопоставления, от данных к поиску цели) или обратный (метод генерации гипотезы и ее проверки, от цели - к данным). Продукционная модель привлекает разработчиков наглядностью, модульностью, легкостью внесения дополнений и изменений, простотой механизма логического вывода, чаще всего используется в промышленных экспертных системах.

Семантика - это наука, исследующая свойства знаков и знаковых систем, их смысловую связь с реальными объектами. Семантическая сеть -это ориентированный граф, вершины которого есть понятия, а дуги - отношения между ними (рисунок 5.4). Это наиболее общая модель знаний, так как в ней имеются средства всех характерных для знаний свойств: внутренней интерпретации, структурированности, семантической метрики и активности.

Рисунок 5.4 – Семантическая сеть

Достоинствами сетевых моделей являются: большие выразительные возможности; наглядность системы знаний, представленной графически; близость структуры сети, представляющей систему знаний, семантической структуре фраз на естественном языке; соответствие современным представлениям об организации долговременной памяти человека. К недостаткам отнесят то, что сетевая модель не содержит ясного представления о структуре предметной области, которая ей соответствует, поэтому ее формирование и модификация затруднительны; сетевые модели представляют собой пассивные структуры, для их обработки используется специальный аппарат формального вывода. Проблема поиска решения в базе знаний типа семантической сети сводится к задаче поиска фрагмента сети, соответствующего некоторой подсети поставленной задачи, что, в свою очередь, говорит еще об одном недостатке модели - сложность поиска вывода на семантических сетях. Сетевые модели являются наглядным и достаточно универсальным средством представления знаний. Однако их формализация в конкретных моделях представления, использования и модификации знаний представляет достаточно трудоемкий процесс, особенно при наличии множественных отношений между понятиями.

Термин фрейм (от англ. frame - каркас, рамка) предложен для обозначения структуры единицы знаний, которую можно описать некоторой совокупностью понятий, для ее пространственного восприятия. Фрейм имеет определенную внутреннюю структуру, состоящую из совокупности элементов, называемых слотами. Каждый слот, в свою очередь, представляется определенной структурой данных, процедурой, или может быть связан с другим фреймом. Фреймовая модель представляет собой систематизированную в виде единой теории технологическую модель памяти человека и его сознания. В отличие от других моделей, во фреймах фиксируется жесткая структура. В общем случае фрейм определяется следующим образом:

{ИМЯ ФРЕЙМА: (имя 1-го слота: значение 1-го слота);

(имя 2-го слота: значение 2-го слота);

(имя N-ro слота: значение N-ro слота)}. Важным свойством фреймов является наследование свойств, заимствованное из теории семантических сетей. Наследование происходит по АКО-связям (от A Kind Of, что означает «эт.е.»). Слот АКО указывает на фрейм более высокого уровня иерархии, откуда неявно наследуется, т.е. переносятся значения аналогичных слотов. Например, в сети фреймов на рисунке 5.5 «конструктор» наследует свойства фреймов «инженер» и «человек», которые стоят на более высоком уровне иерархии.

Рисунок 5.5 – Сеть фреймов

Модель фрейма достаточно универсальна, позволяет отобразить все многообразие знаний о мире через:

- фреймы-структуры, для обозначения объектов и понятий (лекция, конспект, кафедра);

- фреймы-роли (студент, преподаватель, декан);

- фреймы-сценарии (сдача экзамена, празднование именин, получение стипендии);

- фреймы-ситуации (тревога, рабочий режим учебного дня) и др.

Основным преимуществом фреймов как модели представления знаний является их способность отражать концептуальную основу организации памяти человека, а также гибкость и наглядность. Обобщая анализ моделей представления знаний, можно сделать следующие выводы:

2) Наиболее мощными являются смешанные модели представления знаний.

Экспертные системы

Предназначены для анализа данных, содержащихся в базах знаний, и выдачи рекомендаций по запросу пользователя. Используются в тех случаях, когда исходные данные хорошо формализуются, но для принятия решения требуются специальные обширные знания. Экспертные системы - это сложные программные комплексы, аккумулирующие знания специалистов в конкретных предметных областях и тиражирующие этот эмпирический опыт для консультаций менее квалифицированных пользователей. Предметные области: медицина, фармакология, химия, геология, экономика, юриспруденция и др., в которых большая часть знаний является личным опытом специалистов высокого уровня (экспертов), нуждаются в экспертных системах. Те области, где большая часть знаний представлена в виде коллективного опыта (например, высшая математика), не нуждаются в них. Экспертная система определяется набором логически взаимосвязанных правил, формирующих знания и опыт специалиста данной предметной области, и механизмом решения, позволяющим распознавать ситуацию, давать рекомендации к действию, ставить диагноз.

Современные экспертные системы способны:

По совокупности признаков заболевания установить диагноз, назначить лечение, дозировать медикаменты, выработать программу курса лечения;

Выполнять задачи диагностических систем в исследовании явлений и процессов (например, для анализа крови; управления производством; изучения состояния недр земли, нефтяных полей, залежей угля и т.п.);

Распознавать речь, на данном этапе в ограниченной области применения;

Распознавать человеческие лица, отпечатки пальцев и др.

На рисунке 5.6 изображены основные компоненты модели экспертной системы: пользователь (специалист предметной области, для которого данная система предназначена), инженер по знаниям (специалист по искусственному интеллекту - промежуточное звено между экспертом и базой знаний), интерфейс пользователя (приложение, реализующее диалог пользователя и системы), база знаний -ядро экспертной системы, решатель (приложение, моделирующее рассуждения эксперта на основе имеющихся в базе знаний), подсистема разъяснения (приложение, позволяющее разъяснять на основании чего экспертная система дает рекомендации, делает выводы, какие знания при этом используются), интеллектуальный редактор базы знаний (приложение, дающее инженеру по знаниям возможность создания базы знаний в диалоговом режиме).

Характерной особенностью любой экспертной системы является способность к саморазвитию. Исходные данные хранятся в базе знаний в виде фактов, между которыми установлены определенные логические связи. Если при тестировании выявлены некорректные рекомендации или заключения по конкретным вопросам, либо заключение не может быть сформулировано, это означает, или отсутствие важных фактов в ее базе, или нарушения в логической системе связей. В любом случае система сама может сформировать достаточный набор вопросов к эксперту и автоматически повысить свое качество.

Рисунок 5.6 – Структура модели экспертной системы

Система управления

Представляет совокупность взаимосвязанных структурных моделей подсистем, осуществляющих следующие функции:

- планирование (стратегическое, тактическое, оперативное);

- учет - отображает состояние объекта управления в результате выполнения производственных процессов;

- контроль - определяет отклонение учетных данных от плановых целей и нормативов;

- оперативное управление - осуществляет регулирование всех процессов с целью исключения возникающих отклонений от плановых и учетных данных;

- анализ - определяет тенденцию в работе системы и резервы, которые учитываются при планировании на следующий временной период.

Использование моделей в составе информационных систем началось с применения статистических методов и методов финансового анализа, которые реализовывались командами обычных алгоритмических языков. Позже были созданы специальные языки, позволяющие моделировать различные ситуации. Такие языки дают возможность построения моделей определенного типа, обеспечивающих нахождение решения при гибком изменении переменных.

Моделирование информационных процессов

Любое ПО имеет свой жизненный цикл -период от начала проектирования и до его модернизации или замены более современной версией. Для инженерного подхода к проектированию ПО были предложены модели процесса его разработки. Первым по времени и наиболее популярным можно считать метод «водопада». Эта модель идеализирует процесс проектирования, предполагая, что каждый этап проекта (анализ предметной области, разработка требований и спецификаций к ИС, архитектурное проектирование, детальное проектирование, кодирование, тестирование) завершается до начала следующего и не осуществляется возврата к предыдущему этапу. Учитывая важность для дальнейшей разработки первых этапов проектирования, а стоимость исправления допущенных на этих этапах ошибок наиболее высокой, метод «водопада» был улучшен введением временных прототипов (рисунок 5.7).

Рисунок 5.7 – Метод «водопада» с введением временных прототипов

Еще одна модель жизненного цикла - спиральная модель управления рисками (рисунок 5.8). В этой модели жизненный цикл ПО не заканчивается, а продолжается его модернизация, на что и указывает спираль. Анализ рисков состоит в определении затрат, в случае ошибок, допущенных на первом этапе. Для снижения рисков предлагаются дополнительные работы, например создание временных прототипов.

Один из наиболее популярных методов проектирования ПО - метод нисходящего проектирования , предполагающий последовательное разложение общей функции обработки данных на простые (для данного уровня) функциональные элементы. В результате получается иерархическая модель, отражающая состав и взаимоподчиненность отдельных функций. Эта схема носит название функциональной структуры алгоритма (ФСА) приложения. Недостатком ФСА является то, что каждый ее уровень является единым целым и не может разрабатываться параллельно группой разработчиков.

Следующий метод - модульное проектирование , предполагающий разбиение исходной функции обработки данных на ряд программных модулей, которые характеризуются следующими параметрами:

Один входной и один выходной поток данных;

Все операции, необходимые для преобразования входного потока в выходной, выполняются внутри модуля;

Результат работы модуля зависит только от входного потока и не зависит от работы других модулей.

Состав и вид программных модулей в значительной мере определяется инструментальными средствами разработки, например, для Access набор модулей может быть таким: экранные формы, отчеты, меню и т.д.

Оба эти метода относятся к стратегии проектирования ПО, получившей название структурное проектирование или проектирование на основе потоков данных, В этой стратегии не учитывались сущность и связи объектов предметной области. Для нее характерно преобразование входной информации в выходную способами, не учитывающими физическую сущность модели предметной области.

В начале 80-х гг. появился новый подход, который был основан на моделировании реального мира изнутри наружу, т.е., моделируя все элементы системы и связи между ними, получаем модель предметной области, преобразование информации в которой происходит так же, как и в реальной моделируемой системе. Этот подход был назван методом объектно-ориентированного проектирования (ООП). При ООП на первом этапе выявляются объекты реального мира, их свойства и действия, на следующих - эти объекты и их поведение отображаются на объекты программы.

Для любого метода проектирования ПО очень важным являются документирование и нотация, т.е. запись операций условным стандартизованным способом. Для структурного проектирования наиболее часто использовалась нотация схем алгоритмов. Для ООП в настоящее время используется нотация UML (Unified Modeling Language) - унифицированный язык моделирования, используя который в качестве нотации, можно моделировать информационные системы с помощью современных средств автоматизации программирования.

В начале 90-х гг. из всего множества языков объектно-ориентированного анализа и проектирования выделились три, наиболее часто используемых при разработке систем: Booch, созданный Грейди Бучем, OOSE (Object-Oriented Software Engineering), разработанный Айваром Джекобсоном, и ОМТ (Object Modeling Technique), автором которого является Джеймс Рамбо. Каждый из этих методов является вполне законченным языком ООП, однако метод ВООСН особенно удобен на этапах проектирования модели, OOSE - на этапе анализа и формулирования требований, а ОМТ - удобен при проектировании СУБД. Создание языка, объединяющего достоинства этих трех методов, началось в начале 1995 г., когда эти три автора объединили свои методы для создания унифицированного языка для фирмы Rational Software. В 1997 г. была принята версия UML 1.1, взятая на вооружение всеми компаниями - производителями систем автоматизированного проектирования. В 2001 г. появилась версия 2.0. В настоящее время идет утверждение UML в качестве стандарта ISO.

Многие продукты, реализующие CASE-технологии (Computer Aided Software Engineering - автоматизированное проектирование и создание программ), в настоящее время поддерживают нотацию UML. Такие пакеты, как Paradigm Plus, System Architect, Microsoft Visual Modeler, Delphi и др., поддерживают нотацию UML. Наиболее мощный пакет проектирования, разработанный компанией Rational Software - Rational Rose (RR), позволяет использовать при разработке все возможности языка UML.


Похожая информация.


Голосов: 5

Учебно-методический комплекс (УМК) в составе установочного модульного лекционного массива и рабочей программы дисциплины "Моделирование информационных процессов и систем" предназначен в поддержку комплексного интегративного блока дисциплин "Информсреда образования" системы дополнительного образования в МГДД(Ю)Т и в качестве учебного пособия для студентов МИРЭА, занимающихся на кафедре ТИССУ по учебному плану специальности "Информационные системы". УМК опирается на государственный отраслевой образовательный стандарт высшей школы РФ соответствующей специальности и отображает опыт многолетней научно-исследовательской, учебно-творческой и информационно-методической работы в указанном направлении ГНИИ ИТТ "Информика", отдела технического творчества (секторов НИТ и ИВТ) МГДД(Ю)Т, кафедры ТИССУ МИРЭА, Московского межвузовского центра НИТ МИРЭА-МГДД(Ю)Т, ГОУ "Технопарк инноваций в науке и образовании" и других участников. УМК напрямую связан с практикой учебно-творческого школьно-студенческого процесса в системе дополнительного и развивающего образования в МГДТД(Ю)Т и МИРЭА. В УМК использованы многие установочные материалы Международной Академии Информатизации, ГНИИ ИТТ "Информика", ряда научных и учебных публикаций, WWW, а также материалы диссертационной работы аспиранта В.Т.Матчина.

Приведенный ниже текст получен путем автоматического извлечения из оригинального PDF-документа и предназначен для предварительного просмотра.
Изображения (картинки, формулы, графики) отсутствуют.

41 Приведение модели к требуемому уровню нормальной формы является основой построения реляционной БД. В процессе нормализации элементы данных группируются в таблицы, представляющие объекты и их взаимосвязи. Теория нормализации основана на том, что определенный набор таблиц обладает лучшими свойствами при включении, модификации и удалении данных, чем все остальные наборы таблиц, с помощью которых могут быть представлены те же данные. Введение нормализации отношений при разработке информационной модели обеспечивает минимальный объем физической, то есть записанной на каком-либо носителе БД и ее максимальное быстродействие, что впрямую отражается на качестве функционирования информационной системы. Нормализация информационной модели выполняется в несколько этапов. Данные, представленные в виде двумерной таблицы, являются первой нормальной формой реляционной модели данных. Первый этап нормализации заключается в образовании двумерной таблицы, содержащей все необходимые свойства информационной модели, и в выделении ключевых свойств. Очевидно, что полученная весьма внушительная таблица будет содержать очень разнородную информацию. В этом случае будут наблюдаться аномалии включения, обновления и удаления данных, так как при выполнении этих действий нам придется уделить внимание данным (вводить или заботиться о том, чтобы они не были стерты), которые не имеют к текущим действиям никакого отношения. Например, может наблюдаться такая парадоксальная ситуация. Отношение задано во второй нормальной форме, если оно является отношением в первой нормальной форме и каждое свойство, не являющийся первичным свойством в этом отношении, полностью зависит от любого возможного ключа этого отношения. Если все возможные ключи отношения содержат по одному свойству, то это отношение задано во второй нормальной форме, так как в этом случае все свойства, не являющиеся первичными, полностью зависят от возможных ключей. Если ключи состоят более чем из одного свойства, отношение, заданное в первой нормальной форме, может не быть отношением во второй нормальной форме. Приведение отношений ко второй нормальной форме заключается в обеспечении полной функциональной зависимости всех свойств от ключа за счет разбиения таблицы на несколько, в которых все имеющиеся свойства будут иметь полную функциональную зависимость от ключа этой таблицы. В процессе приведения модели ко второй нормальной форме в основном исключаются аномалии дублирования данных. Отношение задано в третьей нормальной форме, если оно задано во второй нормальной форме и каждое свойство этого отношения, не являющийся первичным, не транзитивно зависит от каждого возможного ключа этого отношения. 42 Использованная литература 1. Костогрызов А.И., Петухов А.В., Щербина А.М. Основы оценки, обеспечения и повышения качества выходной информации в АСУ организационного типа. М.: Изд. ⌠Вооружение. Политика. Конверсия, 1994. 278с. 2. Костогрызов А.И., Липаев В.В. Сертификация функционирования автоматизированных информационных систем. М.: Изд. Вооружение. Политика. Конверсия, 1996. 280с. 3. Климов Г.П. теория вероятностей и математическая статистика. М.: МГУ, 1983. 328с. 4. Вентцель Л.Д. Курс теории случайных процессов.- М.,1975. 5. Зубов В.И. Процессы управления и устойчивость.- СПб.,1999. 6. Э.М. Димов, О.Н. Маслов, С.К. Швайкин. Имитационное моделирование, реинжиниринг и управление в компании сотовой связи. Москва. «Радио и связь». 2001. 7. М.С. Колосков. Время доставки пакета и пропускная способность локальной вычислительной сети. Автоматика и вычислительная техника. 1990 г. № 3. Академия наук Латвийской ССР. 8. http://www.niikte.com.ru/ 9. http://book.od.ua/books/book/case/introduc.htm 10. М.С. Колосков. Время доставки пакета и пропускная способность локальной вычислительной сети. Автоматика и вычислительная техника. 1990 г. № 3. Академия наук Латвийской ССР. 11. http://www.cfin.ru/ 12. http://sc.imis.ru/ 13. http://www.compulog.ru/ 14. http://www.iro.yar.ru, 15. www.work.kemsu.ru 16. www.glossary.basegroup.ru 17. www.exponenta.ru, 18. www.levin.ru 19. www.iro.yar.ru 20. www.work.kemsu.ru 21. www.enckl.by.ru 22. www.soc-gw.univ.kiev.ua 23. www.exponenta.ru 24. on.wplus.net/koulon/first.htm 25. В.Б. Кудрявцев, С.В. Алешин, А.С. Подколзин “Введение в теорию автоматов” 26. В. Брауэр “Введение в теорию конечных автоматов” 27. www.sgu.ru 28. www.citforum.ru 29. www.mari.su 30. www.stu.ru 31. Зуховицкий С. И., Авдеева Л. И., Линейное и выпуклое программирование, 2 изд., М., 1967; 32. Хедли Дж., Нелинейное и динамическое программирование, перевод с английского, М., 1967 43 МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ РАДИОТЕХНИКИ, ЭЛЕКТРОНИКИ И АВТОМАТИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) «УТВЕРЖДАЮ» «СОГЛАСОВАНО» Декан факультета кибернетики Председатель учебно-методической комиссии по направлению 654700 ________________ М.П.РОМАНОВ __________________ В.В.НЕЧАЕВ «____»__________________ 2001 г. «____»__________________ 2001 г. РАБОЧАЯ ПРОГРАММА ПО ДИСЦИПЛИНЕ «МОДЕЛИРОВАНИЕ СИСТЕМ» ЧАСТЬ 1 Направление подготовки дипломированного специалиста 654700 «Информационные системы» Специальность 071900 «Информационные системы и технологии» Очная форма обучения Составлена на основании Государственного образовательного стандарта высшего профессионального образования по направлению подготовки дипломированного специалиста 654700 «Информационные системы» в соответствии с учебным планом по специальности 071900 «Информационные системы и технологии» (федеральный компонент блока общепрофессиональных дисциплин) Факультет кибернетики Кафедра технических и информационных средств систем управления ОБЪЕМ УЧЕБНОЙ НАГРУЗКИ И ВИДЫ ОТЧЕТНОСТИ Лекции (часов) 34 Лабораторные занятия (часов) - Практические занятия (часов) 17 Индивидуальные занятия с преподавателем (часов) 17 Самостоятельные занятия (часов) 17 ВСЕГО (часов) 85 44 Курсовые проекты и работы (номер семестра) - Зачеты (номер семестра) 6 Экзамены (номер семестра) - МОСКВА 2001 1. ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ, ЕЕ МЕСТО В УЧЕБНОМ ПРОЦЕССЕ 1.1. ЦЕЛЬ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ: целью изучения дисциплины является получение: - представления о системном анализе, иерархической декомпозиции систем, алгебраических системах и моделях, основных понятиях теории моделей; - знания модальных языков первого порядка, временной логики предикатов, моделей данных, логики умолчаний и исключений; - умения выбирать метод моделирования и производить оценку вариантов структуры и параметров информационных систем; - навыков применения языков программирования VISUAL BASIC, PASCAL, C++ для разработки алгоритмов обработки информации, средств ACCESS и EXCEL для моделей баз данных; - умения анализировать результаты моделирования и формировать реко- мендации по построению и функционированию информационных систем; 1.2. ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ: Изложение теоретического материала и проведение практических занятий построенных по блочному принципу (принципу вложенности) на объектно- ориентированных языках программирования, что позволяет из отдельных программ-блоков собирать модель информационной системы функционально полную, но в ограниченном масштабе (объеме обрабатываемых данных). 1.3. ПЕРЕЧЕНЬ ДИСЦИПЛИН И РАЗДЕЛОВ, ЗНАНИЕ КОТОРЫХ ТРЕБУЕТСЯ ДЛЯ ИЗУЧЕНИЯ ДАННОЙ ДИСЦИПЛИНЫ: - математика; - информатика; - алгоритмические языки и программирование; - вычислительная математика; - инженерия знаний; - теория информационных процессов и систем; - информационные технологии; - технология программирования; - архитектура ЭВМ и систем. 45 2. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 2.1. ТЕМАТИЧЕСКИЙ ПЛАН ЛЕКЦИОННОГО КУРСА: №№ Содержание тем Кол-во п.п. часов 1 Основные понятия общей теории систем и 4 моделирования 2 Теоретические основы моделирования 4 3 Алгебраическая модель базы данных 4 4 Модели пользовательского интерфейса и семантики в 6 информационных системах 5 Формализация и алгоритмизация процессов 8 классификации 6 Моделирование и алгоритмизация упорядочения данных 8 Всего (часов): 34 2.2. ПРОГРАММА ЛЕКЦИОННОГО КУРСА: Тема 1. Основные понятия общей теории систем и моделирования Классификация видов моделирования. Имитационные, статистические и оптимизационные модели. Инструментальные средства моделирования. Тема 2. Теоретические основы моделирования Многосновные алгебраические системы, алгебры и модели. Сигнатуры. Модели как гомоморфизмы. Категории и функторы. Языки первого порядка, интерпретации и теории. Тема 3. Алгебраическая модель базы данных Модель базы данных. Динамическая база данных. Структура функциональных зависимостей. Произведения и объединения баз данных. Модель информационной системы Д. Скотта. Тема 4. Модели пользовательского интерфейса и семантики в информационных системах Модели представления текстов и документального поиска в информационных системах. Интенсиональная логика и естественный язык. Типизированная экстенсиональная логика. Семантика и грамматика Монтегю. Модальные логики и семантика возможных миров. Временные логики и верификация программ. Немонотонная логика, очерчивание, гипотеза замкнутого мира. Тема 5. Формализация и алгоритмизация процессов классификации Классификационные схемы и модели кластерного анализа. Методы автоматического построения классификаций, алгоритмы партициальной и иерархической класстеризации. Агломеративный алгоритм по методу минимального расстояния. Алгоритм кластеризации, использующий минимальное покрывающее дерево. Анализ ковариационных зависимостей документального файла. 46 Тема 6. Моделирование и алгоритмизация упорядочения данных Частично упорядоченные множества. Ранг элемента в частично упорядоченном множестве. Аксиома выбора. Теорема Цермело. Перестановки, подстановки и транспозиции. Представление перестановки в виде произведения транспозиций. Основные алгоритмы сортировки. Решетки разбиений множества, ключи и индексы. Комбинаторное просеивание. Формула включения и исключения. Разбиения множеств. Решетки разбиений. Фильтры и идеалы. Индексы и методы доступа. Мультисписковые структуры. Инвертированные файлы. 2.3. ЛАБОРАТОРНЫЕ РАБОТЫ: учебным планом не предусмотрены. 2.4. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ: №№ Темы практических занятий Кол-во п.п. часов 1 Разработка модели базы данных и нормализация отношений 4 2 Кластерный анализ записей базы данных 6 3 Индексирование полнотекстовых документов 7 Всего (часов): 17 2.5. ТЕМАТИКА КУРСОВЫХ РАБОТ: учебным планом не предусмотрены. 2.6. ТЕМАТИКА И ФОРМЫ ИНДИВИДУАЛЬНОЙ РАБОТЫ СТУДЕНТОВ С ПРЕПОДАВАТЕЛЯМИ: тематика индивидуальной работы определяется тематикой практических зданий; основное содержание индивидуальных занятий заключается в разработке контрольных примеров к разрабатываемым моделям, обсуждению содержательной интерпретации результатов моделирования и формам наглядного представления его результатов. 2.7. ТЕМАТИКА И ФОРМЫ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ: самостоятельная работа студентов реализуется в форме освоения теоретических основ моделирования информационных процессов и систем и приобретения навыков практической работы с прикладными программами; рекомендуемые задания: - привести примеры применения языков первого порядка для записи фактов в информационной системе; - привести интерпретацию модели информационной системы Д. Скотта; - привести примеры использования семантики и грамматики Монтегю для формализации анализа естественного языка; - дать содержательную интерпретацию результатов работы агломеративный алгоритм по методу минимального расстояния на примере программных комплексов. 3. УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ 3.1. ОСНОВНАЯ ЛИТЕРАТУРА: 47 1. Романов В.П., Теоретические основы информации. М., Изд-во РЭА им. Г.В.Плеханова. 1993, -159 с. 2. Романов В.П., Теоретические основы информатики. Информационные структуры и фактографический поиск информации. М., Изд-во РЭА им. Г.В.Плеханова. 1996, -190 с. 3. Тозе А., Грибомон Р. И др. Логический подход к искусственному интеллекту. М., Мир, 1990, -428 с. 4. Кофман А. Введение в комбинаторику. М., Наука, - 479 с. 5. Плоткин Б. И. Универсальная алгебра, алгебраическая логика и базы данных. М., Наука, 1991, -446 с. 3.2. ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА: 1. М.Месарович, Я.Такахара. Общая теория систем: математические основы. М.:, Мир, 1978, -311 с. 2. Голуб Дж., Ван Лоун Ч. Матричные вычисления: Пер. с англ. - М.: Мир,1999.- 548 с. , ил. 3. Алгоритмы и программы решения задач на графах и сетях. Нечепуренко М.И. и др.- Новосибирск: Наука. Сиб. Отделение. 1990.- 515 с. 4. Логика и компьютер. Вып. 3.-М.: Наука. 1996- 255 с. Рабочую программу составил: доцент кафедры технических и информационных средств систем управления, к.т.н. В.П.Романов Рабочая программа обсуждена и одобрена на заседании кафедры технических и информационных средств систем управления « 19 » декабря 2001 г. (протокол № 5) Заведующий кафедрой технических и информационных средств систем управления, профессор В.А.Мордвинов 48 Оглавление Введение. Информационные системы как инструмент управления информационной средой образования..............................................................................................................3 Аналитическое моделирование..........................................................................................5 Имитационные модели........................................................................................................6 Модели массового обслуживания......................................................................................7 Кластерный анализ..............................................................................................................7 Объект и признак.................................................................................................................8 Метрика.................................................................................................................................8 Плотность и локальность кластеров..................................................................................9 Расстояние между кластерами............................................................................................9 Факторный анализ..............................................................................................................10 Логические модели............................................................................................................12 Реляционная алгебра.........................................................................................................13 Регрессионный анализ.......................................................................................................14 Алгебраические модели....................................................................................................15 Комбинаторное программирование.................................................................................15 Теоретико-графовое программирование.........................................................................16 Дискретные модели...........................................................................................................17 Реинжиниринг....................................................................................................................17 Теория очередей.................................................................................................................18 CASE-технологии..............................................................................................................25 Детерминированные модели.............................................................................................29 Формирование запроса к БД на Web-клиенте.............................................................30 Формирование запроса к БД на Web-сервере.............................................................31 Сравнительная характеристика двух механизмов доступа к базам данных............32 Линейное программирование. ..........................................................................................33 Моделирование информационных процессов и систем................................................33 Математическое программирование................................................................................36 Создание информационной модели.................................................................................38 Использованная литература..............................................................................................42



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows