Резервный источник питания с помощью аккумулятора. Выбор аккумулятора для системы автономного или резервного питания. Режимы работы и защита от перегрузок

Резервный источник питания с помощью аккумулятора. Выбор аккумулятора для системы автономного или резервного питания. Режимы работы и защита от перегрузок

10.04.2019

Усилители низкой частоты

Усилители низкой частоты (УНЧ) являются относительно простыми устройствами по своей структуре и вместе с тем весьма сложными для оценки. До сих пор не существует объективных параметров для их сравнения и пока непонятно, возможно ли это в принципе. Так, до сих пор не утихают споры между сторонниками и противниками ламповых усилителей. Но, поскольку усилители все же надо как-то оценивать, то давайте поближе познакомимся с их классификацией и общепринятыми параметрами, применяемыми для их оценки. Мы не будем затрагивать другие виды усилителей, кроме усилителей мощности низкой частоты переменного тока и именно их будем иметь в виду под аббревиатурой УНЧ, хотя многие параметры одинаковы для всех видов усилителей.

Абсолютно необходимо упомянуть о том, что мы будем рассматривать усилители, предназначенные для качественного воспроизведения звука, поэтому все оценки усилителей и их параметров, типа лучше-хуже, будут исходить именно из этого критерия. Идеалом является Hi-End, классический Hi-End в инженерном, а не аудиофильском понимании этого слова, развитие старого доброго Hi-Fi - высокая верность воспроизведения в терминах технических параметров и научных терминов, измеряемая и воспроизводимая.

Эти лекции полностью посвящены интегральным усилителям низкой частоты. Никто не знает, что будет завтра, но сегодня не существует таких интегральных УНЧ, которые могли бы по качеству воспроизведения сравниться с усилителями на дискретных элементах. Их достоинства - это низкая стоимость (в тысячи и десятки тысяч раз), малые габариты и простота использования. Есть и еще ряд достоинств, возникающих благодаря технологии производства. Такой идентичности параметров транзисторов дифференциальных пар как у тех, которые выращены на одном кристалле, на дискретных элементах добиться невозможно. Автоматический контроль за тепловыми и электрическими режимами важнейших силовых структур, находящимися на одном кристалле со всей остальной схемой - легко и просто. Все преимущества и весь опыт, накопленный в процессе производства операционных усилителей, к вашим услугам. Недостаток интегральных УНЧ - это, прежде всего, затрудненный отвод тепла и сложность работы с большими и малыми токами одновременно на одной подложке. Кроме того, при их разработке не ставится задача добиться чего-то эксклюзивного. Это, прежде всего дешевый массовый продукт, позволяющий легко, дешево и удобно получать прекрасные результаты.

Для того чтобы было легче понять, о чем идет речь, необходимо вспомнить ряд общих вопросов. Специалисты, безусловно, могут этого не читать, но большинству читателей хотелось бы освежить в памяти ряд вопросов, тем более, что современной литературы по данному вопросу на русском языке немного. Для начинающих эти вопросы, наверное, покажутся недостаточно полно освещенными, но ведь это и не учебник.

Основные параметры усилителей

Усилителем электрических сигналов называется устройство, которое за счет энергии источника питания обеспечивает увеличение амплитуды тока и/или напряжения на выходе, по сравнению с входным сигналом, не изменяя его формы. Наверное, это не самое лучшее определение, но для наших целей вполне пригодно (кстати, абсолютно корректных определений я не встречал). Уже из определения можно сделать ряд выводов. Часто говорят об усилителях напряжения, усилителях тока и усилителях мощности. В принципе это не совсем корректные выражения. Их можно употреблять, говоря о главой задаче данного усилителя или о конкретной нагрузке. Когда мы говорим об УНЧ, то всегда имеем ввиду усиление мощности В каких единицах измеряется усиление? На сегодняшний день общепринятым мировым стандартом являются децибелы (дБ). Впервые децибелы были введены в практику для обозначения отношения мощностей.

Это связано с тем, что громкость для человеческого уха воспринимается как прямое увеличение интенсивности акустического воздействия (т.е. выходной мощности усилителя), а как ее логарифм. Считалось, что децибел -это минимальная различимая человеком величина. Сегодня общепринятой нормой стало принимать за минимальную чувствительность уха величину 0,5 дБ. Из эгого и следует исходить, оценивая различные характеристики усилителей. Несколько позже децибел стал применяться и для обозначения просто отношения напряжений, хотя это и не совсем корректно, а потоми других величин. Из сказанного следует и такой вывод: усилитель, мощность которого в 10 раз больше, звучит громче всего в два раза. Это надо помнить при выборе выходной мощности усилителя.

Коэффициент усиления по напряжению для усилителей определяется при синусоидальном входном сигнале как отношение выходного напряжения к входному и, вообще говоря, является комплексной величиной, зависящей от частоты.

В технике под коэффициентом усиления понимается его модуль.

где Uo - выходное напряжение, aUiN - входное напряжение.

Измерения коэффициента усиления, как и всех остальных параметров усилителя или любого другого прибора, производятся при заранее оговоренных производителем условиях и не всегда эти условия одинаковы для разных производителей.

Коэффициент усиления по току определяется так же, как и по напряжению, но эта характеристика УНЧ применяется редко, так же как и коэффициент усиления по мощности, поэтому в дальнейшем, под коэффициентом усиления будем понимать именно коэффициент усиления по напряжению.

Коэффициент усиления (любой) не является величиной постоянной, а зависит от многих факторов. В частности он зависит от частоты входного сигнала. Зависимость коэффициента усиления от частоты является одной из важнейших характеристик усилителя и называется амплитудно-частотной характеристикой (АЧХ) или полосой пропускания (frequencyresponse).

Идеальный усилитель имеет абсолютно плоскую АЧХ, однако реальные усилители далеки от этого. Все усилители имеют спад АЧХ в области высоких частот по ряду причин, главной из которых являются ограниченные частотные свойства активных элементов: транзисторов, ламп и т.п. Многие усилители имеют спад в области низких частот, обусловленный влиянием разделительных емкостей. Следует заметить, что для УНЧ идеальной характеристикой является вовсе не прямая линия. Для них представляет интерес лишь диапазон от16 Гц до 20 кГц, т.е. диапазон звуковых колебаний, который слышит человеческое ухо. Лишние частотные области, в которых нет полезного сигнала, а присутствуют только шумы, как от внутренних, так и от внешних источников, только ухудшают работу усилителя, уменьшая его КПД, а высокочастотная область, в случае не слишком удачных схемных решений, даже представляет некоторую опасность для выходных каскадов и акустики при возникновении автогенерации. Однако в усилителях высокого класса некоторый запас по частоте необходим по ряду причин, как психоакустического, так и технического характера. Поэтому верхняя граница идеальной характеристики устанавливается в районе 25...50 кГц. Абсолютного стандарта здесь нет. Можно только сказать, что если характеристика конкретного прибора выходит за эти рамки, то ее искусственно ограничивают. В некоторых случаях эту область сужают гораздо больше, если выходное устройство принципиально не может воспроизводить весь частотный спектр, как, например, мегафон или телефон, или данная область содержит большое количество помех от внешних источников, как в автомобильной технике.

Выглядят АЧХ по-разному даже в пределах информации, предоставляемой одним разработчиком. Иногда это график зависимости коэффициента усиления от частоты, иногда - затухание выходного сигнала. Встречается и нормированные характеристики, когда по оси Y откладывается отношение выходного напряжения или коэффициента усиления к этой же величине, замеренной на средней частоте. Последнее время широкое распространение получил термин POWERBANDWIDTH (BW),to есть полоса пропускания по мощности. Самое главное при оценке этих характеристик помнить, что граница АЧХ определяется по уровню 0,5 от уровня на средних частотах, если это мощностная характеристика (т.е. по уровню -3 дБ) и по уровню 0,707 (или -6 дБ), если это напряжение. Поскольку у современных усилителей эти характеристики весьма равномерны, то чаще всего их графики даже не приводятся, а просто даются табличные данные о полосе пропускания или о граничных частотах, т.е. о тех частотах, на которых спад АЧХ достигает упомянутых выше величин. Так, различаются верхняя и нижняя граничные частоты (fн, fL).

Второй характеристикой комплексного коэффициента усиления является фазовый сдвиг (phaseshift), вносимый усилителем. Зависимость фазового сдвига от частоты сигнала называется фазочастотной характеристикой усилителя или просто фазовой характеристикой. Поскольку такая зависимость всегда имеет место, это означает, что различные спектральные составляющие проходят через усилитель за разное время, что приводит к искажению формы выходного сигнала. Фазовые характеристики никогда не приводятся ни для интегральных усилителей, ни для готовых изделий, т.к. их измерение чрезвычайно сложно и нет общих стандартов для проведения таких измерений. Кроме того, нет единого мнения о том, как фазовые искажения влияют на восприятие акустических сигналов, и потому нет единых требований. Все искажения формы сигнала, описываемые частотными и фазовыми характеристиками, являются линейными, т.е. могут быть описаны функциями вида

где А и В - постоянные величины. Это связано с тем, что они вызваны линейными реактивными элементами и соответственно не приводят к появлению новых составляющих в спектре сигнала, а только изменяют соотношение фаз и амплитуд существующих.

Большинство современных транзисторных усилителей звуковой частоты построены по традиционной схеме: за входным дифференциальным каскадом следует усилитель напряжения и выходной двухтактный бестрансформаторный каскад с последовательным питанием транзисторов по постоянному току, двуполярным источником питания и непосредственным, без переходного конденсатора, подключением нагрузки (рис. 1).

На первый взгляд, все это традиционно и хорошо известно. Однако каждый усилитель звучит по-своему. В чем же дело? А дело все в схемотехнических решениях отдельных каскадов, качестве применяемой элементарной базы, выборе режимов активных элементов, конструктивных решениях аппаратов. Но все по порядку.

Входной каскад

Хорошо известный дифференциальный каскад на самом деле не так прост, как кажется на первый взгляд. От его качества во многом зависят такие параметры усилителя, как отношение сигнал/шум и скорость нарастания выходного напряжения, а также напряжение смещения “нуля” и температурная стабильность усилителя.

Отсюда первый вывод: переход от неинвертирующего включения к инвертирующему существенно повышает качество звучания усилителя. Осуществить такой переход на практике в готовом устройстве довольно легко. Для этого достаточно подать сигнал с входных разъемов на конденсатор С2, предварительно отсоединив его от шины нулевого потенциала усилителя, и удалить конденсатор С1.

Входное сопротивление инвертирующего усилителя практически равно сопротивлению резистора R2. Это намного меньше, чем входное сопротивление неинвертирующего усилителя, которое определяется резистором R1. Поэтому чтобы сохранить неизменной АЧХ в области низких частот, в ряде случаев требуется увеличить емкость конденсатора С2, которая должна быть во столько раз больше емкости конденсатора С1, во сколько сопротивление резистора R1 больше сопротивления резистора R2. Кроме того, для сохранения неизменным коэффициента усиления всего устройства придется подобрать резистор R3 в цепи ООС, т.к. коэффициент усиления инвертирующего усилителя К = R3/R2, а неинвертирующего К = 1 + R3/R2. При этом для минимизации напряжения смещения нуля на выходе резистор R1 необходимо подобрать с тем же сопротивлением, что у вновь установленного резистора R3.

Если все же необходимо сохранить неинвертирующее включение первого каскада, но при этом устранить влияние синфазных искажений, следует повысить выходное сопротивление источника тока, заменив резистор R7 в эмиттерных цепях дифференциального каскада на транзисторный источник стабильного тока (рис. 4). Если такой источник в усилителе уже имеется, повысить его выходное сопротивление можно, увеличив номинал резистора R14 в эмиттере транзистора VT8. При этом для сохранения неизменной величины тока через этот транзистор следует увеличить опорное напряжение на его базе, например, заменив стабилитрон VD1 на другой, с более высоким напряжением стабилизации.

Весьма эффективным путем снижения искажений усилителя является использование в дифференциальном каскаде однотипных транзисторов, предварительно подобранных по статическому коэффициенту усиления и напряжению база – эмиттер.

Такой способ неприемлем при серийном производстве усилителей, но вполне подходит при модернизации единичных экземпляров готовых устройств. Отличные результаты дает установка в дифференциальном каскаде транзисторной сборки из двух транзисторов, выполненных в едином технологическом процессе на одном кристалле и поэтому имеющих близкие значения вышеуказанных параметров.

Снижению искажений способствует также введение в первый каскад усилителя местной отрицательной обратной связи по току посредством установки в цепях эмиттеров транзисторов VT1, VT2 резисторов с сопротивлением до 100 Ом (R9, R10). При этом может потребоваться некоторая корректировка сопротивления резистора R3 в цепи ООС.

Разумеется, этим не исчерпываются все способы модернизации входного дифференциального каскада. Возможна также установка вместо однотранзисторного двухтранзисторного источника тока с рекордными показателями выходного сопротивления, введение так называемого токового зеркала в усилителях с несимметричным съемом сигнала с первого каскада на каскад усиления напряжения, включение каждого из транзисторов по каскодной схеме и т.д. Однако такие переделки трудоемки и не всегда конструкция усилителя позволяет их выполнить.

Выходной каскад

Выходной каскад является основным источником искажений в любом усилителе мощности. Его задачей является формирование неискаженного сигнала требуемой амплитуды в рабочем диапазоне частот на низкоомной нагрузке.

Рассмотрим традиционный каскад на комплементарных парах биполярных транзисторов, включенных по схеме двухтактного эмиттерного повторителя. У биполярных транзисторов существует емкость p-n-перехода эмиттер– база, которая может достигать величины десятых и сотых долей микрофарады. Величина этой емкости влияет на граничную частоту транзисторов. При подаче на вход каскада положительной полуволны сигнала работает верхнее плечо двухтактного каскада (VT4, VT6). Транзистор VТ4 включен по схеме с общим коллектором и имеет малое выходное сопротивление, поэтому протекающий через него ток быстро заряжает входную емкость транзистора VT6 и открывает его. После изменения полярности входного напряжения включается нижнее плечо выходного каскада, а верхнее выключается. Транзистор VТ6 закрывается. Но чтобы полностью закрыть транзистор, необходимо разрядить его входную емкость. Разряжается она, в основном, через резисторы R5 и R6, причем относительно медленно. К моменту включения нижнего плеча выходного каскада полностью разрядиться эта емкость не успевает, поэтому транзистор VТ6 полностью не закрывается, и через транзистор VТ7, помимо своего, протекает коллекторный ток транзистора VТ6. В результате из-за возникновения сквозного тока на высоких частотах при большой скорости переключения не только повышается рассеиваемая транзисторами мощность и падает КПД, но и растут искажения сигнала. Простейший способ устранения описанного недостатка – уменьшение сопротивления резисторов R5 и R6. Однако при этом возрастает мощность, рассеиваемая на транзисторах VТ4 и VТ5. Более рациональный способ уменьшить искажения – изменить схему выходного каскада усилителя таким образом, чтобы форсировать рассасывание избыточного заряда (рис. 5). Этого можно добиться с помощью подключения резистора R5 к эмиттеру транзистора VТ5.

В случае высокого выходного сопротивления предоконечного каскада избыточный заряд может накапливаться и на базах транзисторов VT4 и VT5. Для устранения этого явления необходимо соединить базы этих транзисторов с точкой нулевого потенциала усилителя через резисторы R11 и R12 с номиналами 10…24 кОм.

Описанные меры достаточно эффективны. По сравнению с типовым включением, скорость убывания коллекторного тока в выходном каскаде после описанных переделок оказывается приблизительно в четыре раза больше, а искажение на частоте 20 кГц – примерно втрое меньше.

Очень важное значение с точки зрения вносимых искажений имеет предельная граничная частота используемых транзисторов, а также зависимость их статического коэффициента усиления по току и граничной частоты от тока эмиттера. Поэтому дальнейшего улучшения качественных показателей усилителей с выходным каскадом на биполярных транзисторах можно достичь путем замены выходных транзисторов на более высокочастотные с меньшей зависимостью коэффициента усиления от тока эмиттера. В качестве таких транзисторов можно порекомендовать комплементарные пары 2SA1302 и 2SC3281; 2SA1215 и 2SC2921; 2SA1216 и 2SC2922. Все транзисторы производства фирмы Toshiba в корпусах ТО-247.

В значительной степени на качество звучания усилителя влияет его способность работать на низкоомную нагрузку, т.е. отдавать в нагрузку максимальный ток сигнала без искажений.

Известно, что любая акустическая система (сокращенно АС) характеризуется модулем выходного комплексного сопротивления Z. Обычно величина этого сопротивления указывается в паспортах серийных АС бытового назначения и составляет 4 или 8 Ом. Однако это верно только на какой-то одной частоте, обычно на 1 кГц. В диапазоне же рабочих частот модуль комплексного сопротивления изменяется в несколько раз и может уменьшаться до 1…2 Ом. Другими словами, для непериодических импульсных сигналов с широким спектром, к которым относится музыкальный сигнал, АС представляет для усилителя низкоомную нагрузку, с которой многие из серийных усилителей просто не справляются.

Поэтому наиболее эффективным способом улучшения качественных показателей выходного каскада при работе на реальную комплексную нагрузку является увеличение количества транзисторов в плечах двухтактного усилителя. Это позволяет не только повысить надежность усилителя, так как расширяется область безопасной работы каждого транзистора, но, самое главное, снизить искажения за счет перераспределения коллекторных токов между транзисторами. В этом случае сужается диапазон изменения тока коллектора и, соответственно, коэффициента усиления, что приводит к уменьшению искажений на низкоомной нагрузке, разумеется, при соблюдении определенных требований к источнику питания.

Совсем радикальным способом, позволяющим коренным образом улучшить звучание усилителя, является замена биполярных транзисторов в выходном каскаде на полевые с изолированным затвором (MOSFET).

По сравнению с биполярными MOSFET выгодно отличаются лучшей линейностью проходных характеристик и существенно более высоким быстродействием, т.е. лучшими частотными свойствами. Эти особенности полевых транзисторов в случае их применения позволяют относительно простыми средствами доводить параметры и качество звучания модернизируемого усилителя до самого высокого уровня, что неоднократно подтверждено на практике. Улучшению линейности выходного каскада способствует и такая особенность полевых транзисторов, как высокое входное сопротивление, что позволяет обойтись без предоконечного каскада, выполняемого обычно по схеме Дарлингтона, и дополнительно снизить искажения, сократив путь сигнала.

Отсутствие явления вторичного теплового пробоя у полевых транзисторов расширяет область безопасной работы выходного каскада и тем самым позволяет повысить надежность работы усилителя в целом, а также в некоторых случаях упростить цепи температурной стабилизации тока покоя.

И последнее. Для повышения надежности усилителя не лишним будет установка защитных стабилитронов VD3, VD4 с напряжением стабилизации 10…15 В в цепи затворов транзисторов. Эти стабилитроны будут защищать от пробоя затвор, величина обратного пробивного напряжения которого обычно не превышает 20 В.

При анализе цепей установки начального смещения выходного каскада любого усилителя следует обратить внимание на два момента.

Первый момент связан с тем, какой начальный ток покоя установлен. Многие зарубежные производители устанавливают его в пределах 20…30 мА, что явно недостаточно с точки зрения высококачественного звучания на малых уровнях громкости. Хотя видимые искажения типа “ступенька” в выходном сигнале отсутствуют, недостаточная величина тока покоя приводит к ухудшению частотных свойств транзисторов, и как следствие, к неразборчивому, “грязному” звучанию на малых уровнях громкости, “замазыванию” мелких деталей. Оптимальной величиной тока покоя следует считать 50…100 мA. Если в усилителе установлено несколько транзисторов в плече, то эта величина относится к каждому транзистору. В подавляющем большинстве случаев площадь радиаторов усилителя позволяет долговременно отводить от выходных транзисторов тепло при рекомендованной величине тока покоя.

Второй, очень важный момент состоит в том, что нередко применяемый в классической схеме установки и термостабилизации тока покоя высокочастотный транзистор возбуждается на высоких частотах, причем его возбуждение очень сложно обнаружить. Поэтому желательно использовать вместо него низкочастотный транзистор с f т В любом случае замена этого транзистора на низкочастотный гарантирует от неприятностей. Устранить динамическое изменение напряжения помогает и включение между коллектором и базой конденсатора С4 емкостью до 0,1 мкФ.

Частотная коррекция усилителей мощности

Важнейшим условием обеспечения высококачественного звуковоспроизведения является снижение до возможного минимума динамических искажений транзисторного усилителя. В усилителях с глубокой ООС этого можно достичь, уделив серьезное внимание частотной коррекции. Как известно, реальный звуковой сигнал имеет импульсный характер, поэтому достаточное для практических целей представление о динамических свойствах усилителя можно получить по его реакции на скачок входного напряжения, которое, в свою очередь, зависит от переходной характеристики. Последняя может быть описана с помощью коэффициента затухания. Переходные характеристики усилителей при различных значениях этого коэффициента приведены на рис. 7.

По величине первого выброса выходного напряжения U вых = f(t) можно сделать однозначный вывод об относительной устойчивости усилителя. Как видно из приведенных на рис. 7 характеристик, этот выброс максимален при малых коэффициентах затухания. Такой усилитель обладает малым запасом устойчивости и при прочих равных условиях имеет большие динамические искажения, которые проявляют себя в виде «грязного», «непрозрачного» звучания, особенно на высоких частотах слышимого звукового диапазона.

С точки зрения минимизации динамических искажений, наиболее удачен усилитель с апериодической переходной характеристикой (коэффициент затухания менее 1). Однако реализовать на практике такой усилитель технически очень сложно. Поэтому большинство фирм-производителей идут на компромисс, обеспечивая более низкий коэффициент затухания.

На практике оптимизация частотной коррекции осуществляется следующим образом. Подав с генератора импульсов на вход усилителя сигнал типа «меандр» частотой 1 кГц и наблюдая переходный процесс на выходе с помощью осциллографа, подбором емкости корректирующего конденсатора добиваются формы выходного сигнала, наиболее приближенной к прямоугольной.

Влияние конструкции усилителя на качество звука

В хорошо спроектированных усилителях, с тщательно проработанной схемотехникой и режимами работы активных элементов, к сожалению, далеко не всегда продуманы вопросы конструктивного исполнения. Это приводит к тому, что искажения сигнала, вызванные монтажными наводками от токов выходного каскада на входные цепи усилителя, вносят заметный вклад в общий уровень искажений всего устройства. Опасность таких наводок состоит в том, что формы токов, проходящих по цепям питания плеч двухтактного выходного каскада, работающего в режиме класса АВ, сильно отличаются от форм токов в нагрузке.

Второй конструктивной причиной повышенных искажений усилителя является неудачная разводка «земляных» шин на печатной плате. Из-за недостаточного сечения на шинах происходит заметное падение напряжения, создаваемое токами в цепях питания выходного каскада. В результате потенциалы «земли» входного каскада и «земли» выходного каскада становятся различными. Происходит так называемое искажение «опорного потенциала» усилителя. Эта постоянно изменяющаяся разность потенциалов добавляется на входе к напряжению полезного сигнала и усиливается последующими каскадами усилителя, что равноценно наличию помехи и приводит к росту гармонических и интермодуляционных искажений.

Для борьбы с такой помехой в готовом усилителе необходимо проводами достаточно большого сечения соединить в одной точке (звездой) шины нулевого потенциала входного каскада, нулевого потенциала нагрузки и нулевого потенциала источника питания. Но наиболее радикальным способом устранения искажения опорного потенциала является гальваническая развязка общего провода входного каскада усилителя от мощной шины питания. Такое решение возможно в усилителе с дифференциальным входным каскадом. С общим проводом источника сигнала (левым на схеме на рис. соединены лишь выводы резисторов R1 и R2. Все остальные проводники, соединенные с общим проводом, подключены к мощной шине источника питания, правой на схеме. Однако в этом случае отключение по каким-либо причинам источника сигнала может привести к выходу усилителя из строя, так как левая «земляная» шина оказывается ни к чему не подключенной и состояние выходного каскада становится непредсказуемым. Во избежание аварийной ситуации обе «земляные» шины соединяют между собой резистором R4. Его сопротивление должно бить не очень маленьким, чтобы помехи от мощной шины питания не могли попасть на вход усилителя, и в то же время не слишком большим, чтобы не влиять на глубину ООС. На практике сопротивление резистора R4 составляет около 10 Ом.

Энергоемкость источника питания

В подавляющем большинстве промышленных усилителей емкость накопительных (фильтрующих) конденсаторов блока питания явно недостаточна, что объясняется исключительно экономическими причинами, т.к. электрические конденсаторы больших номиналов (от 10 000 мкФ и более) – явно не самые дешевые компоненты. Недостаточная емкость фильтрующих конденсаторов приводит к «зажатости» динамики усилителя и повышению уровня фона, т.е. к ухудшению качества звучания. Практический опыт автора в области модернизации большого числа различных усилителей свидетельствует о том, что «настоящий звук» начинается при энергоемкости источника питания не менее 75 Дж на канал. Для обеспечения такой энергоемкости требуется суммарная емкость фильтрующих конденсаторов не менее 45 000 мкФ при напряжении питания 40 В на одно плечо (Е = CU 2 /2).

Качество элементной базы

Далеко не последнюю роль в обеспечении высокого качества звучания усилителей играет качество элементной базы, причем главным образом пассивных компонентов, т.е. резисторов и конденсаторов, а также монтажных проводов.

И если большинство производителей применяет в своих изделиях постоянные углеродистые и металлопленочные резисторы достаточно высокого качества, то этого нельзя сказать в отношении постоянных конденсаторов. Стремление сэкономить на себестоимости продукции часто приводит к плачевным результатам. В тех цепях, где необходимо использовать высококачественные пленочные полистироловые или полипропиленовые конденсаторы с малыми диэлектрическими потерями и низким коэффициентом диэлектрической абсорбции, зачастую установлены грошовые оксидные конденсаторы или, что несколько лучше, конденсаторы с диэлектриком из лавсановой (полиэтилентерафталат) пленки. Из-за этого даже грамотно спроектированные усилители звучат «неразборчиво», «мутно». При воспроизведении музыкальных фрагментов отсутствуют детали звучания, нарушен тональный баланс, явно не хватает скорости, что проявляется в вялой атаке звучания музыкальных инструментов. При этом страдают и другие аспекты звука. В целом звучание оставляет желать лучшего.

Поэтому при модернизации действительно высококачественных усилительных устройств необходимо заменить все низкокачественные конденсаторы. Хорошие результаты дает применение конденсаторов фирм Siemens, Philips, Wima. При доводке дорогих аппаратов высокого класса лучше всего использовать конденсаторы американской компании Reelcup типов PPFX, PPFX-S, RTX (типы указаны в порядке возрастания стоимости).

И в последнюю очередь следует обратить внимание на качество диодов выпрямителя и монтажных проводов.

Повсеместно применяемые в блоках питания усилителей мощные выпрямительные диоды и выпрямительные мосты обладают низким быстродействием из-за наличия эффекта рассасывания неосновных носителей заряда в p-n-переходе. В результате при смене полярности подводимого к выпрямителю переменного напряжения промышленной частоты находящиеся в открытом состоянии диоды закрываются с некоторой задержкой, что в свою очередь приводит к появлению мощной импульсной помехи. Помеха проникает по цепям питания в звуковой тракт и ухудшает качество звучания. Для борьбы с этим явлением необходимо применять быстродействующие импульсные диоды, а еще лучше диоды Шоттки, в которых эффект рассасывания неосновных носителей заряда отсутствует. Из доступных можно рекомендовать диоды фирмы International Rectifier. Что касается монтажных проводов, то лучше всего заменить, имеющиеся обычные монтажные провода на кабели большого сечения из бескислородной меди. Прежде всего следует заменить провода, передающие усиленный сигнал к выходным клеммам усилителя, провода в цепях питания, а также по мере необходимости проводку от входных гнезд до входа первого усилительного каскада.

Конкретные рекомендации по маркам кабелей дать затруднительно. Все зависит от вкуса и финансовых возможностей владельца усилителя. Из известных и доступных на нашем рынке можно рекомендовать кабели фирм Kimber Kable, XLO, Audioquest.

Благодаря торговым сетям и интернет магазинам разнообразие предлагаемой к продаже аудиоаппаратуры зашкаливает за все разумные пределы. Каким образом выбрать аппарат, удовлетворяющий вашим потребностям к качеству, существенно не переплатив?

Если вы не аудиофил и подбор аппаратуры не является для вас смыслом жизни, то самый простой путь - уверенно ориентироваться в технических характеристиках звукоусилительной аппаратуры и научиться извлекать полезную информацию между строк паспортов и инструкций, критически относясь к щедрым обещаниям. Если вы не ощущаете разницы между dB и dBm, номинальную мощность не отличаете от PMPO и желаете наконец узнать, что такое THD, также сможете найти интересное под катом.

Я надеюсь что материалы данной статьи будут полезны для понимания следующей, которая имеет намного более сложную тему - «Перекрёстные искажения и обратная связь, как один из их источников».

Коэффициент усиления. Зачем нам логарифмы и что такое децибелы?

Одним из основных параметров усилителя является коэффициент усиления - отношение выходного параметра усилителя к входному. В зависимости от функционального назначения усилителя различают коэффициенты усиления по напряжению, току или мощности:

Коэффициент усиления по напряжению

Коэффициент усиления по току

Коэффициент усиления по мощности


Коэффициент усиления УНЧ может быть очень большим, ещё большими значениями выражаются усиление операционных усилителей и радиотрактов различной аппаратуры. Цифрами с большим количеством нулей не слишком удобно оперировать, ещё сложнее отображать на графике различного рода зависимости имеющие величины, отличающиеся между собой в тысячу и более раз. Удобный выход из положения - представление величин в логарифмическом масштабе. В акустике это вдвойне удобно, поскольку ухо имеет чувствительность близкую к логарифмической.

Поэтому коэффициент усиления часто выражают в логарифмических единицах - децибелах (русское обозначение: дБ; международное: dB)

Изначально дБ использовался для оценки отношения мощностей, поэтому величина, выраженная в дБ, предполагает логарифм отношения двух мощностей, а коэффициент усиления по мощности вычисляется по формуле:

Немного другим образом обстоит дело с «неэнергетическими» величинами. Для примера возьмём ток и выразим через него мощность, воспользовавшись законом Ома:

Тогда величина выраженная в децибелах через ток будет равна следующему выражению:

Аналогично и для напряжения. В результате получаем следующие формулы для вычисления коэффициентов усиления:

Коэффициент усиления по току в дБ:

Коэффициент усиления по напряжению в дБ:


Громкость звука. Чем отличаются dB от dBm?

В акустике «уровень интенсивности» или просто громкость звука L тоже измеряют в децибелах, при этом данный параметр является не абсолютным, а относительным! Всё потому, что сравнение ведётся с минимальным порогом слышимости человеческим ухом звука гармонического колебания - амплитудой звукового давления 20 мкПа. Поскольку интенсивность звука пропорциональна квадрату звукового давления можно написать:

где не ток, а интенсивность звукового давления звука с частотой 1 кГц, который приближенно соответствует порогу слышимости звука человеком.


Таким образом, когда говорят, что громкость звука равна 20 дБ, это означает, что интенсивность звуковой волны в 100 раз превышает порог слышимости звука человеком.

Кроме этого, в радиотехнике чрезвычайно распространена абсолютная величина измерения мощности dBm (русское дБм), которая измеряется относительно мощности в 1 мВт. Мощность определяется на номинальной нагрузке (для профессиональной техники - обычно 10 кОм для частот менее 10 МГц, для радиочастотной техники - 50 Ом или 75 Ом). Например, «выходная мощность усилительного каскада составляет 13 дБм» (то есть мощность, выделяющаяся на номинальной для этого усилительного каскада нагрузке, составляет примерно 20 мВт).

Разделяй и властвуй - раскладываем сигнал в спектр.

Пора переходить к более сложной теме - оценке искажений сигнала. Для начала придётся сделать небольшое вступление и поговорить о спектрах. Дело в том, что в звукотехнике и не только принято оперировать сигналами синусоидальной формы. Они часто встречаются в окружающем мире, поскольку огромное количество звуков создают колебания тех или иных предметов. Кроме того, строение слуховой системы человека отлично приспособлено для восприятия синусоидальных колебаний.

Любое синусоидальное колебание можно описать формулой:

где длина вектора, амплитуда колебаний, - начальный угол (фаза) вектора в нулевой момент времени, - угловая скорость, которая равна:

Важно, что с помощью суммы синусоидальных сигналов с разной амплитудой, частотой и фазой, можно описать периодически повторяющиеся сигналы любой формы. Сигналы, частоты которых отличаются от основной в целое число раз, называются гармониками исходной частоты. Для сигнала с базовой частотой f, сигналы с частотами


будут являться чётными гармониками, а сигналы
нечётными гармониками

Давайте для наглядности изобразим график пилообразного сигнала.


Для точного представления его через гармоники потребуется бесконечное число членов. На практике для анализа сигналов используют ограниченное число гармоник с наибольшей амплитудой. Наглядно посмотреть процесс построения пилообразного сигнала из гармоник можно на рисунке ниже.


А вот как формируется меандр, с точностью до пятидесятой гармоники…


Подробнее о гармониках можно почитать в замечательной статье пользователя , а нам пора переходить наконец к искажениям.

Наиболее простым методом оценки искажений сигналов является подача на вход усилителя одного или суммы нескольких гармонических сигналов и анализ наблюдающихся гармонических сигналов на выходе.

Если на выходе усилителя присутствуют сигналы тех же гармоник, что и на входе, искажения считаются линейными, потому-что они сводятся к изменению амплитуды и фазы входного сигнала.

Нелинейные искажения добавляют в сигнал новые гармоники, что приводит к искажению формы входных сигналов.

Линейные искажения и полоса пропускания.

Коэффициент усиления К идеального усилителя не зависит от частоты, но в реальной жизни это далеко не так. Зависимость амплитуды от частоты называют амплитудно- частотной характеристикой - АЧХ и часто изображают в виде графика, где по вертикали откладывают коэффициент усиления по напряжению, а по горизонтали частоту. Изобразим на графике АЧХ типичного усилителя.


Снимают АЧХ, последовательно подавая на вход усилителя сигналы разных частот определённого уровня и измеряя уровень сигнала на выходе.

Диапазон частот ΔF , в пределах которого мощность усилителя уменьшается не более, чем в два раза от максимального значения, называют полосой пропускания усилителя .

Однако, на графике обычно откладывают коэффициент усиления по напряжению, а не по мощности. Если обозначить максимальный коэффициент усиления по напряжению, как , то в пределах полосы пропускания коэффициент не должен опускаться ниже чем:


Значения частоты и уровня сигналов, с которыми работает УНЧ, могут изменяться очень существенно, поэтому АЧХ обычно строят в логарифмических координатах, иногда его называют при этом ЛАЧХ.


Коэффициент усиления усилителя выражают в децибелах, а по оси абсцисс откладывают частоты через декаду (интервал частот отличающихся между собой в десять раз). Не правда ли так график выглядит не только симпатичнее, но и информативнее?

Усилитель не только неравномерно усиливает сигналы разных частот, но ещё и сдвигает фазу сигнала на разные значения, в зависимости от его частоты. Эту зависимость отражает фазочастотная характеристика усилителя.


При усилении колебаний только одной частоты, это вроде бы не страшно, но вот для более сложных сигналов приводит к существенным искажениям формы, хотя и не порождает новых гармоник. На картинке снизу показано как искажается двухчастотный сигнал.

Нелинейные искажения. КНИ, КГИ, THD.


Нелинейные искажения добавляют в сигнал ранее не существовавшие гармоники и, в результате, изменяют исходную форму сигнала. Пожалуй самым наглядным примером таких искажений может служить ограничение синусоидального сигнала по амплитуде, изображённое ниже.


На левом графике показаны искажения, вызванные наличием дополнительной чётной гармоники сигнала - ограничение амплитуды одной из полуволн сигнала. Исходный синусоидальный сигнал имеет номер 1, колебание второй гармоники 2, а полученный искажённый сигнал 3. На правом рисунке показан результат действия третьей гармоники - сигнал «обрезан» c двух сторон.

Во времена СССР нелинейные искажения усилителя было принято выражать с помощью коэффициента гармонических искажений КГИ. Определялся он следующим образом - на вход усилителя подавался сигнал определённой частоты, обычно 1000 Гц. Затем производилось вычисление уровня всех гармоник сигнала на выходе. За КГИ брали отношение среднеквадратичного напряжения суммы высших гармоник сигнала, кроме первой, к напряжению первой гармоники - той самой, частота которой равна частоте входного синусоидального сигнала.

Аналогичный зарубежный параметр именуется как - total harmonic distortion for fundamental frequency.


Коэффициент гармонических искажений (КГИ или )

Такая методика будет работать только в том случае, если входной сигнал будет идеальным и содержать только основную гармонику. Это условие удаётся выполнить не всегда, поэтому в современной международной практике гораздо большее распространение получил другой параметр оценки степени нелинейных искажений - КНИ.

Зарубежный аналог - total harmonic distortion for root mean square.

Коэффициент нелинейных искажений (КНИ или )

КНИ - величина равная отношению среднеквадратичной суммы спектральных компонент выходного сигнала, отсутствующих в спектре входного сигнала, к среднеквадратичной сумме всех спектральных компонент входного сигнала.

Как КНИ, так и КГИ относительные величины, которые измеряются в процентах.

Величины этих параметров связаны соотношением:

Для сигналов простой формы величина искажений может быть вычислена аналитически. Ниже приведены значения КНИ для наиболее распространённых в аудиотехнике сигналов (значение КГИ указано в скобках).

0 % (0%) - форма сигнала представляет собой идеальную синусоиду.
3 % (3 %) - форма сигнала отлична от синусоидальной, но искажения незаметны на глаз.
5 % (5 %) - отклонение формы сигнала от синусоидальной заметной на глаз по осциллограмме.
10 % (10 %) - стандартный уровень искажений, при котором считают реальную мощность (RMS) УМЗЧ, заметен на слух.
12 % (12 %) - идеально симметричный треугольный сигнал.
21 % (22 %) - «типичный» сигнал трапецеидальной или ступенчатой формы.
43 % (48 %) - идеально симметричный прямоугольный сигнал (меандр).
63 % (80 %) - идеальный пилообразный сигнал.

Ещё лет двадцать назад для измерения гармонических искажений низкочастотного тракта использовались сложные дорогостоящие приборы. Один из них СК6-13 изображён на рисунке ниже.


Сегодня с этой задачей гораздо лучше справляется внешняя компьютерная аудиокарта с комплектом специализированного ПО, общей стоимостью не превышающие 500USD.


Спектр сигнала на входе звуковой карты при тестировании усилителя низкой частоты.

Амплитудная характеристика. Совсем коротко о шумах и помехах.

Зависимость выходного напряжения усилителя от его входного, при фиксированной частоте сигнала (обычно 1000Гц), называется амплитудной характеристикой.

Амплитудная характеристика идеального усилителя представляет из себя прямую, проходящую через начало координат, поскольку коэффициент его усиления является постоянной величиной при любых входных напряжениях.

На амплитудной характеристике реального усилителя имеется, как минимум, три разных участка. В нижней части она не доходит до нуля, так как усилитель имеет собственные шумы, которые становятся на малых уровнях громкости соизмеримы с амплитудой полезного сигнала.


В средней части (АВ) амплитудная характеристика близка к линейной. Это рабочий участок, в его пределах искажения формы сигнала будет минимальным.

В верхней части графика амплитудная характеристика также имеет изгиб, который обусловлен ограничением по выходной мощности усилителя.

Если амплитуда входного сигнала такова, что работа усилителя идет на изогнутых участках, то в выходном сигнале появляются нелинейные искажения. Чем больше нелинейность, тем сильнее искажается синусоидальное напряжение сигнала, т.е. на выходе усилителя появляются новые колебания (высшие гармоники).

Шумы в усилителях бывают разных видов и вызываются разными причинами.

Белый шум

Белый шум - это сигнал с равномерной спектральной плотностью на всех частотах. В пределах рабочего диапазона частот усилителей низкой частоты примером такого шума можно считать тепловой, вызванный хаотичным движением электронов. Спектр этого шума равномерен в очень широком диапазоне частот.

Розовый шум

Розовый шум известен также как мерцательный (фликкер-шум). Спектральная плотность мощности розового шума пропорциональна отношению 1/f (плотность обратно пропорциональна частоте), то есть он является равномерно убывающим в логарифмической шкале частот. Розовый шум генерируется как пассивными так и активными электронными компонентами, о природе его происхождения до сих пор спорят учёные.

Фон от внешних источников

Одна из основных причин шума - фон наводимый от посторонних источников, например от сети переменного тока 50 Гц. Он имеет основную гармонику в 50 Гц и кратные ей.

Самовозбуждение

Самовозбуждение отдельных каскадов усилителя способно генерировать шумы, как правило определённой частоты.

Стандарты выходной мощности УНЧ и акустики

Номинальная мощность

Западный аналог RMS (Root Mean Squared – среднеквадратичное значение) В СССР определялась ГОСТом 23262-88 как усредненное значение подводимой электрической мощности синусоидального сигнала с частотой 1000 Гц, которое вызывает нелинейные искажения сигнала, не превышающие заданное значение КНИ (THD). Указывается как у АС, так и у усилителей. Обычно указанная мощность подгонялась под требования ГОСТ к классу сложности исполнения, при наилучшем сочетании измеряемых характеристик. Для разных классов устройств КНИ может варьироваться очень существенно, от 1 до 10 процентов. Может оказаться так, что система заявлена в 20 Ватт на канал, но измерения проведены при 10% КНИ. В итоге слушать акустику на данной мощности невозможно. Акустические системы способны воспроизводить сигнал на RMS-мощности длительное время.

Паспортная шумовая мощность

Иногда ещё называют синусоидальной. Ближайший западный аналог DIN - электрическая мощность, ограниченная исключительно тепловыми и механическими повреждениями (например: сползание витков звуковой катушки от перегрева, выгорание проводников в местах перегиба или спайки, обрыв гибких проводов и т.п.) при подведении розового шума через корректирующую цепь в течение 100 часов. Обычно DIN в 2-3 раза выше RMS.

Максимальная кратковременная мощность

Западный аналог PMPO (Peak Music Power Output – пиковая выходная музыкальная мощность). - электрическая мощность, которую громкоговорители АС выдерживают без повреждений (проверяется по отсутствию дребезжания) в течение короткого промежутка времени. В качестве испытательного сигнала используется розовый шум. Сигнал подается на АС в течение 2 сек. Испытания проводятся 60 раз с интервалом в 1 минуту. Данный вид мощности дает возможность судить о кратковременных перегрузках, которые может выдержать громкоговоритель АС в ситуациях, возникающих в процессе эксплуатации. Обычно в 10-20 раз выше DIN. Какая польза от того, узнает ли человек о том, что его система возможно перенесет коротенький, меньше секунды, синус низкой частоты с большой мощностью? Тем не менее, производители очень любят приводить именно этот параметр на упаковках и наклейках своей продукции… Огромные цифры данного параметра зачастую основаны исключительно на бурной фантазии маркетингового отдела производителей, и тут китайцы несомненно впереди планеты всей.

Максимальная долговременная мощность

Это электрическая мощность, которую выдерживают громкоговорители АС без повреждений в течение 1 мин. Испытания повторяют 10 раз с интервалом 2 минуты. Испытательный сигнал тот же.
Максимальная долговременная мощность определяется нарушением тепловой прочности громкоговорителей АС (сползанием витков звуковой катушки и др.).

Практика - лучший критерий истины. Разборки с аудиоцентром

Попробуем применить наши знания на практике. Заглянем в один очень известный интернет магазин и поищем там изделие ещё более известной фирмы из Страны Восходящего Солнца.

Ага - вот музыкальный центр футуристического дизайна продаётся всего за 10 000 руб. по очередной акции:

Из описания узнаём, что аппарат оснащён не только мощными колонками, но и сабвуфером.

“Он обеспечивает превосходную чистоту звучания при выборе любого уровня громкости. Кроме того, такая конфигурация помогает сделать звук насыщенным и объёмным.”

Захватывающе, пожалуй стоит посмотреть на параметры. “ Центр содержит две фронтальные колонки, каждая мощностью по 235 Ватт, и активный сабвуфер с мощностью 230 Ватт.” При этом размеры первых всего 31*23*21 см.

Да это же Соловей разбойник какой то, причём и по силе голоса и по размерам. В далёком 96 году на этом я бы свои исследования и остановил, а в дальнейшем, глядя на свои S90 и слушая самодельный Агеевский усилитель, бурно бы обсуждал с друзьями, насколько отстала от японской наша советская промышленность - лет на 50 или всё таки навсегда. Но сегодня с доступностью японской техники дело обстоит гораздо лучше и рухнули многие мифы с ней связанные, поэтому перед покупкой постараемся найти более объективные данные о качестве звука. На сайте про это ни слова. Кто бы сомневался! Зато есть инструкция по эксплуатации в формате pdf.

Cкачиваем и продолжаем поиски. Среди чрезвычайно ценной информации о том, что “лицензия на технологию звуковой кодировки была получена от Thompson” и каким концом вставлять батарейки с трудом, но удаётся таки найти нечто напоминающее технические параметры. Весьма скудная информация запрятана в недрах документа, ближе к концу.

Привожу её дословно, в виде скриншота, поскольку, начиная с этого момента, у меня стали возникать серьёзные вопросы, как к приведённым цифрам не смотря на то, что они подтверждены сертификатом соответствия, так и к их интерпретации.

Дело в том, что чуть ниже было написано, что потребляемая от сети переменного тока мощность первой системы составляет 90 ватт, а второй вообще 75. Хм.

Изобретён вечный двигатель третьего рода? А может в корпусе музыкального центра прячутся аккумуляторы? Да не похоже - заявленный вес аппарата без акустики всего три кило. Тогда, как же потребляя 90 ватт от сети, можно получить на выходе 700 загадочных ватт (для справок) или хотя бы жалких, но вполне осязаемых 120 номинальных. Ведь при этом усилитель должен обладать КПД порядка 150 процентов, даже с отключенным сабвуфером! Но на практике этот параметр редко превышает планку в 75.

Попробуем применить полученную из статьи информацию на практике

Заявленная мощность для справки 235+235+230=700 - это явно PMPO. С номинальной ясности много меньше. Судя по определению это номинальная мощность , но не может она быть 60+60 только для двух основных каналов, без учёта сабвуфера, при номинальной мощности потребления в 90 ватт. Это всё больше напоминает уже не маркетинговую уловку, а откровенную ложь. Судя по габаритам и негласному правилу, соотношения RMS и PMPO, реальная номинальная мощность этого центра должна составлять 12-15 ватт на канал, а общая не превышать 45. Возникает закономерный вопрос - как можно доверять паспортным данным тайваньских и китайских производителей, когда даже известная японская фирма такое себе позволяет?

Покупать такой аппарат или нет - решение зависит от вас. Если для того, чтобы ставить по утрам на уши соседей по даче - да. В противном случае, без предварительного прослушивания нескольких музыкальных композиций в разных жанрах, я бы не рекомендовал.

Цель работы : Изучение работы электронных усилителей и их схемотехника. Экспериментальное и компьютерное исследование влияния ООС на основные характеристики усилителя низкой частоты.

  1. Введение. Основные понятия

Для увеличения амплитуды напряжения или силы тока, а также мощности электрических сигналов используют специальные устройства, называемые электронными усилителями .

Все усилители можно подразделить на два класса – с линейным режимом работы и нелинейным.

К усилителям с линейным режимом работы предъявляются требования получения выходного сигнала, близкого по форме к входному. Искажения формы сигнала, вносимые усилителем, должны быть минимальными. Это достигается благодаря пропорциональной передаче усилителем мгновенных значений напряжения и тока, составляющих во времени входной сигнал.

Важнейшим показателем усилителей, как линейных четырехполюсников с линейным режимом работы является комплексный коэффициент передачи по напряжению или току:

.

Величина
является комплексной, т.е. характеризует изменение как амплитуды, так и фазы сигнала на выходе усилителя по сравнению с их значениями на входе. Модуль коэффициента передачи усилителя
называюткоэффициентом усиления . Зависимость модуля комплексного коэффициента передачи от частоты, определенного для гармонического входного сигнала, является амплитудно-частотной характеристикой (АЧХ) усилителя. Зависимость аргумента комплексного коэффициента передачи от частоты
носит названиефазово-частотной характеристики усилителя.

В зависимости от вида АЧХ усилители с линейным режимом работы подразделяются на:

    усилители медленно изменяющегося сигнала (усилители постоянного тока – УПТ),

    усилители низкой частоты (УНЧ),

    усилители высокой частоты (УВЧ),

    широкополосные, импульсные усилители (ШПУ),

    избирательные, узкополосные усилители (УПУ).

Характерная особенность УПТ – способность усиливать сигналы с нижней частотой, приближающейся к (f н  0). Верхняя граница частоты f в в УПТ может составлять в зависимости от назначения 10 3  10 8 Гц. УНЧ характеризуются частотным диапазоном от десятков герц до десятков килогерц. УВЧ имеют полосу пропускания от десятков килогерц до десятков и сотен мегагерц. ШПУ – имеют нижнюю границу частот примерно такую же, как у УНЧ, а верхнюю – как УВЧ. На основе ШПУ выполняются линейные импульсные усилители. УПУ – характеризуются пропусканием узкой полосы частот.

f в f f н f в f f н f в f f н f в f f o f

В усилителях с нелинейным режимом работы пропорциональность в передаче мгновенных значений входного сигнала отсутствует. В зависимости от закона изменения выходного сигнала от входного
, к усилителям с нелинейным режимом работы можно отнести: усилители ограничители, логарифмические усилители и т. п. В зависимости от характера нагрузки и назначения различают также усилители: напряжения, тока и мощности, хотя такое деление условно, так как в любом случае по существу усиливается мощность.

Рассмотрим основные параметры и характеристики усилителей.

Коэффициент усиления . Коэффициент усиления по напряжению
различных усилителей достигает десятков тысяч. Часто для достижения необходимого
используют многокаскадные усилители, в которых
предыдущего каскада является
для следующего и общий коэффициент усиления равен:

Коэффициент усиления - величина безразмерная и в ряде случаев принято усилительные свойства выражать в логарифмических единицах – децибелах:

.

Для многокаскадного усилителя:

Используют также коэффициент усиления по току и по мощности, которые тоже можно выражать в децибелах.

.

Входное и выходное сопротивление . Усилитель можно рассматривать как активный четырехполюсник, к входным зажимам которого присоединен источник усиливаемого сигнала с ЭДС Е вх и внутренним сопротивлением R вт, а к выходным - сопротивление нагрузки R н.Для выходной цепи усилитель представляет источник ЭДС Е вых с внутренним сопротивлением R вых.

Для усиливаемого сигнала усилитель характеризуется входным сопротивлением
. Сопротивление R вых определяют между выходными зажимами усилителя при отключенной нагрузке.

R вт R вых I вых =I н

Е вх U вх R вх E вых U вых R н

Усилитель

Протекающий от источника сигнала в усилитель ток и входное напряжение определяют формулами:

.

В зависимости от соотношения между R вт и R вх источник сигнала может работать в режимах: а) холостого хода, если R вх > R вт , когда
; б) короткого замыкания, если R вх < R вт и значит I вх  E вх / R вт ; в) согласования, когда R вх  R вт и в усилитель передается наибольшая мощность.

Мощность, передаваемая усилителю:

Приравняв нулю производную
, получим
. При этом в усилитель поступает
, т.е. четверть потенциальной мощности источника сигнала. Аналогичные режимы работы возможны и для выходной цепи.

При согласовании нагрузки и выходного сопротивления усилителя в нагрузке выделяется наибольшая мощность.

Выходная мощность . При чисто активной нагрузке и синусоидальном напряжении

где
- действующее и амплитудное значение выходного напряжения;
- амплитуда тока в нагрузке.

Коэффициент полезного действия . КПД
, где Р  – мощность, потребляемая усилителем от источников питания.

Следует отметить, что любой усилитель, на каком бы виде энергии он ни функционировал, является, по существу, лишь регулятором для мощности Р вых , пропускаемой от источника питания в нагрузку, а входной сигнал лишь регулирует значение этой пропускаемой мощности, затрачивая на это мощность Р вх .

Амплитудная характеристика усилителя. Амплитудная характеристика отражает зависимость амплитуды выходного напряжения от изменения амплитуды напряжения на входе. По этой характеристике судят о возможных пределах изменения входного и выходного сигналов усилителя. Её снимают при гармоническом входном сигнале для области средних частот.

Типичный вид амплитудной характеристики показан на рисунке. Участок 1-3 соответствует пропорциональному усилению. Участок ниже точки 1 амплитудной характеристики не используется, так как полезный сигнал трудно отличить от собственных шумов усилителя.

U вых. м .

U max 3 U вых.3

U min . 1 U вых.1

Участок 3 – 4 соответствует нарушению пропорциональной зависимости выходного напряжения от входного. Участок за точкой 4 соответствует состоянию ограничения выходного сигнала. Отношение амплитуды максимально допустимого выходного напряжения к минимально допустимому
, называетсядинамическим диапазоном усилителя .

Амплитудно-частотная характеристика . (АЧХ) Это зависимость коэффициента усиления (по напряжению) от частоты усиливаемого сигнала:

.

Примерный вид АЧХ для различных типов усилителей показан на рисунке классификации усилителей по частотному диапазону усиливаемых сигналов. Величина
указывает на полосу пропускания усилителя в частотном диапазоне.

Фазочастотная характеристика . (ФЧХ) Она представляет собой зависимость угла сдвига фаз “” между входным и выходным напряжениями усилителя от частоты сигнала.

Нелинейные искажения . Они представляют собой степень изменения формы кривой усиливаемого сигнала. Основная причина их возникновения – нелинейность характеристик усилительных элементов. На рисунке в качестве примера приведена входная характеристика транзистора, включенного по схеме с ОЭ, и показано, как искажается форма тока
, т.е. входного тока усилителя, по сравнению с синусоидальной формой входного напряжения
. В результате нелинейных искажений выходное напряжение усилителя содержит кроме постоянной составляющей и основной (первой) ещё и высшие гармонические составляющие.

I б I б + I m

Степень искажения сигнала усилителем оценивается коэффициентом нелинейных искажений, представляющим квадратный корень из отношения мощностей всех высших гармоник выходного сигнала к полной выходной мощности:

,

или близким к нему коэффициентом гармоник:

,

где
- действующие (или амплитудные) значения первой, второй и т.д. гармоник выходного напряжения при синусоидальном сигнале на входе. Эти коэффициенты часто выражают в %.

Усилитель низкой частоты (УНЧ) это такое устройство для усиления электрических колебаний, соответствующих слышимому человеческим ухом диапазону частот, т.е УНЧ должны усиливать в диапазоне частот от 20 ГЦ до 20 кГц, но некоторые УНЧ могут иметь диапазон и до 200 кГц. УНЧ может быть собран в виде самостоятельного устройства, или использоваться в более сложных устройствах - телевизорах, радиоприёмниках, магнитолах и т.п

Особенность этой схемы в том, что 11 вывод микросхемы TDA1552 управляет режимами работы - Обычным или MUTE.

С1, С2 - проходные блокировочные конденсаторы, используются для отсекания постоянной составляющей синусоидального сигнала. Электролитические конденсаторы лучше не использовать. Микросхему TDA1552 желательно разместить на радиаторе с использованием теплопроводящей пасты.

В принципе представленные схемы является мостовыми, т.к в одном корпусе микросборки TDA1558Q имеется 4 канала усиления, поэтому выводы 1 - 2, и 16 - 17 соединены попарно, и на них поступают входные сигналы обоих каналов через конденсаторы С1 и С2. Но если вам нужен силитель на четыре колонки, тогда можно воспользоваться вариантом схемы ниже, правда мощность при этом будет в 2 раза меньше на канал.

Основа конструкции микросборка TDA1560Q класса H. Максимальная мощность такого УНЧ достигает 40 Вт, при нагрузки в 8 Ом. Такая мощность обеспечивается увеличенным напряжением примерно в два раза, благодаря работе емкостей.

Выходная мощность усилителя в первой схеме собранного на TDA2030- 60Вт при нагрузке 4 Ома и 80Вт при нагрузке 2 Ома; TDA2030А 80Вт при нагрузке 4 Ома и 120Вт при нагрузке 2 Ома. Вторая схема рассмотренного УНЧ уже с выходной мощностью 14 Ватт.


Это типовой двух канальный УНЧ. С небольшой обвязкой из пассивных радиокомпонентов на этой микросхеме можно собрать превосходный стереоусилитель с выходной мощностью на каждом канале 1 Вт.

Микросборка TDA7265 - представляет из себя достаточно мощный двухканальный Hi-Fi усилитель класса АВ в типовом корпусе Multiwatt, микросхема нашла свою нишу в высококачественной стерео технике, Hi-Fi класса. Проста схемы включения и отличные параметры сделали TDA7265 прекрасно сбалансированным и великолепным решением при построении радиолюбительской высококачественной аудио аппаратуры.

Сначала был собран тестовый вариант на макетной плате в точности как по даташиту по ссылке выше, и успешно испытан на колонках S90. Звук неплохой, но чего то не хватало. Через некоторое время решил переделать усилитель по измененной схеме.

Микросборка представляет собой счетверенный усилитель класса AB, разработанный специально для использования в автомобильных аудиоустройствах. На основе этой микросхемы можно построить несколько качественных вариантов УНЧ с задействованием минимума радиокомпонентов. Микросхему можно посоветовать начинающим радиолюбителям, для домашней сборки различных акустических систем.

Основным достоинством схемы усилителя на этой микросборке является наличие в ней четырех независимых друг от друга каналов. Работает данный усилитель мощности в режиме AB. Ее можно применять для усиления различных стерео сигналов. При желании можно подсоединить к акустической системе автомобиля, либо персонального компьютера.

TDA8560Q является всего лишь более мощным аналогом широко известной радиолюбителям микросхемы TDA1557Q. Разработчики только усилили выходной каскад, благодаря чему УНЧ отлично подходит к двух омной нагрузке.

Микросборка LM386, это готовый усилитель мощности, который можно применять в конструкциях с низким питающим напряжением. Например при питании схемы от аккумуляторной батареи. LM386 имеет коэффициент усиления по напряжению около 20. Но подключая внешние сопротивления и емкости можно регулировать усиление до 200, а напряжение на выходе автоматически становится равным половине питающего.

Микросборка LM3886 является усилителем высокого качества с мощностью на выходе 68 ватт при 4 Ом нагрузке или 50 ватт на 8 Ом. В пиковый момент мощность на выходе способна достигать значения в 135 Вт. К микросхеме применим широкий диапазон напряжений от 20 до 94 вольт. Причем можно использовать как двуполярные, так и однополярные блоки питания. Коэффициент гармоник УНЧ составляет 0,03 %. Причем это по всему частотному интервалу от 20 до 20000 Гц.


В схеме используются две ИС в типовом включении - КР548УH1 в качестве микpофонного усилителя (устанавливается в тангенте) и (TDA2005) в мостовомвключении в качестве оконечного усилителя (устанавливается в коpпусе сиpены вместо pодной платы). В качестве акустического излучателся используется доpаботанная сиpена от сигнализации с магнитной головкой (пьезоизлучатели не годятся). Доpаботка заключается в pазбиpании сиpены и выкидывании pодной пищалки с усилителем. Микpофон - электpодинамический. Пpи использовании электpетного микpофона (напpимеp, от китайских телефонных тpубок), точку соединения микpофона с конденсатоpом нужно чеpез pезистоp ~4.7К подключить к +12В (после кнопки!). Резистоp 100К в цепи обpатной связи К548УH1 пpи этом лучше поставить сопpотивлением ~30-47К. Данный pезистоp используется для настpойки гpомкости. Микpосхему TDA2004 лучше установить на небольшой pадиатоp.

Испытывать и эксплуатиpовать - с излучателем под капотом, а тангентой в салоне. Иначе неизбежен визг из-за самовозбуждения. Подстpоечным pезистоpом устанавливается уpовень гpомкости, чтобы не было сильных искажений звука и самовозбуждения. Пpи недостаточной гpомкости (напpимеp, плохой микpофон) и явном запасе мощности излучателя можно повысить усиление микpофонного усилителя, увеличив в несколько pаз номинал подстpоечника в цепи обpатной связи (тот, котоpый по схеме 100К). По-хорошему - нужен бы еще пpимамбас, не дающий схеме самовозбуждаться - фазосдвигающая цепочка какая-нибудь или фильтp на частоту возбуждения. Хотя схема и без усложнений работает отлично



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows