Чем сервер отличается от рабочей станции. Сервер и рабочая станция — чем они отличаются. Что значит внутренняя ошибка сервера

Чем сервер отличается от рабочей станции. Сервер и рабочая станция — чем они отличаются. Что значит внутренняя ошибка сервера

03.03.2019

По большому счету, организации, имеющей в сети более 7-8 компьютеров, сервер необходим. Он облегчит администрирование, позволит обеспечить надежность хранения файлов и т. п. У вас освободился компьютер и вы решили использовать его в качестве сервера для вашего предприятия, а ваш приходящий сисадмин говорит, что сумеет его настроить? Не сомневаемся, что вполне реально запустить серверную операционную систему на «бытовом» компьютере. Да, это поможет сэкономить ощутимую сумму, но так ли это выгодно и здорово? Давайте разбираться.

Выбор железа для вашего сервера должен быть обусловлен задачами, которые вы собираетесь возложить на этот многотрудный агрегат. Что и говорить, даже само название «сервер» у большинства людей несведущих ассоциируются с чем-то большим - огромные компьютеры, тяжелые платы, многочисленные индикаторы и разъемы... и невероятная производительность. Чаще всего - это совершенно не так.

На данный момент существует множество форм-факторов и большое разнообразие аппаратного и программного обеспечения именно серверного типа. Иногда и обычное бытовое железо используется для реализации задач, свойственных серверам. Насколько такой подход адекватен, можно сказать лишь подробно рассмотрев функции выполняемые таким сервером и требования, которые предъявляются к его надежности. Но все же, это решение больше подходит для домашней сети, чем для серьезного корпоративного решения.

Самая главная характеристика сервера - его надежность. Это самое важное требование к абсолютно любому серверу. Посудите сами - выход из строя этого устройства с большой долей вероятности оставит вас без необходимой для бизнес-процессов вашей фирмы информации. Это может быть база клиентов, база бухгалтерии, накопленный массив документов, договоров или методической информации. Умерший сервер - удар в самое сердце вашего предприятия.

Доступность сервера в любой момент работы - это второе важнейшее условие. Поэтому аппаратная часть и программное обеспечение должны быть подобраны так, чтобы время простоя сервера в рабочие часы было минимально - стремилось к нулю.

Третьей важной характеристикой серверного железа должно считаться возможность быстрого технического обслуживания. При этом, оно должно производиться не оказывая влияния на два первых критерия.

Очевидно, что для выполнения этих требований, даже на минимальном уровне, «бытовое» железо малопригодно, даже если ваш сисадмин кудесник и рукодельник в одном флаконе. Минимальную надежность, доступность и быстрое обслуживание без остановки сервисов обеспечит только серверное железо. Любой специалист, имеющий хотя бы минимальный опыт, скажет вам, что «бытовое» железо непригодно для круглосуточного функционирования, а заменить сломанный жесткий диск или блок питания, не выключая компьютера, на который завязано множество процессов невозможно. Серверное железо в этом плане незаменимо.

«Профессиональное» железо дорогое. Даже не так. Чаще всего, оно ДОРОГОЕ! Это плата вовсе не за суперпроизводительность, а как раз за надежность, возможность бесперебойной работы в течении длительного времени и возможность замены вышедших из строя узлов без остановки системы. Также часто вместе с серверными системами вы приобретаете гарантию, а это дорогого стоит, так как часто для таких замены вышедших из строя узлов таких систем необходимо точно такое же оборудование, а вовсе не аналогичное нового поколения. Попробуйте найти точно такие же комплектующие на замену бытовому железу, выпущенному полтора года назад… А для серверных систем на гарантии производитель обязуется такие комплектующие предоставить, в случае поломки.

Начнем с так называемого форм-фактора. Форм-фактором в данном случае называют стандарт, определяющий размеры материнской платы, места ее крепления к корпусу; положение на ней интерфейсов шин, портов ввода/вывода, процессорного гнезда и слотов для оперативной памяти, а так же тип разъема для подключения блока питания.

Существует несколько типов серверных форм-факторов. Существуют обычные серверы с вертикальными корпусами, внешне напоминающие настольные ПК. Они позволяют устанавливать материнские платы ATX или EATX, можно легко использовать и стандартные комплектующие. Но для систем, включающих в себя больше, чем один-два сервера, намного удобнее стоечные (rackmount) серверы. Они обычно устанавливаются в 19-дюймовые шкафы-стойки в горизонтальном положении. В результате в 19" стойку входит несколько серверов. Стойки бывают разной высоты и глубины.

Комплектующие стоечных серверов чаще всего нестандартные и вообще не совпадают с «бытовым» сектором. Высота 19" серверов обычно выражается в U (unit, стандартный корпус, на жаргоне часто называют "юнит"). Серверы, как правило, встречаются высотой 1U, 2U и 4U. Есть серверы и с большей высотой, но это редкость и они обычно заточены под какое-то узкое применение.

Для установки в стойки выпускаются многие другие продукты, включая сетевые коммутаторы, маршрутизаторы и брандмауэры, патч-панели, студийные аудио- и видеоблоки, блоки бесперебойного питания (UPS), сетевые хранилища (NAS), телефонные станции т.д.

Существует еще и подкатегория стоечных серверов, называемая blade-серверы (dlade анг. - лезвие). Они навного тоньше обычных серверов. Устанавливаются они не в стойку, а в специальную оснастку, предварительно установленную в стойке.

Blade-серверы разработаны для повышения плотности расположения вычислительных блоков в условиях ограниченного пространства. Также этот форм-фактор несколько упрощает обслуживание систем, делая более удобной прокладку кабелей, обеспечивая модульность и лёгкость развёртывания. К стоечным серверам нужно подводить питание, кабели дисплея, сети и т.д., а blade-серверы попросту вставляются в слоты с "горячей" заменой.

Давайте чуть более подробно остановимся на отдельных узлах сервера и их отличиях от «бытового» железа. Традиционно начнем с процессоров. Здесь безраздельно властвуют 2 фирмы: Intel и AMD. Именно эти фирмы выпускают процессоры для абсолютного большинства серверных решений различного уровня. Названия линеек серверных процессоров не менялись достаточно давно: XEON - у Intel, и Opteron для AMD. От «бытовых» процессоров их отличает более гибкое энергопотребление (зависит от нагрузки), расширенная аппаратная поддержка виртуализации (возможность создания на одном сервере нескольких «виртуальных» серверов), лучшая поддержка параллельных процессов и наличие ряда технологий, позволяющих производить мониторинг состояния как отдельных процессоров и ядер, так и сложнейших многопроцессорных систем вцелом.

Процессоры от AMD дешевле, но Intel-овские традиционно считаются более надежными. Обе фирмы выпускают процессоры, которые могут работать только на специфических материнских платах. Таким образом, на плату для процессора AMD невозможно поставить процессор от Intel.

К процессору нужно подбирать соответствующую материнскую плату для сервера. Если вы собираетесь строить многопроцессорную систему с применением виртуальных серверов, то и материнскую плату нужно выбирать с возможностью установки нескольких процессоров.

Кроме поддержки многопроцессорности, современные серверные материнские платы могут иметь массу других полезных функций и устройств, в корне отличных от «бытовых» устройств. Например, несколько встроенных сетевых интерфейсов, что позволяет использовать их как для объединения различных сетей, так и в качестве отдельных каналов связи для виртуальных серверов, созданных на одном железе. Для систем с повышенными требованиями к скорости работы с сетью может стать спасением функция объединения 2 и более сетевых интерфейсов в один, что повысит скорость (пропускная способность интерфейсов суммируется) и надежность (при выходе из строя одного интерфейса, сервер остается доступным). Такие технологии тоже присутствуют в ряде материнских плат.

Серверные материнские платы также могут работать с большими объемами оперативной памяти. Для большинства бытовых систем предел - 4 гБ, а серверные оперируют 8, 16 и более гБ. Это часто совершенно необходимо для нормальной работы сервисов и приложений. Кроме того, количество каналов для работы с память в таких платах увеличено до 6 и более, что дает возможность серверу более эффективно одновременно выполнять множество задач.

Часто такие платы оснащаются встроенной аппаратной поддержкой RAID. RAID (англ. redundant array of independent disks — избыточный массив независимых жёстких дисков) — это массив из нескольких дисков, взаимосвязанных скоростными каналами и воспринимаемых системой как единое целое. В зависимости от типа используемого массива может обеспечивать различные степени отказоустойчивости и быстродействия. Служит для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации. Сейчас даже в бытовых материнских платах появляется поддержка такого рода массивов, но это лишь бледное отражение тех возможностей, которые имеют серверные аппаратные контроллеры.

Также в этих платах, кроме уже ставших привычными разъемов для присоединения SATA-дисков, есть и разъемы для подключения так называемых SAS-дисков - серверной версии SATA, обеспечивающих более высокую надежность и производительность.

SAS-диски, пришедшие на смену серверным дискам SCSI полностью унаследовали их основные характеризующие винчестер свойства, в том числе - скорость вращения шпинделя (15000 rpm - скорость вращения внутри устройства магнитных пластин, на которых находится информация), что позволяет читать данные с более высокой скоростью. Кроме этого, стандарт SAS позволяет передавать данные параллельными потоками, чего старые винчестеры не умели.

Кроме этого, практически все современные серверные материнские платы оснащаются очень простым графическим контроллером с небольшим количеством выделенной памяти. И это оправдано, так как приложения, требующие мощных видеокарт на серверах не запускаются. Более того, большинство времени к серверу вообще может не быть подключен монитор.

Принцип работы оперативной памяти сервера точно такой же как и в обычных «бытовых» компьютерах. Разница лишь в том, что в серверной памяти встроен аппаратный механизм исправления некоторых видов ошибок для сохранения целостности данных. Это избавляет систему от множества проблем.

Отдельного разговора заслуживают серверные блоки питания. Эти устройства для профессионального сектора специально разработаны с учётом максимальной надёжности и быстроты замены. Даже нормальный бытовой блок питания может устранить последствия одной отсутствующей фазы, но профессиональные решения справляются и с более серьёзными сбоями. В том числе - обеспечивают ещё и защиту от перенапряжения, частично дублируя функционал систем бесперебойного питания (UPS).

Кроме этого, профессиональные блоки питания модульные и обеспечивают избыточность в виде двух модулей. Каждый из таких модулей способен выдать системе достаточное питание. В случае выхода из строя одного блока, система продолжит свою работу от второго блока. Замена такого модуля может быть произведена без отключения сервера.

Таким образом, очевидно, что надежность и удобство использования серверного железа на порядок выше, чем у «бытового». Использование в этом ответственном качестве обычного компьютера — лотерея в чистом виде. Вы готовы рискнуть?

Дата добавления: 10 Декабря 2012 в 09:33
Автор работы: a*******@mail.ru
Тип работы: контрольная работа

Скачать в ZIP архиве (560.12 Кб)

Вложенные файлы: 1 файл

Скачать файл

Контрольная работа Сервер_.doc

- 3.37 Мб

Министерство образования Российской Федерации

Федеральное агентство по образованию

Пензенский государственный университет

Контрольная работа

по дисциплине «Работа в сети интернет»

на тему «Что такое сервер? Отличие сервера от рабочей станции (клиента).
Основные преимущества, получаемые при сетевом объединении компьютеров. Определение сетевых технологий. Элементы вычислительной сети. Роль и место сетевых технологий в современном мире.

Выполнил студент группы

Сарайкина О.Н.

Проверил

Кольчугин А.Ф.

Пенза, 2012

Введение

В настоящее время нет такого человека, пожалуй, которому ни разу не довелось работать с компьютером. Современные компьютерные технологии используются повсеместно: от обыкновенных точек розничной торговли до научных центров.

В качестве подтверждения исследуем данные, которые опубликовал Минкомсвязи России и которые были представлены в электронной база данных ООН "MilleniumDevelopment, GoalsIndicators" в 2009 году:

Диаграмма 1. Динамика роста количества персональных компьютеров в мире
(на 1000 человек)

Поэтому исследования тем, напрямую связанных с информационными технологиями, крайне актуальны. Ни один экономист не сможет быть высоко эффективен в своей работе, если он не имеет даже малейшего представления о работе с компьютером.

В ходе работы над работой были использованы статистические данные Федеральной службы государственной статистики, различные учебно-методические издания, а также статьи из сети Интернет.

1 Серверы. Основные понятия серверов

Сервер (от англ. server, обслуживающий). В зависимости от предназначения существует несколько определений понятия сервер.

1. Сервер (сеть) - логический или физический узел сети, обслуживающий запросы к одному адресу и/или доменному имени (смежным доменным именам), состоящий из одного или системы аппаратных серверов, на котором выполняются один или система серверных программ.

2. Сервер (программное обеспечение) - программное обеспечение, принимающее запросы от клиентов (в архитектуре клиент-сервер).

3. Сервер (аппаратное обеспечение) - компьютер (или специальное компьютерное оборудование) выделенный и/или специализированный для выполнения определенных сервисных функций.

3. Сервер в информационных технологиях - программный компонент вычислительной системы, выполняющий сервисные функции по запросу клиента, предоставляя ему доступ к определённым ресурсам.

Взаимосвязь понятий. Серверное приложение (сервер) запускается на компьютере, так же называемом "сервер", при этом при рассмотрении топологии сети, такой узел называют "сервером". В общем случае может быть так, что серверное приложение запущено на обычной рабочей станции, или серверное приложение, запущенное на серверном компьютере в рамках рассматриваемой топологии выступает в роли клиента (т.е. не является сервером с точки зрения сетевой топологии).

2. Модель клиент-сервер. Клиент - серверная система характеризуется наличием двух взаимодействующих самостоятельных процессов - клиента и сервера, которые, в общем случае, могут выполняться на разных компьютерах, обмениваясь данными по сети.

Процессы, реализующие некоторую службу, например службу файловой системы или базы данных, называются серверами (servers) . Процессы, запрашивающие службы у серверов путем посылки запроса и последующего ожидания ответа от сервера, называютсяклиентами (clients). По такой схеме могут быть построены системы обработки данных на основе СУБД, почтовые и другие системы. Мы будем говорить о базах данных и системах на их основе. И здесь удобнее будет не просто рассматривать клиент-серверную архитектуру, а сравнить ее с другой - файл-серверной.
В файл-серверной системе данные хранятся на файловом сервере (например, Novell NetWare или Windows NT Server), а их обработка осуществляется на рабочих станциях, на которых, как правило, функционирует одна из, так называемых, "настольных СУБД" - Access, FoxPro, Paradox и т.п..
Приложение на рабочей станции "отвечает за все" - за формирование пользовательского интерфейса, логическую обработку данных и за непосредственное манипулирование данными. Файловый сервер предоставляет услуги только самого низкого уровня - открытие, закрытие и модификацию файлов. Обратите внимание - файлов, а не базы данных. –

Система управления базами данных расположена на рабочей станции.
Таким образом, непосредственным манипулированием данными занимается несколько независимых и несогласованных между собой процессов. Кроме того, для осуществления любой обработки (поиск, модификация, суммирование и т.п.) все данные необходимо передать по сети с сервера на рабочую станцию (см. рис. Сравнение файл-серверной и клиент-серверной моделей) .

Рис.1 Сравнение файл-серверной и клиент-серверной моделей

В клиент-серверной системе функционируют (как минимум) два приложения - клиент и сервер, делящие между собой те функции, которые в файл-серверной архитектуре целиком выполняет приложение на рабочей станции. Хранением и непосредственным манипулированием данными занимается сервер баз данных, в качестве которого может выступать Microsoft SQL Server, Oracle, Sybase и т.п..

Формированием пользовательского интерфейса занимается клиент, для построения которого можно использовать целый ряд специальных инструментов, а также большинство настольных СУБД. Логика обработки данных может выполняться как на клиенте, так и на сервере. Клиент посылает на сервер запросы, сформулированные, как правило, на языке SQL. Сервер обрабатывает эти запросы и передает клиенту результат (разумеется, клиентов может быть много).

Таким образом, непосредственным манипулированием данными занимается один процесс. При этом, обработка данных происходит там же, где данные хранятся - на сервере, что исключает необходимость передачи больших объемов данных по сети.

1.1 Достоинства и недостатки архитектуры клиент-сервер

Посмотрим на данную архитектуру с точки зрения потребностей бизнеса. Какие же качества привносит клиент-сервер в информационную систему?
Надежность
Сервер баз данных осуществляет модификацию данных на основе механизма транзакций, который придает любой совокупности операций, объявленных как транзакция, следующие свойства:

  • атомарность - при любых обстоятельствах будут либо выполнены все операции транзакции, либо не выполнена ни одна; целостность данных при завершении транзакции;
  • независимость - транзакции, инициированные разными пользователями, не вмешиваются в дела друг друга;
  • устойчивость к сбоям - после завершения транзакции, ее результаты уже не пропадут.

Механизм транзакций, поддерживаемый сервером баз данных, намного более эффективен, чем аналогичный механизм в настольных СУБД, т.к. сервер централизованно контролирует работу транзакций. Кроме того, в файл-серверной системе сбой на любой из рабочих станций может привести к потере данных и их недоступности для других рабочих станций, в то время, как в клиент-серверной системе сбой на клиенте, практически, никогда не сказывается на целостности данных и их доступности для других клиентов.

Масштабируемость - способность системы адаптироваться к росту количества пользователей и объема базы данных при адекватном повышении производительности аппаратной платформы, без замены программного обеспечения.

Общеизвестно, что возможности настольных СУБД серьезно ограничены - это пять-семь пользователей и 30-50 Мб, соответственно. Цифры, разумеется, представляют собой некие средние значения, в конкретных случаях они могут отклоняться как в ту, так и в другую сторону. Что наиболее существенно, эти барьеры нельзя преодолеть за счет наращивания возможностей аппаратуры.

Системы же на основе серверов баз данных могут поддерживать тысячи пользователей и сотни ГБ информации - дайте им только соответствующую аппаратную платформу.

Сервер баз данных предоставляет мощные средства защиты данных от несанкционированного доступа, невозможные в настольных СУБД. При этом, права доступа администрируются очень гибко - до уровня полей таблиц. Кроме того, можно вообще запретить прямое обращение к таблицам, осуществляя взаимодействие пользователя с данными через промежуточные объекты - представления и хранимые процедуры. Так что администратор может быть уверен - никакой слишком умный пользователь не прочитает то, что ему читать неположено.

В приложении, работающем с данными, можно выделить три логических слоя:

Как уже говорилось, в файл-серверной архитектуре все три слоя реализуются в одном монолитном приложении, функционирующем на рабочей станции. Поэтому изменения в любом из слоев приводят однозначно к модификации приложения и последующему обновлению его версий на рабочих станциях.

В двухуровневом клиент- серверном приложении, показанном на рисунке выше, как правило, все функции по формированию пользовательского интерфейса реализуются на клиенте, все функции по управлению данными - на сервере, а вот бизнес-правила можно реализовать как на сервере используя механизмы программирования сервера (хранимые процедуры, триггеры, представления и т.п.), так и на клиенте.

В трехуровневом приложении появляется третий, промежуточный уровень, реализующий бизнес-правила, которые являются наиболее часто изменяемыми компонентами приложения (см. рис. Трехуровневая модель клиент-серверного приложения)


Рис.2 Трехуровневая модель клиент-серверного приложения


Наличие не одного, а нескольких уровней позволяет гибко и с минимальными затратами адаптировать приложение к изменяющимся требованиям бизнеса.

Попробуем все вышеизложенное проиллюстрировать на маленьком примере. Предположим, в некоей организации изменились правила расчета заработной платы (бизнес-правила) и требуется обновить соответствующее программное обеспечение.

1) В файл-серверной системе мы "просто" вносим изменения в приложение и обновляем его версии на рабочих станциях. Но это "просто" влечет за собой максимальные трудозатраты.

2) В двухуровневой клиент- серверной системе, если алгоритм расчета зарплаты реализован на сервере в виде правила расчета зарплаты, его выполняет сервер бизнес-правил, выполненный, например, в виде OLE-сервера, и мы обновим один из его объектов, ничего не меняя ни в клиентском приложении, ни на сервере баз данных.

3. Классификация стандартных серверов
Как правило, каждый сервер обслуживает один (или несколько схожих) протоколов и серверы можно классифицировать по типу услуг, которые они предоставляют.

Универсальные серверы - особый вид серверной программы, не предоставляющий никаких услуг самостоятельно. Вместо этого универсальные серверы предоставляют серверам услуг упрощенный интерфейс к ресурсам межпроцессного взаимодействия и/или унифицированный доступ клиентов к различным услугам. Существуют несколько видов таких серверов:

  • inetd от англ. internet super-server da emon демон сервисов IP - стандартное средство UNIX-систем - программа, позволяющая писать серверы TCP/IP (и сетевых протоколов других семейств), работающие с клиентом через перенаправленные inetd потоки стандартного ввода и вывода (stdin и stdout).

    RPC от англ. Remote Procedure Call уд аленный вызов процедур - система интеграции серверов в виде процедур доступных для вызова удаленным пользователем через унифицированный интерфейс. Интерфейс изобретенный Sun Microsystems для своей операционной системы (SunOS, Solaris; Unix-система), в настоящее время используетстся как в большинстве Unix-систем, так и в Windows.

  • Прикладные клиент-серверные те хнологии Windows:

(D-) COM (англ. (Distributed) Compo nent Object Model - модель составных объектов) и др. - Позволяет одним программам выполнять операции над объектами данных используя процедуры других программ. Изначально данная технология предназначена для их «внедрения и связывания объектов» (OLE англ. Object Linking and Embedding), но, в общем, позволяет писать широкий спектр различных прикладных серверов. COM работает только в пределах одного компьютера, DCOM доступна удаленно через RPC.

  • Active-X - Расширение COM и DCOM для создания мультимедиа-приложений.

Универсальные серверы часто используются для написания всевозможных информационных серверов, серверов, которым не нужна какая-то специфическая работа с сетью, серверов, не имеющих никаких задач, кроме обслуживания клиентов. Например, в роли серверов для inetd могут выступать обычные консольные программы и скрипты.
Большинство внутренних и сетевых специфических серверов Windows работают через универсальные серверы (RPC, (D-)COM).
Сетевые службы обеспечивают функционирование сети, например серверы DHCP и BOOTP обеспечивают стартовую инициализацию серверов и рабочих станций, DNS - трансляцию имен в адреса и наоборот.
Серверы туннелирования (например, различные VPN-серверы) и прокси-серверы обеспечивают связь с сетью, недоступной роутингом.

Серверы AAA и Radius обеспечивают в сети единую аутентификацию, авторизацию и ведение логов доступа.
Информационные службы. К информационным службам можно отнести как простейшие серверы сообщающие информацию о хосте (time, daytime, motd), пользователях (finger, ident), так и серверы для мониторинга, например SNMP. Большинство информационных служб работают через универсальные серверы.
Особым видом информационных служб являются серверы синхронизации времени - NTP кроме информировании клиента о точном времени NTP-сервер периодически опрашивает несколько других серверов на предмет коррекции собственного времени. Кроме коррекции времени анализируется и корректируется скорость хода системных часов. Коррекция времени осуществляется ускорением или замедлением хода системных часов (в зависимости от направления коррекции), чтобы избежать проблем возможных при простой перестановке времени.
Файл-серверы представляют собой серверы для обеспечения доступа к файлам на диске сервера.

Краткое описание

В настоящее время нет такого человека, пожалуй, которому ни разу не довелось работать с компьютером. Современные компьютерные технологии используются повсеместно: от обыкновенных точек розничной торговли до научных центров.
В качестве подтверждения исследуем данные, которые опубликовал Минкомсвязи России и которые были представлены в электронной база данных ООН "MilleniumDevelopment, GoalsIndicators" в 2009 году:.

О серверах и серверном "железе" пишет очень немного изданий. И главной причиной является техническая сложность - здесь существует и много отличий от обычного потребительского "железа", и ограниченная читательская аудитория. Подобные статьи интересны только администраторам и тем, кто принимает решение о закупках, ну и некоторым читателям-энтузиастам, увлекающимся аппаратным обеспечением профессионального уровня. Впрочем, серверное "железо" ближе к настольному, чем вы думаете, а дополнительные знания никогда не вредили.

Когда люди думают о серверах, они представляют большие компьютеры, тяжеленные платы и запредельную производительность, но реальность часто иная. Сегодня существует множество форм-факторов и огромное количество аппаратного и программного обеспечения, поэтому вынести универсальное определение слову "сервер" сложно.

Хотя профессиональное и потребительское "железо" во многом схоже, мы считаем, что именно упор на некоторые функции и качества позволяет отнести аппаратное обеспечение к профессиональному уровню. Например, ваш домашний ПК должен быть быстрым, тихим, с возможностью модернизации и, конечно, за разумные деньги. Он проработает несколько лет, при этом зачастую будет простаивать по нескольку часов, и у пользователя будет возможность заменить вышедшую из строя "железку" или просто убрать накопившуюся пыль. К серверам предъявляются иные требования: здесь на первом месте стоят надёжность, доступность в режиме 24/7, техническое обслуживание без остановки работы.

Первое и самое главное - сервер должен быть надёжным. Будь это сервер баз данных, файловый сервер, web-сервер или сервер другого типа, он должен быть очень надёжным, поскольку от его работы зависит ваш бизнес. Во-вторых, сервер должен быть всегда доступен, то есть аппаратное и программное обеспечение должно быть подобрано таким образом, чтобы время простоя было минимальным. Наконец, быстрое техническое обслуживание в профессиональной сфере очень критично. То есть если администратору требуется выполнить какую-то задачу, она должна выполняться максимально эффективно, не вступая в конфликт с упомянутыми выше критериями. Именно поэтому производительность серверов часто является следствием учёта необходимых требований и долговременных стратегий, а не следствием какого-то эмоционального шага, как часто бывает с геймерскими ПК.

В нашей статье мы расскажем о серверных компонентах и опишем технологии, общие для серверов и потребительских ПК, а также поговорим об отличиях и преимуществах. Поскольку все комплектующие профессионального уровня намного дороже обычных, мы начнём наш экскурс с этого вопроса.

Профессиональное, значит дорогое

Если вы будете покупать профессиональные комплектующие или серверы и рабочие станции, вы быстро обнаружите, что стоят они дороже обычного потребительского "железа". И причина часто кроется не в какой-то сложной технологии, а в спецификациях профессиональных комплектующих, в их тестировании и валидации. Например, процессор Core 2 Duo Conroe очень близок к Xeon Woodcrest по производительности. Но различия кроются в используемых сокетах, спецификациях и системах, в которые устанавливаются эти процессоры. Серверные жёсткие диски специально предназначены для продолжительной работы в режиме 24/7, в то время как настольные винчестеры - нет.

Обычно мы подразумеваем, что любые потребительские продукты совместимы со всеми другими, что выполняется не всегда, но чаще всего. Поэтому можно заменять один совместимый компонент другим, проблем, скорее всего, не возникнет. Но такой подход уже неприемлем, если вы планируете модернизировать сервер или выполнить техническое обслуживание.

Новые продукты для профессионального рынка разрабатываются с учётом предсказуемого пути модернизации, поскольку производители желают, чтобы эти продукты работали с существующими системами, с нынешними и будущими поколениями комплектующих. Клиенты AMD и Intel регулярно получают планы компаний по своим продуктам, которые позволяют заглянуть в будущее. Потребители могут покупать продукт с уверенностью, что на какое-то время получат поддержку и возможности модернизации.

Гарантия и замена комплектующих тоже очень важна. Если вышедший из строя настольный жёсткий диск по гарантии заменяется любой новой моделью, то профессиональные решения часто требуют точно таких же комплектующих. Поэтому администратору нужно искать точно такой же продукт, в то время как обычные пользователи, напротив, будут недовольны, если не получат комплектующее последнего поколения (что, кстати, большинству производителей обходится дешевле).

Магическим словом для профессионального рынка является валидация. Когда принципиально новый продукт готовится к выпуску, он будет проверяться и тестироваться на популярных аппаратных системах. Процесс валиадции гарантирует, что компании могут поставлять очень сложные системы на корпоративный рынок. Действительно, бизнес может строиться, только если ИТ-платформа будет работать безупречно.


AMD Opteron (Socket 940), Intel Xeon Dempsey и Xeon Woodcrest (Socket 771): популярные серверные двуядерные процессоры.

Конечно, вы наверняка знакомы с линейками процессоров Athlon, Celeron, Core 2 и Sempron, которые являются настольными процессорами для домашних и офисных компьютеров. Но у AMD и Intel есть продукты, нацеленные на профессиональных клиентов: AMD Opteron, Intel Xeon и Itanium. Opteron построен на архитектуре AMD64, как и процессоры Athlon 64 и Sempron, а Xeon - на архитектуре Core 2 или Pentium NetBurst, в зависимости от модели.

Профессиональные процессоры обычно обладают большим числом интерфейсов - несколько каналов HyperTransport у Opteron, две независимые шины FSB (по одной на процессор) в мире Intel - и более богатым набором функций, которые часто требуются для серверных приложений и ПО для рабочих станций.

На рынке можно обнаружить две разных версии процессоров Opteron: одна использует Socket 940 с памятью DDR, вторая - Socket 1207 (Socket F) и память DDR2 RAM. Как и в случае всех процессоров AMD64, контроллер памяти является частью процессора, что можно назвать существенным преимуществом при росте числа процессоров: вы получите не только больше контроллеров памяти, чтобы установить больше памяти, но каждый процессор будет работать с собственным блоком памяти. Конечно, при этом возникают проблемы когерентности и увеличивается сложность многопроцессорных систем, но и пропускная способность суммарно тоже оказывается выше. Opteron под Socket 940 Opteron используют упаковку PGA, то есть ножки находятся на процессоре. Opteron под Socket 1207 перешли на упаковку LGA, когда ножки находятся на сокете, а на процессоре - плоские контакты.

В наши дни следует выбирать двуядерные процессоры. Двуядерные процессоры, пусть даже с меньшей тактовой частотой, превосходят на серверном рынке одноядерные модели. Двуядерные Opteron под Socket 940 построены на ядрах Egypt и Italy, последний вариант является более совершенным. Но сегодня мы рекомендуем выбирать модели под Socket 1207 (Socket F), благодаря поддержке памяти DDR2 и возможности перейти на четырёхядерные процессоры, которые появятся где-то в этом году.


Текущий AMD Socket F с 1207 контактами подходит для современных двуядерных и будущих четырёхядерных процессоров Opteron.

Процессоры Intel Xeon доступны в разных видах, причём предыдущие версии использовали Socket 604. Современные платформы базируются на Socket 771, относящемся к сокетам LGA. Существуют разные процессоры Intel Xeon, но мы рекомендуем останавливаться только на двуядерных моделях. В таблице http://www.intel.com/products/processor_number/chart/xeon.htm есть полный список процессоров.

Модели от 5030 до 5080 производятся по 90-нм техпроцессу и основаны на уже устаревшей архитектуре NetBurst. Мы рекомендуем брать процессоры Xeon на основе Woodcrest, их модельные номера начинаются от 5110 (1,6 ГГц) до 5160 (3,0 ГГц). Они производятся по 65-нм технологии, требуют меньше энергии, но обеспечивают высокую производительность. Линейка E53xx построена на четырёхядерных процессорах Clovertown с частотами от 1,6 до 2,66 ГГц.

Процессоры Xeon не имеют встроенного контроллера памяти. Вместо этого они опираются на четырёхканальный контроллер памяти DDR2-667 чипсета материнской платы. Чтобы обеспечить достаточную пропускную способность для дву- или четырёхядерных процессоров, современная платформа Socket 771 (Blackford) обеспечивает две независимые шины FSB (DIB), по одной на каждый процессор.


Intel - первый производитель, представивший четырёхядерные процессоры. Clovertown собирается из двух двуядерных кристаллов Woodcrest, помещённых в одну упаковку.


Intel Xeon Dempsey (65-нм NetBurst), Woodcrest (65-нм двуядерный Core 2) и Clovertown (65-нм четырёхядерный Core 2).

Серверная память работает по такому же принципу, что и обычная память для потребительских ПК. Современным стандартом является память DDR2 (Double Data Rate SDRAM второго поколения). DDR2 работает с большим числом буферов предварительной выборки (4 вместо 2), поэтому частоту интерфейса можно увеличить вдвое по сравнению с DDR1.

Если сравнивать с потребительской памятью, то профессиональная память отличается двумя разными механизмами, призванными сохранить целостность данных. Регистровая память содержит небольшой чип, так называемый "регистр", который отвечает за обновление сигнала. Если память обычного ПК не может состоять больше, чем из четырёх (или иногда шести) DIMM - сигналы проходят через все модули памяти и затухают, то регистровая память с лёгкостью позволяет устанавливать восемь модулей. Кроме регистра, память DDR2 содержит терминацию на кристалле, которая предотвращает отражение сигнала.

Второй механизм - код коррекции ошибок ECC. Вместо хранения стандартных 64 битов на канал DIMM с ECC добавляют ещё один чип памяти, который может хранить ещё 8 битов, позволяющих восстанавливать данные. Поэтому однобитовые ошибки можно будет исправлять "на лету".

Все процессоры AMD Opteron для Socket 940 требуют регистровую память DDR333/DDR400, в то время как поколение Socket F (Socket 1207) требует регистровую память DDR2-667.

Fully-Buffered DIMM (FB-DIMM) используют так называемый буферный компонент, микросхему с большим энергопотреблением, которая преобразует параллельные сигналы в последовательный интерфейс. Основная её цель заключается в подключении более восьми модулей памяти на контроллер. С четырёхканальным контроллером памяти Intel DDR2 вы можете устанавливать восемь 2-Гбайт DIMM на каждый из четырёх каналов, если производители материнских плат, конечно, захотят поддержать такую конфигурацию.

FB-DIMM стоят дороже, греются сильнее и работают не быстрее обычной регистровой памяти. Да, за ними, скорее всего, будущее серверов с большими объёмами памяти, эта же технология используется для текущих платформ Intel Xeon.


Нажмите на картинку для увеличения.

В качестве примера мы взяли серверную материнскую плату Asus P5MT (она применяется в серверах начального уровня, поскольку позволяет использовать обычные процессоры, а не более дорогие серверные). Серверные материнские платы не поддерживают разгон и обычно оснащены большим количеством интерфейсов, а также слотами расширения с большой пропускной способностью.

Шина PCI-X на 133 МГц продолжает являться доминирующим интерфейсом для карт расширения. Она построена на параллельной шине PCI, которая сегодня есть практически в любом ПК. PCI-X имеет ширину 64 бита, в то время как в шина PCI в вашем компьютере 32-битная. PCI-X 133 поддерживает пропускную способность до 533 Мбайт/с. Впрочем, следует помнить, что пропускная способность контроллера PCI-X распределяется между всеми подключёнными устройствами.

Интерфейс PCI Express (PCIe) более современный. PCI Express - последовательный интерфейс, использующий несколько линий для подключения устройства к контроллеру. Профессиональные карты расширения используют слоты PCIe x4 (четыре линии), но есть и карты/слоты x1, x8 и x16 PCIe. PCIe x16 обычно используется для высокопроизводительных видеокарт, графические рабочие станции несут два полноценных слота PCIe x16 для двух видеокарт.

Материнские платы для серверов и рабочих станций обычно содержат встроенный сетевой контроллер. Он может строиться на тех же компонентах, что встречаются в материнских платах потребительского уровня, но обычно здесь встраиваются более мощные чипы, обеспечивающие, например, аппаратную поддержку вычислений TCP/IP или другие функции, чтобы увеличить производительность.

Данная плата оснащена четырьмя слотами памяти DDR2, одним разъёмом Socket 775 для установки процессора Pentium 4 или Core 2, одним 32-битным слотом PCI, одним слотом PCI Express x16 для видеокарты или мощного контроллера накопителей, а также двумя слотами PCI-X 133. Два гигабитных Ethernet-контроллера Broadcom отвечают за сетевые возможности. На материнскую плату установлен графический процессор ATi. Он, конечно, устарел, но его достаточно для отображения рабочего стола или командной строки, что и требуется для серверных ОС.

Все остальные интерфейсы и компоненты встречаются и на потребительском "железе": южный мост, контроллеры UltraATA/100 или Serial ATA, стабилизаторы напряжения и т.д. Существенная разница, опять же, заключается в процессе валидации, во время которого производители проверяют работу своих продуктов с другими и публикуют списки совместимости.


Чипу ATi RageXL уже много лет, он не поддерживает 3D-графику, но его достаточно для серверов. Тем более что там большую часть времени никто на экран и не смотрит.

Чуть выше мы уже упоминали материнскую плату с интегрированной видеокартой. Все серверные материнские платы оснащаются очень простым графическим процессором с небольшим количеством выделенной памяти - здесь решения, забирающие память из оперативной, не популярны. Преемником RageXL сегодня можно считать графический процессор ATi ES1000, который изначально работал на потребительском рынке, но затем появился и в серверах из-за совершенствования аппаратной части и драйверов. Администраторам даже не нужно задумываться об установке специальной или обновлённой версии драйвера: драйвер поставляется вместе с ОС и сертифицирован.

Рабочим станциям, с другой стороны, требуется более мощная аппаратная начинка. ATi на этот рынок позиционирует графические ускорители FireGL, построенные на линейке Radeon X1000. nVidia предлагает линейку Quadro FX, очень близкую к семейству GeForce 7000. Различие между потребительскими и профессиональными чипами может быть небольшим, например, в оптимизации драйверов. Профессиональные видеокарты обеспечивают великолепную производительность в специализированных приложениях, но и стоят они намного дороже.

Жёсткие диски - ещё один интересный аспект касательно серверов и рабочих станций. Несколько лет назад серверные жёсткие диски использовали интерфейс Small Computer System Interface (SCSI) и скорость вращения шпинделя 10 000 или 15 000 об/мин, которые ощутимо обгоняли настольные накопители со скоростью 7 200 об/мин. Серверные жёсткие диски по-прежнему быстрее, хотя разница уже не так велика.

Рынок профессиональных жёстких дисков разделён на три сегмента. В первом сегменте повышенной ёмкости используются обычные 3,5" жёсткие диски Serial ATA, валидированные на работу в режиме 24/7. Производительный сегмент пытается максимально увеличить плотность хранения данных, поэтому мы наблюдаем появление всё большего количества 2,5" высокопроизводительных жёстких дисков на 10 000 об/мин с интерфейсом Serial Attached SCSI (SAS). Высокопроизводительный сегмент опирается на жёсткие диски SCSI или SAS со скоростью вращения 15 000 об/мин.

Жёсткие диски для серверов и рабочих станций обычно требуют активного охлаждения, поскольку они оптимизированы для максимальной надёжности и производительности. Все профессиональные жёсткие диски поставляются с пятилетней гарантией.

Блоки питания для профессионального сектора специально разработаны с учётом максимальной надёжности. Любой приличный блок питания может устранить последствия одной отсутствующей фазы, но профессиональные решения справляются и с более серьёзными сбоями. Некоторые обеспечивают ещё и защиту от перенапряжения, хотя здесь мы получаем перехлёст с областью, которая лежит в зоне ответственности бесперебойных систем питания (UPS).

Профессиональные блоки питания модульные и обеспечивают избыточность в виде двух модулей, каждый из которых способен дать системе достаточное питание. Если один блок питания выйдет из строя, система продолжит свою работу от второго блока.

Часто при выборе сервера у пользователей возникает вопрос: Зачем тратить довольно приличную сумму на приобретение сервера, когда можно за вдвое меньшие деньги купить обычный компьютер и он будет работать как сервер? Давайте рассмотрим собственно зачем нужен сервер, и верен ли будет такой подход к решению данного вопроса.

Экономия при отсутствии информации - Финансовые потери в будущем

Одной из наиболее частых ошибок при выборе любого оборудования, в том числе и сервера, является преобладание одного критерия - стоимости. Ошибкой будет как экономия на том, на чем экономить нельзя, так и финансовые траты на ненужные комплектующие. Если сервер предназначен для хранения и обработки данных, прекращение доступа к которым выльется в значительный материальный ущерб для организации, то экономия на сервере будет безумным расточительством и выбрасыванием денег на ветер. Есть и другая крайность - для сервера, на котором просто хранятся редко обновляемые данные или данные небольшого объема, которые можно легко архивировать в нескольких местах, заказывается мощный сервер высокой стоимости. Возникает совершенно очевидный вопрос - чем отличается серверная платформа от специального как бы серверного корпуса, выпускаемого многими фирмами? Наиболее существенные отличия таковы:

1. Платформа имеет конструкцию, жестко ориентированную именно на серверное использование - Возможность установки жестких дисков с горячей заменой. Более продуманная система вентиляции, адаптивный блок питания.

2. Источники питания в платформе рассчитаны на широкий разброс напряжения и частоты сети переменного тока и ориентированы на непрерывную работу с высокой степенью отказоустойчивости.

3. Световая индикация и звуковое оповещение пользователя о сбоях в сервере, т.е. наличие собственных устройств диагностики, не привязанных к конкретным комплектующим.

В чем здесь дело? Дело в том, что серверная платформа рассчитана на любые стандартные жесткие диски, RAID контроллеры, память и т.п..

Настоящий сервер или высокопроизводительный ПК в качестве сервера?

Каждое устройство должно использоваться по назначению - понимание этого позволит избежать убытков, вызванных сбоями в работе целого предприятия. Персональный компьютер предназначен для индивидуального использования. Выход ПК из строя может причинить ущерб только его пользователю. В отличие от ПК сервер отвечает за непрерывное и надежное обслуживание множества пользователей в корпоративной сети. И эта ответственность предъявляет совершенно иные требования к характеристикам и возможностям систем. В отличие от используемого в качестве сервера персонального компьютера, серверы обладают следующими преимуществами:
- возможность установки большего количества процессоров, жестких дисков, большего объема памяти;
- более высокая пропускная способность (несколько независимых шин данных, несколько сетевых адаптеров);
- более высокая надежность за счет дублирования подсистем (блоки питания и процессоры, память, жесткие диски);
- возможность удаленного управления сервером;
- удобство монтажа (в одной стойке площадью менее 1 кв. м может быть смонтировано несколько серверов).

Почему нельзя использовать мощную рабочую станцию в качестве сервера?

Минусы решения использования в качестве сервера обычного персонального компьютера:

1. Первый и самый очевидный минус: надежность такого сервера сопоставима с отказоустойчивостью аналогичной рабочей станции. Но сервер должен обеспечивать ресурсами все подключенные к нему компьютеры организации. Если один из персональных компьютеров выйдет из строя, то все остальные смогут продолжить работу. А если сломается сервер, то не будут нормально функционировать и все остальные персоналки. Организация просто не сможет работать до устранения поломки сервера. А если вдруг еще и информацию на сервере восстановить не удастся, то весь дальнейший бизнес окажется под вопросом. Надежность сервера должна быть значительно выше, чем у обычного ПК.

2. На персональных компьютерах обычно не предусматривается защита данных на случай отказа. Необходимо использование "зеркалирования" (для обеспечения бесперебойной работы сервера при отказе основного из зеркальных дисков) и резервирование данных на случай случайной порчи информации (случайно стерли нужный файл, вирусная атака). Необходимы специальные решения для сохранения данных на сервере при отказе его компонентов.

3. Операционные системы и аппаратная конфигурация, используемые на персональных компьютерах, рассчитаны на работу с 1-2 пользователями. При работе с множеством пользователей сервис для них предоставляется неравномерно, выполнение задач одних пользователей блокирует или сильно замедляет работу других.

Для сервера необходимо использовать серверную операционную систему и компоненты, обеспечивающие одновременную обработку от многих пользователей.

4. Используемые комплектующие для персонального компьютера построены из принципа 40% нагрузки при работе с одним пользователем. При возрастании нагрузки значительно усиливается тепловыделение. Отвод этого дополнительного тепла в персональных системах обычно не предусматривается. Нередко системный блок сервера убирают в глухую нишу или запирают в шкаф (не специализированный), где циркуляция воздуха ограничена и нет притока холодного воздуха к серверу. В результате ПК, работающий в режиме сервера подвержен перегреву. Конфигурация сервера должна поддерживать оптимальные условия работы его компонентов. Компоненты должны быть рассчитаны на длительную работу при высокой нагрузке.

5. Как правило, все понимают, что при неисправности сервера, его можно починить, заменив неисправные компоненты. Но, как правило, запасного комплекта нет. Как нет и резервного сервера, способного взять на себя функции неисправной системы. А ведь вынужденный простой - это незапланированные затраты и недополученная прибыль. Необходимо предусматривать резервирование важных серверных компонентов и возможность их быстрой замены.

Основные отличия сервера от рабочей станции, используемой в качестве сервера:

1. В сервере используются комплектующие, при производстве которых предъявляются повышенные требования к качеству изготовления. Надежность серверных компонентов в несколько раз выше, чем комплектующих для персональных компьютеров.

2. В серверных компонентах применяются специальные наборы микросхем, обеспечивающие дополнительные функции контроля работоспособности, фиксации ошибок, исправления мелких сбоев на аппаратном уровне.

3. Сервер рассчитан на круглосуточную работу при полной загрузке его мощностей. Приняты специальные меры для уменьшения перегрева компонентов сервера по отношению к окружающей среде.

4. Серверы изготавливаются с возможностью использования "горячей" (без остановки работы сервера) замены некоторых компонентов, что значительно может уменьшить время простоя подключенных к нему пользователей.

5. Все основные компоненты сервера сертифицированы для работы с серверными операционными системами. Это гарантия стабильной работы и производительности.

6. Используемые в сервере технические решения в сочетании с серверными ОС обеспечивают более высокую надежность хранения и доступность данных, ее конфиденциальность. Серверная архитектура рассчитана на работу со многими пользователями с высокой производительностью, предоставляя им всем одновременно уровень сервиса в соответствии с установленным для них приоритетом.

Заключение

Рассмотрев и сравнив основные компоненты сервера начального уровня и компьютера, который выступает в качестве сервера, мы убедились что выбор в пользу второго себя не оправдывает. Как в качестве требуемых задач от сервера, так и в плане "Экономичности". Ведь если потребуется увеличение мощности сервера (а это произойдет несомненно, если компания развивается), понадобится менять всю платформу целиком, что приводит к увеличению стоимости совокупного владения, а также убытки связанные с простоем на время замены. А это гораздо большие затраты, нежели чем сомнительная экономия на комплектующих на начальном этапе выбора сервера.

Вы все еще думаете поставить мощный компьютер вместо сервера?

О серверах и серверном "железе" пишет очень немного изданий. И главной причиной является техническая сложность - здесь существует и много отличий от обычного потребительского "железа", и ограниченная читательская аудитория. Подобные статьи интересны только администраторам и тем, кто принимает решение о закупках, ну и некоторым читателям-энтузиастам, увлекающимся аппаратным обеспечением профессионального уровня. Впрочем, серверное "железо" ближе к настольному, чем вы думаете, а дополнительные знания никогда не вредили.

Когда люди думают о серверах, они представляют большие компьютеры, тяжеленные платы и запредельную производительность, но реальность часто иная. Сегодня существует множество форм-факторов и огромное количество аппаратного и программного обеспечения, поэтому вынести универсальное определение слову "сервер" сложно.

Хотя профессиональное и потребительское "железо" во многом схоже, мы считаем, что именно упор на некоторые функции и качества позволяет отнести аппаратное обеспечение к профессиональному уровню. Например, ваш домашний ПК должен быть быстрым, тихим, с возможностью модернизации и, конечно, за разумные деньги. Он проработает несколько лет, при этом зачастую будет простаивать по нескольку часов, и у пользователя будет возможность заменить вышедшую из строя "железку" или просто убрать накопившуюся пыль. К серверам предъявляются иные требования: здесь на первом месте стоят надёжность, доступность в режиме 24/7, техническое обслуживание без остановки работы.

Первое и самое главное - сервер должен быть надёжным. Будь это сервер баз данных, файловый сервер, web-сервер или сервер другого типа, он должен быть очень надёжным, поскольку от его работы зависит ваш бизнес. Во-вторых, сервер должен быть всегда доступен, то есть аппаратное и программное обеспечение должно быть подобрано таким образом, чтобы время простоя было минимальным. Наконец, быстрое техническое обслуживание в профессиональной сфере очень критично. То есть если администратору требуется выполнить какую-то задачу, она должна выполняться максимально эффективно, не вступая в конфликт с упомянутыми выше критериями. Именно поэтому производительность серверов часто является следствием учёта необходимых требований и долговременных стратегий, а не следствием какого-то эмоционального шага, как часто бывает с геймерскими ПК.

В нашей статье мы расскажем о серверных компонентах и опишем технологии, общие для серверов и потребительских ПК, а также поговорим об отличиях и преимуществах. Поскольку все комплектующие профессионального уровня намного дороже обычных, мы начнём наш экскурс с этого вопроса.

Профессиональное, значит дорогое

Если вы будете покупать профессиональные комплектующие или серверы и рабочие станции, вы быстро обнаружите, что стоят они дороже обычного потребительского "железа". И причина часто кроется не в какой-то сложной технологии, а в спецификациях профессиональных комплектующих, в их тестировании и валидации. Например, процессор Core 2 Duo Conroe очень близок к Xeon Woodcrest по производительности. Но различия кроются в используемых сокетах, спецификациях и системах, в которые устанавливаются эти процессоры. Серверные жёсткие диски специально предназначены для продолжительной работы в режиме 24/7, в то время как настольные винчестеры - нет.

Обычно мы подразумеваем, что любые потребительские продукты совместимы со всеми другими, что выполняется не всегда, но чаще всего. Поэтому можно заменять один совместимый компонент другим, проблем, скорее всего, не возникнет. Но такой подход уже неприемлем, если вы планируете модернизировать сервер или выполнить техническое обслуживание.

Новые продукты для профессионального рынка разрабатываются с учётом предсказуемого пути модернизации, поскольку производители желают, чтобы эти продукты работали с существующими системами, с нынешними и будущими поколениями комплектующих. Клиенты AMD и Intel регулярно получают планы компаний по своим продуктам, которые позволяют заглянуть в будущее. Потребители могут покупать продукт с уверенностью, что на какое-то время получат поддержку и возможности модернизации.

Гарантия и замена комплектующих тоже очень важна. Если вышедший из строя настольный жёсткий диск по гарантии заменяется любой новой моделью, то профессиональные решения часто требуют точно таких же комплектующих. Поэтому администратору нужно искать точно такой же продукт, в то время как обычные пользователи, напротив, будут недовольны, если не получат комплектующее последнего поколения (что, кстати, большинству производителей обходится дешевле).

Магическим словом для профессионального рынка является валидация. Когда принципиально новый продукт готовится к выпуску, он будет проверяться и тестироваться на популярных аппаратных системах. Процесс валиадции гарантирует, что компании могут поставлять очень сложные системы на корпоративный рынок. Действительно, бизнес может строиться, только если ИТ-платформа будет работать безупречно.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows