Как определить конденсатор по внешнему виду. Что такое конденсатор и для чего он нужен. Принцип действия и для чего нужен конденсатор

Как определить конденсатор по внешнему виду. Что такое конденсатор и для чего он нужен. Принцип действия и для чего нужен конденсатор

09.04.2019

Электрические конденсаторы являются средством накопления электроэнергии в электрическом поле. Типичными областями применения электрических конденсаторов являются сглаживающие фильтры в источниках электропитания, цепи межкаскадной связи в усилителях переменных сигналов, фильтрация помех, возникающих на шинах электропитания электронной аппаратуры и т д.

Электрические характеристики конденсатора определяются его конструкцией и свойствами используемых материалов.

При выборе конденсатора для конкретного устройства нужно учитывать следующие обстоятельства:

а) требуемое значение емкости конденсатора (мкФ, нФ, пФ),

б) рабочее напряжение конденсатора (то максимальное значение напряжения, при котором конденсатор может работать длительно без изменения своих параметров),

в) требуемую точность (возможный разброс значений емкости конденсатора),

г) температурный коэффициент емкости (зависимость емкости конденсатора от температуры окружающей среды),

д) стабильность конденсатора,

е) ток утечки диэлектрика конденсатора при номинальном напряжении и данной температуре. (Может быть указано сопротивление диэлектрика конденсатора.)

В табл. 1 - 3 приведены основные характеристики конденсаторов различных типов.

Таблица 1. Характеристики керамических, электролитических конденсаторов и конденсаторов на основе металлизированной пленки

Параметр конденсатора Тип конденсатора
Керамический Электролитический На основе металлизированной пленки
От 2,2 пФ до 10 нФ От 100 нФ до 68 мкФ 1 мкФ до 16 мкФ
± 10 и ± 20 -10 и +50 ± 20
50 - 250 6,3 - 400 250 - 600
Стабильность конденсатора Достаточная Плохая Достаточная
От -85 до +85 От -40 до +85 От -25 до +85

Таблица 2. Характеристики слюдяных конденсаторов и конденсаторов на основе полиэстера и полипропилена

Параметр конденсатора Тип конденсатора
Слюдяной На основе полиэстера На основе полипропилена
Диапазон изменения емкости конденсаторов От 2,2 пФ до 10 нФ От 10 нФ до 2,2 мкФ От 1 нФ до 470 нФ
Точность (возможный разброс значений емкости конденсатора), % ± 1 ± 20 ± 20
Рабочее напряжение конденсаторов, В 350 250 1000
Стабильность конденсатора Отличная Хорошая Хорошая
Диапазон изменения температуры окружающей среды, о С От -40 до +85 От -40 до +100 От -55 до +100

Таблица 3. Характеристики слюдяных конденсаторов на основе поликарбоната, полистирена и тантала

Параметр конденсатора

Тип конденсатора

На основе поликарбоната

На основе полистирена

На основе тантала

Диапазон изменения емкости конденсаторов От 10 нФ до 10 мкФ От 10 пФ до 10 нФ От 100 нФ до 100 мкФ
Точность (возможный разброс значений емкости конденсатора), % ± 20 ± 2,5 ± 20
Рабочее напряжение конденсаторов, В 63 - 630 160 6,3 - 35
Стабильность конденсатора Отличная Хорошая Достаточная
Диапазон изменения температуры окружающей среды, о С От -55 до +100 От -40 до +70 От -55 до +85

Керамические конденсаторы применяются в разделительных цепях, электролитические конденсаторы используются также в разделительных цепях и сглаживающих фильтрах, а конденсаторы на основе металлизированной пленки применяются в высоковольтных источниках электропитания.

Слюдяные конденсаторы используются в звуковоспроизводящих устройствах, фильтрах и осцилляторах. Конденсаторы на основе полиэстера - это конденсаторы общего назначения, а конденсаторы на основе полипропилена применяются в высоковольтных цепях постоянного тока.

Конденсаторы на основе поликарбоната используются в фильтрах, осцилляторах и времязадающих цепях. Конденсаторы на основе полистирена и тантала используются также во времязадающих и разделительных цепях. Они считаются конденсаторами общего назначения.

Небольшие замечания и советы по работе с конденсаторами

Всегда нужно помнить, что рабочие напряжения конденсаторов следует уменьшать при возрастании температуры окружающей среды, а для обеспечения высокой надежности необходимо создавать большой запас по напряжению .

Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому конденсаторы всегда работают с определенным запасом надежности. Тем не менее нужно обеспечивать их реальное рабочее напряжение на уровне 0,5-0,6 разрешенного значения.

Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике.

Конденсаторы большой емкости с малыми токами утечки способны довольно долго сохранять накопленный заряд после выключения аппаратуры. Для обеспечения большей безопасности следует в цепь разряда подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).

В высоковольтных цепях часто используется последовательное включение конденсаторов. Для выравнивания напряжений на них нужно параллельно каждому конденсатору подключить резистор сопротивлением от 220к0м до 1 МОм.

Рис. 1 Использование резисторов для выравнивания напряжений на конденсаторах

Керамические проходные конденсаторы могут работать на очень высоких частотах (свыше 30 МГц) . Их устанавливают непосредственно на корпусе прибора или на металлическом экране.

Неполярные электролитические конденсаторы имеют емкость от 1 до 100 мкФ и рассчитаны на 50 В. Кроме того, они дороже обычных (полярных) электролитических конденсаторов.

При выборе конденсатора фильтра источника электропитания следует обращать внимание на амплитуду импульса зарядного тока, который может значительно превосходить допустимое значение . Например, для конденсатора емкостью 10 000 мкФ эта амплитуда не превышает 5 А.

При использовании электролитического конденсатора в качестве разделительного необходимо правильно определить полярность его включения . Ток утечки этого конденсатора может влиять на режим усилительного каскада.

В большинстве случаев применения электролитические конденсаторы взаимозаменяемы . Следует лишь обращать внимание на значение их рабочего напряжения.

Вывод от внешнего слоя фольги полистиреновых конденсаторов часто помечается цветным штрихом. Его нужно присоединять к общей точке схемы.

Рис. 2 Эквивалентная схема электрического конденсатора на высокой частоте

Цветовая маркировка конденсаторов

На корпусе большинства конденсаторов написаны их номинальная емкость и рабочее напряжение. Однако встречается и цветовая маркировка.

Некоторые конденсаторы маркируют надписью в две строки. На первой строке указаны их емкость (пФ или мкФ) и точность (К = 10%, М - 20%). На второй строке приведены допустимое постоянное напряжение и код материала диэлектрика.

Монолитные керамические конденсаторы маркируются кодом, состоящим из трех цифр. Третья цифра показывает, сколько нулей нужно подписать к первым двум, чтобы получить емкость в пикофарадах.

(288 кб)

Пример. Что означает код 103 на конденсаторе? Код 103 означает, что нужно приписать три нуля к числу 10, тогда получится емкость конденсатора - 10 000 пФ.

Пример. Конденсатор маркирован 0,22/20 250. Это означает, что конденсатор имеет емкость 0,22 мкФ ± 20% и рассчитан на постоянное напряжение 250 В.


К атегория:

Производство радиоаппаратуры

Конденсаторы постоянной емкости

Конденсаторы постоянной емкости применяют в различных схемах для разделения переменной и постоянной составляющих тока и сглаживания пульсации напряжений выпрямителя. В сочетании с другими элементами схем конденсаторы образуют резонансные контуры, широко используемые в радиоаппаратуре.

Конденсаторы постоянной емкости классифицируют по величине номинальной емкости, классу точности, номинальному рабочему напряжению, назначению, материалу диэлектрика и по конструктивным признакам.

Номинальные величины емкостей конденсаторов установлены ГОСТ 2519 - 60.

При изготовлении конденсаторов действительное значение емкости отличается от номинального, обозначенного в маркировке. Допустимое отклонение емкости от номинального называется допуском. По этому принципу все конденсаторы разделяют на пять классов: 0, 1, II, III , IV, допуски их соответственно составляют ±2%; ±5%; ±10%; ±20% и от - 20 до + 50%.

В зависимости от назначения различают контурные, разделительные, блокировочные и фильтровые конденсаторы.

По материалу диэлектрика конденсаторы делят на слюдяные, керамические, бумажные, металлобумажные, бумаго-масляные, пленочные, стеклоэмалевые, стеклокерамические, электролитические, воздушные, вакуумные, газонаполненные.

По конструктивному признаку конденсаторы подразделяют на трубчатые, дисковые, бочоночные, горшковые, опрессованные и герметизированные, плоские и цилиндрические и т. д.

Независимо от вида конденсатор характеризуется рабочим напряжением. Рабочим напряжением называется напряжение, под которым обкладки конденсатора могут длительно находиться без пробоя разделяющего их диэлектрика. Рабочее напряжение выражают в вольтах.

Большое значение для нормальной работы конденсатора имеет сопротивление его изоляции. При малом сопротивлении изоляции возникают утечки, нарушающие нормальную работу схемы. Потери в конденсаторе характеризуются тангенсом угла диэлектрических потерь, выражающим отношение мощности активных потерь к реактивной мощности конденсатора.

В маломощных конденсаторах потери энергии в основном вызываются проводимостью диэлектрика и диэлектрическим гистерезисом, т. е. потерями на поворот полярных молекул в направлении поля при приложении напряжения к обкладкам. Потери в обкладках и выводах малы, поэтому ими обычно пренебрегают.

Одной из важнейших характеристик конденсатора является стабильность - неизменность величины емкости конденсатора во время работы. Изменение емкости может быть как временным, так и необратимым. Основным фактором, влияющим на стабильность емкости конденсатора, является воздействие температуры окружающей среды и нагрев конденсатора за счет рассеиваемой на нем мощности. При повышении температуры увеличиваются геометрические размеры материала, что и влечет за собой временное (до возвращения температуры к первоначальному значению) изменение емкости.

Однако повышение температуры может привести и к необратимым изменениям емкости. Например, в конденсаторе может произойти перегруппировка воздушных зазоров между обкладками и диэлектриком. Необратимое изменение емкости происходит также вследствие старения диэлектрика, которое заключается в изменении его диэлектрической проницаемости.

Меры борьбы против изменения емкости конденсаторов - пропитка их специальными составами (касторовое масло, церезин, вазелин и т. д.) и серебрение пластинок слюды вместо применения металлической фольги. В особо ответственных случаях конденсаторы герметизируют.

При маркировке конденсаторов указывают тип, номинальное рабочее напряжение, номинальную емкость (в пикофарадах или микрофарадах), класс точности (допустимое отклонение от номинальной емкости в процентах).

Слюдяные и стеклоэмалевые конденсаторы имеют дополнительные указания на принадлежность к группе ТКЕ (температурный коэффициент емкости) в виде букв А, Б, В, Г для слюдяных и Р, О, М, П для стеклоэмалевых. Температурный коэффициент емкости керамических конденсаторов обозначают цветным кодом: корпуса конденсаторов окрашивают в цвета группы ТКЕ .

Рис. 1. Слюдяные конденсаторы: а -КСО; б – КСГ

Конденсаторы КСО могут работать в температурном интервале от 60 до 4 70° С, при относительной влажности воздуха до 80% (кратковременно - до 98%) и при атмосферном давлении не ниже 5 мм рт. cm (для конденсаторов на рабочее напряжение до 500 в). При монтаже конденсаторов КСО в контурах различных видов аппаратуры следует помнить, что они имеют разный ТКЕ .

Кроме того, выпускаются температуростойкие опрессованные слюдяные конденсаторы КСОТ , а также конденсаторы повышенной надежности К31У-ЗЕ.

Помимо опрессованных конденсаторов, выпускаются слюдяные герметизированные конденсаторы в металлических и керамических корпусах.

Конденсаторы КСГ (конденсаторы слюдяные герметизированные) в металлических корпусах (рис. 39, б) бывают двух видов: КСГ -1 и КСГ -2. Конденсаторы КСГ -1 используются на номинальные емкости 470 - 20000 пф, а КСГ -2 - от 0,02 до 0,1 мкф при рабочем напряжении 500 и 1000 в. Эти конденсаторы выпускаются 0, I, II и III классов точности.

Конденсаторы СГМ (слюдяные герметизированные малогабаритные) во влагонепроницаемых керамических корпусах, опаянных по торцам, имеют серебряные, нанесенные на слюду обкладки. Их выпускают по габаритным размерам четырех видов: СГМ -1, СГМ -2, СГМ -3 и СГМ -4. Вес конденсаторов СГМ от 3 до 10 г, номинальные значения емкости от 100 до 10 ООО пф с допусками по 0 I, II и III классам точности. Они рассчитаны на рабочее напряжение от 250 до 1500 в. Во влажной атмосфере эти конденсаторы работают более устойчиво, чем конденсаторы КСО .

Для изготовления слюдяных конденсаторов применяют слюду высшего сорта - мусковит. Обкладки конденсаторов изготовляют из тонкой металлической фольги (алюминиевой, свинцово-оловянной или медной) толщиной 7 - 100 мкм.

В качестве обкладок высокостабильных конденсаторов применяют серебро, которое вжигают или наносят методом распыления.

Керамические конденсаторы. Керамические конденсаторы разделяют по конструкции на трубчатые и дисковые. Более распространенными являются трубчатые конденсаторы КТК и КТ (конденсаторы трубчатые керамические). Конденсатор КТК (рис. 40, а) представляет собой тонкостенную керамическую трубочку, на внешнюю и внутреннюю поверхности которой нанесены обкладки из тонких слоев серебра. Выводы от обкладок выполнены из медной посеребренной проволоки.

Конденсаторы КТМ (конденсаторы трубчатые малогабаритные) имеют аналогичную с конденсаторами КТК конструкцию, но размеры их меньше.

Очень удобны при монтаже так называемые опорные керамические конденсаторы КО. В них внешняя обкладка соединена с болтом, который служит одновременно для укрепления конденсатора на металлическом шасси (панели) и для надежного заземления этой обкладки. Внутренняя обкладка имеет вывод в виде лепестка.

В радиоаппаратуре, предназначенной для работы при повышенной влажности, рекомендуется применять трубчатые конденсаторы КГК (конденсаторы герметизированные керамические), имеющие влагонепроницаемую керамическую оболочку.

Основой конденсаторов КДК и КД (конденсаторы дисковые керамические) сужит керамическая пластина, выполненная в виде диска. Обкладками его являются тонкие слои серебра, нанесенные на каждую из поверхностей этой пластины. Конденсаторы КДК (рис. 2, в) в зависимости от диаметра диска разделяют на три типа:

Рис. 2. Керамические конденсаторы: а -КТК; б-КГК : в-КДК

Конденсаторы КДМ (конденсаторы дисковые малогабаритные), предназначенные для малогабаритной аппаратуры, собранной на полупроводниковых приборах, имеют диаметр 4 мм. Выводы КДК и КДМ - проволочки, припаянные к обкладкам.

Конденсаторы КДУ (конденсаторы дисковые для ультракоротковолновых цепей) имеют такой же диаметр, что и КДК , но выводы их сделаны в виде коротких широких лепестков.

В конденсаторах КДО (конденсаторы дисковые опорные) одна из обкладок припаяна к головке болта, который служит для крепления конденсатора на шасси и надежного соединения этой обкладки с шасси. Вторая обкладка имеет вывод в виде лепестка.

Рис. 3. Секция бумажного конденсатора: 1 - конденсаторная бумага: 2 - фольга

В качестве диэлектрика в керамических конденсаторах применяют специальную конденсаторную керамику, характеризующуюся относительно высокой диэлектрической проницаемостью и малыми потерями. Конденсаторы КТК выпускают емкостью от 2 до 100 пф, а конденсаторы КДК -от 1 до 75 пф по 0, I, II и III классам точности. Конденсаторы КДМ изготовляют на номинальные емкости от 1 до 220 пф по I, II и III классам точности, а конденсаторы КТМ емкостью от 1 до 10 000 пф также по I, II и III классам точности.

В последнее время широкое применение в радиоаппаратуре на полупроводниковых приборах нашли керамические конденсаторы с большими значениями емкости (порядка 0,01 мкф) при малых габаритах КЛС (керамический литой секционированный), КП (керамический пластинчатый) и КПС (керамический пластинчатый сегнетоэлектрический).

Бумажные конденсаторы. В бумажных конденсаторах в качестве диэлектрика используют конденсаторную бумагу толщиной от 4 до 10 мкм, а в качестве обкладок - алюминиевую или свин-цово-оловянную фольгу толщиной 7-7,5 мкм.

Секция бумажного конденсатора состоит из лент металлической фольги 2, между которыми проложена конденсаторная бумага /; число слоев бумаги должно быть не менее двух. При одном слое бумаги сильно возрастет вероятность быстрого пробоя конденсатора, так как бумага содержит определенное количество электропроводящих включений.

В производстве радиоаппаратуры применяют главным образом конденсаторы КБГ (конденсаторы бумажные герметизированные). Этот тип конденсаторов имеет ряд разновидностей:
— КБГ -И - в цилиндрическом корпусе из керамики или стекла;
— КБГ -М1 и КБГ -М2 - в металлическом корпусе с одним или мя изолированными от корпуса выводами (рис. 42, б); КБГ -МП - в металлическом прямоугольном корпусе, плоский;
— КБГ -МН-в металлическом прямоугольном корпусе, нормальный.

Номинальные величины емкостей конденсаторов КБГ -И, КБГ -МН, КБГ -МП от 470 пф ДО 10 мкф при рабочих напряжениях 200, 400, 600, 1000 и 1500 в, а конденсаторов КБГ -М1 и КБГ -М2 от 0,1 до 0,25 мкф при рабочих напряжениях 200, 400 или 600 в.

Для малогабаритной аппаратуры на полупроводниковых приборах выпускаются специальные конденсаторы БМ, БГМ (бумажные герметизированные малогабаритные - рис. 42, д) и БГМТ (бумажные герметизированные малогабаритные термостойкие).

Номинальные емкости конденсаторов БМ: от 510 до 2200 пф при рабочем напряжении 300 в; от 3300 пф до 0,03 мкф при рабочем напряжении 200 в; 0,04 и 0,05 мкф при рабочем напряжении 150 в. Эти конденсаторы изготовляются по II и III классам точности.

Конденсаторы БГМ (БГМ -1 и БГМ -2) выпускаются с рабочим напрямышленностью, следует отметить малогабаритные опреесованные конденсаторы К40П-1, герметизированные К40П-2, негерметизи-рованные К40П-3, а также термостойкие К40У-9 (до + 125 °С).

Рис. 4. Бумажные конденсаторы: а - КБГ -И; б - КБГ -М; в -КБГ-МП; г - КБГ -МН; 3 -БГМ; е - БМ

Технология изготовления бумажных конденсаторов включает намотку секций, прессование, сушку, пропитку и сборку.

Металлобумажные конденсаторы. Металлобумажные конденсаторы получили широкое распространение, так как они имеют относительно малые габариты (малый объем и вес на единицу емкости) и в то же время обладают хорошими изоляционными свойствами. Обкладки металлобумажного конденсатора выполнены в виде слоя металла толщиной до сотых долей микрона. Металл наносят на бумажную ленту методом испарения под вакуумом.

Металлобумажные конденсаторы выпускают в металлических герметизированных корпусах прямоугольной или цилиндрической формы. Они имеют маркировку МБГП (металлобумажные герметизированные в корпусе прямоугольной формы), МБГЦ (металлобумажные герметизированные в корпусе цилиндрической формы), МБ ГО (металлобумажные герметизированные, один слой диэлектрика), МБГЧ (металлобумажные герметизированные частотные), МБ Г (металлобумажные герметизированные термостойкие).

В зависимости от назначения эти конденсаторы изготовляют емкостью от 0,025 до 30 мкф на рабочие напряжения от 160 до 1500 в. .Конденсаторы МБМ (металлобумажные малогабаритные) на рабочее напряжение 160 в предназначены для работы в аппаратуре на полупроводниковых приборах. Некоторые типы металло-бумажных конденсаторов показаны на рис. 5.

В качестве металлического покрытия металлобумажных конденсаторов обычно применяют цинк, алюминий и никель. Так как нанесенный на бумагу слой металла очень тонок и склонен к окислению, срок пребывания металлизированной бумаги на открытом воздухе ограничен. Покрытия из алюминия и никеля по сравнению с цинковым менее подвержены коррозии.

Металлобумажные конденсаторы самовосстанавливаются после электрического пробоя. Самовосстановление происходит вследствие того, что запасенный в конденсаторе или поступающий к нему извне электрической энергии оказывается достаточно для испарения слоя металла в месте пробоя и обособления тем самым поврежденного участка от остального металлического покрытия. Наилучшими свойствами самовосстановления обладают конденсаторы с цинковым покрытием.

Эффект самовосстановления позволяет изготовлять металлобумажные конденсаторы с одним слоем диэлектрика в отличие от конденсаторов с обкладками из фольги.

Металлобумажные конденсаторы, как и обычные бумажные, подвергают пропитке, которой предшествует тщательная вакуумная сушка.

Пленочные конденсаторы. В качестве диэлектрика в конденсаторах этой группы применяют органические высокомолекулярные пленки. Некоторые типы пленочных конденсаторов показаны на 6. При их производстве наибольшее применение получили пленки из полистирола и фторопласта. Полистирол относится к чис-неполярных диэлектриков и поэтому широко применяется для производства конденсаторов, работающих как в низкочастотных, так и в высокочастотных цепях.

Рис. 5. Металлобумажные конденсаторы: а - МБГП ; б - МБГЦ ; в -МБГО; г -МБГТ

Полистирольные конденсаторы характеризуются малым тангенсом угла диэлектрических потерь в широком интервале частот, относительно малым температурным коэффициентом емкости (-150-Ю-6 на ГС) и высоким сопротивлением изоляции. Существенным недостатком полистирольных конденсаторов. является их низкая термостойкость (предельная рабочая температура 60-70° С).

Высокой термостойкостью обладают конденсаторы, где диэлектриком служит фторопласт-4. Эти конденсаторы могут длительно работать при температурах до 200 и даже 250° С при кратковременной нагрузке. Фторопласт-4 неполярен. К числу полярных органических диэлектриков относится фторопласт-3. Конденсаторы, в которых диэлектриком служит фторопласт-3, применяют только в Цепях низкой частоты или постоянного тока ввиду повышенного значения тангенса угла диэлектрических потерь.

Секции пленочных полистирольных конденсаторов изготовляют на обычных намоточных станках, применяемых при производстве бумажных конденсаторов. В качестве обкладок в пленочных поли-стирольных конденсаторах используют алюминиевую фольгу. Толщина пленки 15-20 мкм\ толщина фольги 7,5 мкм.

Для уменьшения габаритов конденсаторов используют металлизированную полистирольную пленку, при этом надежность конденсатора сохраняется, а габаритные размеры уменьшаются в 5-6 раз по сравнению с конденсаторами, имеющими алюминиевые фольговые обкладки.

Рис. 6. Пленочные конденсаторы: О-ПГТ ; б-ПМ; e-ПСО ; г-ФГТИ

В качестве основного металла для обкладок применяют цинк, который осаждают на тонкий слой олова. Эти конденсаторы называют металлопленочными. Металлопленочные конденсаторы заключены в прямоугольные металлические корпуса с керамическими изоляторами или в трубчатые алюминиевые корпуса, залитые с торцов эпоксидной смолой.

Для изготовления конденсаторов из фторопласта-4 применяют пленку толщиной от 5 до 40 мкм. Обкладками в них служит алюминиевая фольга толщиной 7,5 мкм. Фторопластовые конденсаторы делят на две группы: низковольтные, цилиндрический корпус которых выполнен из алюминия и имеет с торцовых сторон крышки из фторопласта-4, закрепленные завальцовкой краев корпуса, и высоковольтные - в керамических цилиндрических корпусах, с двух сторон корпуса которых приварены колпачки из инвара, что обеспечивает вакуумплочную герметизацию. Корпус высоковольтного

сонденсатора наполнен под давлением азотом, чтобы предотвратить возможный электрический пробой между закраинами обкладок и ионизацию газа.

Промышленностью выпускаются пленочные полистирольные конденсаторы ПО (открытый) и ПМ (малогабаритный) и фторопласто-вые для радиоаппаратуры низких напряжений (не более 1 кв) конденсаторы ФТ (термостойки до +200 °С). Из новых типов пленочных конденсаторов можно отметить конденсаторы К72П-6 (термостойкий, до+200 °С), К73П-2 (металлопленочный) и К76П-1 (лакопленоч-ный).

Электролитические конденсаторы. Электролитические конденсаторы разделяют на высоковольтные с рабочим напряжением 250- 450 в (емкость несколько сотен микрофарад), применяемые главным образом в сглаживающих фильтрах выпрямителей и развязывающих фильтрах, в анодных цепях экранных сеток, и низковольтные с рабочим напряжением 6-60 в (емкость до нескольких тысяч микрофарад), применяемые в полупроводниковой технике.

К. первой группе можно отнести конденсаторы КЭ (конденсаторы электролитические), изготовляемые на номинальные емкости от 5 до 2000 мкф и рабочее напряжение от 8 до 500 в. По конструкции они бывают трех видов: КЭ-1, КЭ-2 и КЭ-3.

К этой группе относят также конденсаторы ЭГЦ (конденсаторы электролитические герметизированные цилиндрические) емкостью от 5 до 50 мкф на рабочие напряжения от 6 до 500 в.

Ко второй группе можно отнести конденсаторы ЭМ (электролитические малогабаритные) и ЭМИ (электролитические миниатюрные). Они предназначены для работы в цепях постоянного и пульсирующего тока транзисторных малогабаритных узлов. Номинальное напряжение постоянного тока 3 в конденсаторов ЭМИ и от 4 до 150 в конденсаторов ЭМ, номинальная емкость 0,5; 1,25 и 10 мкф для ЭМИ и от 0,5 до 50 мкф для ЭМ. Допустимые отклонения действительной величины емкости от номинальной: от +80 до -20% для конденсаторов емкостью 0,5 мкф-, от + 200 до -10% для конденсаторов емкостью 1,25 и 10 мкф. Интервал рабочих температур от -20 до +50° С при относительной влажности воздуха не более 98% и атмосферном давлении 720-780 мм рт. ст.

Среди новых видов малогабаритных алюминиевых электролитических конденсаторов промышленностью выпускаются конденсаторы К50-3 на рабочие напряжения от 6 до 450 в, К50-ЗИ (импульсные), К50-6 (неполярные) и др.

На рис. 7 показаны типы некоторых электролитических конденсаторов, диэлектриком в которых служит оксидная пленка, обра зованная на алюминиевой фольге, выполняющей роль первой об кладки (анод) конденсатора, вторая обкладка - электролит, соприкасающийся с оксидной пленкой. Вторая лента из фольги (катодная) служит токоотводом к элек тролиту.

Оксидная пленка имеет тол щину 0,01-1,5 мкм и обладает униполярной (односторонней проводимостью, поэтому электролитические конденсаторы могут работать только в цепях постоянного или пульсирующего тока.

По конструкции и методу изготовления электролитические конденсаторы бывают жидкост ные (мокрые), оксидированный алюминиевый анод которых на ходится в жидком или полу жидком электролите, и сухие, получаемые намоткой лент алюминиевой фольги (оксидированной анодной и неоксидирован-ной катодной) и разделенные волокнистой прокладкой, пропитанной пастообразным или полужидким электролитом.

Наиболее широкое применение получили сухие электролитические конденсаторы. Для анодов этих конденсаторов применяют материал с содержанием от 99,8 до 99,99% алюминия и минимальным количеством железа.

Алюминиевая анодная фольга, применяемая в электролитических конденсаторах, имеет толщину 50-150 мкм.

Менее жесткие требования предъявляют к алюминию, используемому для изготовления катодов; в нем допускается до 0,4% примесей. Толщина катодной фольги 7,5-16 мкм.

В сухих электролитических конденсаторах для прокладки между алюминиевыми лентами применяют специальные сорта бумаги и хлопчатобумажной ткани, пропитанные электролитами.

В последнее время промышленность широко выпускает электролитические конденсаторы с диэлектриком из оксидной танталовой пленки, которая по сравнению с алюминиевой имеет более высоко-, значение диэлектрической проницаемости.

Рис. 7. Электролитические конденсаторы: а - КЭ 3; б -КЭ-1-ОМ; в -КЭ-2М; г - КЭГ -2; д - КЭГ -1М

Танталовые конденсаторы значительно меньше по габаритам, более надежны и имеют лучшие электрические характеристики, чем конденсаторы на основе алюминиевой оксидной пленки. Емкость п тангенс угла диэлектрических потерь сухого танталового конденсатора незначительно изменяются с изменением температуры вплоть до -60° С.

Жидкостные танталовые конденсаторы имеют цилиндрический анод, изготовленный из прессованного порошка тантала, термически обработанного в вакууме. Термическая обработка необходима для спекания зерен танталового порошка. Получаемая при этом пористая структура анода характеризуется большой активной поверхностью, способствующей увеличению емкости конденсатора. Этот способ увеличивает действующую поверхность анода в 40-50 раз по сравнению с герметической поверхностью цилиндра.

Диэлектриком в конденсаторе является тонкая пленка окиси тантала на поверхности зерен, а роль второй обкладки выполняет кислотный электролит.

На рис. 8 показано устройство жидкостного электролитического танталового конденсатора ЭТО .

Конденсатор ЭТО (электролитический танталовый с объемнопори-стым анодом) имеет несколько разновидностей: ЭТО -1, ЭТО -2 и ЭТО -3,4. Модификацией этого типа являются конденсаторы К52-2 и К52-3.

Из сухих танталовых конденсаторов выпускаются конденсаторы ЭТ (электролитический танталовый) и ЭТН (неполярный).

Дальнейшим конструктивным развитием конденсаторов этой группы являются танталовые конденсаторы с твердым электролитом. Анод такого конденсатора изготовлен в виде цилиндра из пористого спеченного тантала. Слой диэлектрика (окись тантала) на поверхности спрессованных частиц получают электролитическим путем. Роль второй обкладки в этом конденсаторе выполняет слой Двуокиси марганца, наносимый методом пиролиза (разложения) азотнокислого марганца.

Рис. 8. Устройство жидкостного электролитического танталового конденсатора ЭТО с объемно-пористым анодом: I - вывод; 2 - текстолитовое кольцо; 3 - тапталовая крышка; 4 - резиновое кольцо: 5 - электролит; 6 - анод; 7 -вкладыш из химически стойкого металла; 8 - стальной корпус; 9 - вывод катода; 10 - тан таловый стержень; 11 -фторопластовое кольцо

Температурная характеристика емкости конденсатора с твердьщ электролитом выгодно отличается от характеристики жидкостных электролитических танталовых конденсаторов, особенно при отрицательных температурах, когда жидкие электролиты густеют или затвердевают. Потери в конденсаторе с твердым электролитом мало зависят от температуры и сохраняются на одном уровне до весьма низких температур. Кроме того, при работе на высокой частоте характеристики конденсаторов оказываются также более благоприятными, чем у танталовых конденсаторов жидкостного типа. Длительное хранение конденсаторов с пористым танталовым анодом и твердым электролитом показало, что электрические характеристики их практически не меняются во времени.

Стеклоэмалевые конденсаторы (рис. 9). В конденсаторах этой группы диэлектриком являются тонкие слои стеклоэма-ли, а обкладками - серебряные пленки, наносимые на стекло-эмалевые слои методом вжигания. Примерный состав эмали: 15- 25% Si02; 3-11% Na20 + К20; 15-25% РЬО , остальное – окиси других двухвалентных металлов.

Стеклоэмалевые конденсаторы КС-1 и КС-2 имеют интервал рабочих температур от -60 до +100° С; сопротивление изоляции не менее 20 ООО Мом; тангенс угла потерь при температуре +20±5° С не более 15-1Q-4, а при + 100±5°С не более 20- Ю-4, температурный коэффициент емкости в интервале температур от +20 до 100° С равен +(65±35)-10-6; допускаемые отклонения ±2, ±5, ±10, ±20%.

Стеклоэмалевые конденсаторы применяют в радиоаппаратуре наравне со слюдяными и керамическими.

Особенности крепления к корпусу выводов конденсаторов КС создают некоторые неудобства при формовке выводов, что часто вызывает брак (отслоение пайки). Поэтому с конденсаторами КС необходимо осторожно обращаться на всех операциях, включая и регулировку.

Стеклоэмалевые конденсаторы постоянной емкости КС-1 предназначены для работы в цепях постоянного и переменного тока, а также в импульсных цепях. Интервал рабочих температур от -60 до +100 °С; относительная влажность до’98%, номинальное напряжение постоянного тока 300 в. Температурная стабильность емкости не более 0,1%. Допустимые отклонения действительных величин емкостей от номинальных: ±2% и ±5%.

Рис. 9. Стеклоэмалевый конденсатор

Подстроенные конденсаторы. Подстроечные конденсаторы (триммеры) применяют для подстройки высокочастотных колебательных контуров в процессе регулировки. Их изготовляют с воздушным или керамическим диэлектриком и для повышения стабильности емкости применяют керамические основания.

Рис. 10. Подстроечные конденсаторы: а - с воздушным диэлектриком; б - с керамическим диэлектриком; 1 - статор; 2 -ротор; 3 - выводы; 4 - отверстия для крепления

Керамические подстроечные конденсаторы КПК рассчитаны на рабочее напряжение 250 в и служат в основном для подстройки контуров высокой частоты в приемниках.

Конденсаторы КПК -1 имеют минимальные величины емкости 2, 4, 6 и 8 пф и максимальные соответственно 7, 15, 25 и 30 пф.

Конденсаторы КПК -2 и КПК -3 имеют минимальные емкости 6, 10 и 25 пф и максимальные 60, 100 и 150 пф.

Для малогабаритной аппаратуры выпускаются подстроечные конденсаторы КПК -МН (малогабаритные для навесного монтажа) и КПК -МП (малогабаритные для печатного монтажа).


В магазинах электротехники конденсаторы чаще всего можно увидеть в виде цилиндра, внутри которого располагается множество лент из пластин и диэлектриков.

Конденсатор – что такое?

Конденсатор – это часть электрической цепи, состоящей из 2 электродов, которые способны накапливать, сосредотачивать или передавать ток другим устройствам. Конструктивно электроды представляют собой обкладки конденсатора, у которых заряды противоположны. Для того чтобы устройство работало, между пластинами размещен диэлектрик – элемент, не позволяющий двум пластинам соприкоснуться друг с другом.

Определение конденсатора произошло от латинского слова «condenso», что обозначает уплотнение, сосредоточение.

Элементы для пайки емкостей служат для транспортировки, измерения, перенаправления и передачи электроэнергии и сигналов.

Где применяются конденсаторы

Каждый начинающий радиолюбитель часто задается вопросом: для чего нужен конденсатор? Новички не понимают, зачем он нужен, и ошибочно считают, что он может полноценно заменить батарейку или блок питания.

В комплектацию всех радиоустройств входят конденсаторы, транзисторы и резисторы. Данные элементы составляют кастет платы или целый модуль в схемах со статичными значениями, что делает его базой для любого электроприбора, начиная от небольшого утюга и заканчивая промышленными приборами.

Применение конденсаторов чаще всего наблюдается в качестве:

  1. Фильтрующего элемента для ВЧ и НЧ помех;
  2. Нивелира резких скачков переменного тока, а так для статики и напряжения на конденсаторе;
  3. Выравнивателя пульсаций напряжения.

Назначение конденсатора и его функции определяются целями использования:

  1. Общего назначения. Это конденсатор, в конструкции которого присутствуют только низковольтные элементы, расположенные на небольших платах, например, таких приборах, как телевизионный пульт, радио, чайник и т.д.;
  2. Высоковольтные. Конденсатор в цепи постоянного тока поддерживает производственные и технические системы, находящиеся под высоким напряжением;
  3. Импульсные. Емкостный формирует резкий скачок напряжения и подает его на принимающую панель устройства;
  4. Пусковые. Используются для пайки в тех устройствах, которые предназначены для запуска, включения/выключения приборов, например, пульт или блок управления;
  5. Помехоподавляющие. Конденсатор в цепи переменного тока используется в спутниковом, телевизионном и военном оборудовании.

Типы конденсаторов

Устройство конденсатора определятся видом диэлектрика. Он бывает следующих типов:

  1. Жидкий. Диэлектрик в жидком виде встречается нечасто, в основном, такой вид используется в промышленности или для радиоустройств;
  2. Вакуумный. Диэлектрик в конденсаторе отсутствует, а вместо него расположены пластины в герметичном корпусе;
  3. Газообразный. Основан на взаимодействии химических реакций и применяется для производства холодильного оборудования, производственных линий и установок;
  4. Электролитический конденсатор. Принцип основан на взаимодействии металлического анода и электрода (катода). Оксидный слой анода является полупроводниковой частью, вследствие чего такой вид элемента схемы считается наиболее производительным;
  5. Органический. Диэлектрик может быть бумажным, пленочным и т.д. Он не способен накапливать, а только лишь слегка нивелировать скачки напряжения;
  6. Комбинированный. Сюда относятся металло-бумажные, бумажно-пленочные и т.д. Коэффициент полезного действия увеличивается, если в состав диэлектрика входит металлическая составляющая;
  7. Неорганический. Выделяют наиболее распространенные: стеклянный и керамический. Их использование обуславливается долговечностью и прочностью;
  8. Комбинированный неорганический. Стекло-пленочный, а также стекло-эмалевый, которые выделяются отличными нивелирующими свойствами.

Виды конденсаторов

Элементы радиоплаты различаются по типу изменения емкости:

  1. Постоянные. Элементы поддерживают постоянную емкость напряжения до конца всего срока годности. Данный вид наиболее распространенный и универсальный, так как он подходит для того, чтобы сделать любой тип устройств;
  2. Переменные. Обладают способностью к перемене объема емкости при использовании реостата, варикапы или при изменении температурного режима. Механический метод с помощью реостата предполагает впайку дополнительного элемента на плату, в то время как при использовании вариконды изменяется лишь объем поступающего напряжения;
  3. Подстроечные. Являются наиболее гибким видом конденсатора, с помощью которого можно максимально быстро и эффективно увеличить пропускную способность системы при минимальных реконструкциях.

Принцип работы конденсатора

Рассмотрим, как работает конденсатор при подключении к источнику питания:

  1. Накопление заряда. При подключении к сети ток направляется на электролиты;
  2. Заряженные частицы распределяются на пластину, согласно своему заряду: отрицательные – на электроны, а положительные – на ионы;
  3. Диэлектрик служит преградой между двумя пластинами и не дает частицам смешиваться.

Определение емкости конденсатора проводится путем расчета отношения заряда одного проводника к его потенциальной мощности.

Важно! Диэлектрик также способен снимать образовавшееся напряжение на конденсаторе в процессе работы устройства.

Характеристики конденсатора

Характеристики условно делятся на пункты:

  1. Величина отклонения. В обязательном порядке каждый конденсатор перед тем, как попасть в магазин, проходит ряд тестов на производственной линии. После проведения испытаний каждой модели производитель указывает диапазон допустимых отклонений от исходного значения;
  2. Величина напряжения. В основном используются элементы напряжением 12 или 220 Вольт, но также существуют и на 5, 50, 110, 380, 660, 1000 и более Вольт. Для того чтобы избежать перегорания конденсатора, пробоя диэлектрика, лучше всего приобретать элемент с запасом напряжения;
  3. Допустимая температура. Данный параметр очень важен для мелких устройств, работающих от сети 220 Вольт. Как правило, чем больше напряжение, тем выше уровень допустимой температуры для работы. Температурные параметры измеряются с помощью электронного термометра;
  4. Наличие постоянного или переменного тока. Пожалуй, один из важнейших параметров, так как от него полностью зависит производительность проектируемого оборудования;
  5. Количество фаз. В зависимости от сложности устройства, можно использовать однофазные или трехфазные конденсаторы. Для подключения элемента напрямую достаточно однофазного, а если плата представляет собой «город», то рекомендуется использовать трехфазный, так как он более плавно распределяет нагрузку.

От чего зависит емкость

Емкость конденсатора зависит от типа диэлектрика и указывается на корпусе, измеряется в мкФ или uF. Варьируется в диапазоне от 0 до 9 999 пФ в пикофарадах, тогда как в микрофарадах – от 10 000 пФ до 9 999 мкФ. Эти характеристики прописаны в государственном стандарте ГОСТ 2.702.

Обратите внимание! Чем больше емкость электролитов, тем больше время зарядки, и тем больше заряда устройство сможет передать.

Чем больше величина нагрузки или мощность прибора, тем короче время разряда. При этом сопротивление играет немаловажную роль, так как от него зависит количество исходящего электропотока.

Главной частью конденсатора является диэлектрик. Он обладает следующим рядом характеристик, влияющих на мощность оборудования:

  1. Сопротивление изоляции. Сюда относится как внутренняя, так и внешняя изоляция, сделанная из полимеров;
  2. Максимальное напряжение. Диэлектрик определяет, какое напряжение конденсатор способен накапливать или передавать;
  3. Величина потерь энергии. Зависит от конфигурации диэлектрика и его характеристик. Как правило, энергия рассеивается постепенно или резкими импульсами;
  4. Уровень емкости. Для того чтобы конденсатор мог сохранять небольшое количество энергии непродолжительное время, необходимо, чтобы он поддерживал постоянный объем емкости. Чаще всего, он выходит из строя именно по причине невозможности пропускать заданный объем напряжения;

Полезно знать! Аббревиатура «АС», расположенная на корпусе элемента, обозначает переменное напряжение. Накопленное напряжение на конденсаторе невозможно использовать или передавать – его необходимо гасить.

Свойства конденсатора

Конденсатор выступает в роли:

  1. Индуктивной катушки. Рассмотрим на примере обычной лампочки: она загорится, только если подключить ее напрямую к источнику переменного тока. Отсюда вытекает правило, что чем больше емкость, тем мощнее будет световой поток лампочки;
  2. Накопителя заряда. Свойства позволяют ему быстро заряжаться и разряжаться, тем самым создавая сильнейший импульс с малым сопротивлением. Применяется для производства различных видов ускорителей, лазерных установок, электровспышек и т.д.;
  3. Аккумулятора полученного заряда. Мощный элемент способен продолжительное время сохранять полученную порцию тока, при этом он может служить адаптером для других устройств. По сравнению с аккумуляторной батареей, конденсатор теряет часть заряда по истечению времени, а также не способен вместить большой объем электричества, например, для промышленных масштабов;
  4. Зарядки электродвигателя. Подключение осуществляется через третий вывод (рабочее напряжение конденсатора на 380 или 220 Вольт). Благодаря новой технологии, стало возможным использование трехфазного двигателя (с поворотом фазы на 90 градусов), при использовании стандартной сети;
  5. Устройства-компенсатора. Используется в промышленности для стабилизации реактивной энергии: часть поступающей мощности растворяется и на выходе из конденсатора корректируется под определенный объем.

Видео

Многие интересуются, имеют ли конденсаторы типы? Конденсаторов в электронике существует множество. Такие показатели, как емкость, рабочее напряжение и допуск, являются основными. Не менее важен тип диэлектрика, из которого они состоят. В этой статье будет рассмотрено подробнее, какие типы конденсаторов бывают по виду диэлектрика.

Классификации конденсаторов.

Конденсаторы являются распространенными компонентами в радиоэлектронике. Они классифицируются по множеству показателей. Важно знать, какими моделями, в зависимости от характера изменения величины, представлены разные конденсаторы. Типы конденсаторов:

1. Устройства с постоянной емкостью.
2. Приборы с переменным видом емкости.
3. Построечные модели.

Тип диэлектрика конденсатора может быть разным:

Бумага;
- металлическая бумага;
- слюда; тефлон;
- поликарбонат;
- электролит.

По способу установки данные приборы предназначены для печатного и навесного монтажа. При этом типы корпусов конденсаторов SMD-модификации бывают:

Керамическими;
- пластиковыми;
- металлическими (алюминиевыми).

Следует знать, что приборы из керамики, пленки и неполярные виды не обладают маркировкой. Показатель их емкости колеблется от 1 пф до 10 мкф. А электролитные типы имеют форму бочонков в корпусе из алюминия и маркируются. Танталовый же тип производится в корпусах прямоугольной формы. Такие устройства бывают разного размера и расцветки: черные, желтые и оранжевые. На них также присутствует кодовая маркировка.

Электролитические конденсаторы из алюминия.

Основой электролитических конденсаторов из алюминия являются две тонкие скрученные алюминиевые полоски. Между ними расположена бумага, содержащая электролит. Показатель емкости этого прибора равен 0,1-100 000 uF. Кстати, в этом и заключается его основное преимущество перед другими видами. Максимальное напряжение равно 500 V.

К минусам относятся повышенная утечка тока и уменьшение емкости с возрастанием частоты. Поэтому в платах часто вместе с электролитическим конденсатором используется и керамический.

Также следует отметить, что данный тип отличается полярностью. Это означает, что вывод устройства с минусовым показателем находится под отрицательным напряжением, в отличие от противоположного вывода. Если не придерживаться этого правила, то скорее всего, приспособление выйдет из строя. Поэтому рекомендуется применять его в цепях с наличием постоянного или пульсирующего тока, но ни в коем случае не переменного.

Электролитические конденсаторы: типы и предназначение.

Типы электролитических конденсаторов представлены широким рядом. Они бывают:

Полимерными;
- полимерными радиальными;
- с низким уровнем утечки тока;
- стандартной конфигурации;
- с широким диапазоном температур;
- миниатюрными;
- неполярными;
- с наличием жесткого вывода;
- низкоимпедансными.

Источник:

Где применяются электролитические конденсаторы? Типы конденсаторов из алюминия используются в разных радиотехнических устройствах, деталях компьютера, периферийных приборах типа принтеров, графических устройствах и сканерах. Также они применяются в строительном оборудовании, промышленных приборах для измерения, в сфере вооружения и космоса.

Конденсаторы КМ

Существуют и глиняные конденсаторы типа КМ. Они используются:
- в промышленном оборудовании;
- при создании приборов для измерения, отличающихся высокоточными показателями;
- в радиоэлектронике;
- в сфере военной индустрии.

Устройства подобного типа отличаются высоким уровнем стабильности. Основу их функциональности составляют импульсные режимы в цепях с переменным и неизменным током. Их характеризует высокий уровень сцепления обкладок из керамики и долгая служба. Это обеспечивается низким значением коэффициента емкостного непостоянства температур.

Конденсаторы КМ при маленьких размерах имеют высокий показатель емкости, достигающий 2,2 мкФ. Изменение ее значения в интервале рабочей температуры у данного вида составляет от 10 до 90%.

Типы керамических конденсаторов группы Н, как правило, применяются как переходники или же блокирующие устройства и т. п. Современные приборы из глины изготавливаются при помощи прессовки под давлением в целостный блок тончайших металлизированных керамических пластинок.

Высокий уровень прочности этого материала дает возможность использовать тонкие заготовки. В итоге емкость конденсатора, пропорциональная показателю объема, резко возрастает.

Устройства КМ отличаются высокой стоимостью. Объясняется это тем, что при их изготовлении используются драгоценные металлы и их сплавы: Ag, Pl, Pd. Палладий присутствует во всех моделях.

Конденсаторы на основе керамики.

Дисковая модель обладает высоким уровнем емкости. Ее показатель колеблется от 1 pF до 220 nF, а самое высокое рабочее напряжение не должно быть выше 50 V.

К плюсам данного типа можно отнести:

Малые потери тока;
- небольшой размер;
- низкий показатель индукции;
- способность функционировать при высоких частотах;
- высокий уровень температурной стабильности емкости;
- возможность работы в цепях с постоянным, переменным и пульсирующим током.

Основу многослойного устройства составляют чередующиеся тонкие слои из керамики и металла.

Этот вид похож на однослойный дисковый. Но такие устройства обладают высоким показателем емкости. Максимальное рабочее напряжение на корпусе этих приборов не указывается. Так же как и на однослойной модели, напряжение не должно быть выше 50 V.

Устройства функционируют в цепях с постоянным, переменным и пульсирующим током.

Плюсом высоковольтных керамических конденсаторов является их способность функционировать под высоким уровнем напряжения. Диапазон рабочего напряжения колеблется от 50 до 15000 V, а показатель емкости может составлять от 68 до 150 pF.

Могут функционировать в цепях с постоянным, переменным и пульсирующим током.

Танталовые устройства.

Современные танталовые устройства являются самостоятельным подвидом электролитического вида из алюминия. Основу конденсаторов составляет пентаоксид тантала.

Конденсаторы обладают небольшим показателем напряжения и применяются в случае необходимости использования прибора с большим показателем емкости, но в корпусе малого размера. У данного типа есть свои особенности:

Небольшой размер;
- показатель максимального рабочего напряжения составляет до 100 V;
- повышенный уровень надежности при долгом употреблении;
- низкий показатель утечки тока; широкий спектр рабочих температур;
- показатель емкости может колебаться от 47 nF до 1000 uF;
- устройства обладают более низким уровнем индуктивности и применяются в высокочастотных конфигурациях.

Минус этого вида заключен в высокой чувствительности к повышению рабочего напряжения.

Следует отметить, что, в отличие от электролитического вида, линией на корпусе помечается плюсовой вывод.

Разновидности корпусов.

Какие разновидности имеют танталовые конденсаторы? Типы конденсаторов из тантала выделяются в зависимости от материала корпуса.

1. SMD-корпус. Для изготовления корпусных устройств, которые используются при поверхностном монтаже, катод соединяется с терминалом посредством эпоксидной смолы с содержанием серебряного наполнителя. Анод приваривается к электроду, а стрингер отрезается. После формирования устройства на него наносится печатная маркировка. Она содержит показатель номинальной емкости напряжения.

2. При формировании этого типа корпусного устройства анодный проводник должен быть приварен к самому выводу анода, а затем отрезается от стрингера. В этом случае терминал катода припаивается к основе конденсатора. Далее конденсатор заполняется эпоксидом и высушивается. Как и в первом случае, на него наносится маркировка.

Конденсаторы первого типа отличаются большей степенью надежности. Но все типы танталовых конденсаторов применятся:

В машиностроении;
- компьютерах и вычислительной технике;
- оборудовании для телевизионного вещания;
- электрических приборах бытового назначения;
- разнообразных блоках питания для материнских плат, процессоров и т.д.

Поиск новых решений.

На сегодняшний день танталовые конденсаторы являются самыми востребованными. Современные производители находятся в поисках новых методов повышения уровня прочности изделия, оптимизации его технических характеристик, а также существенного понижения цены и унификации производственного процесса.

С этой целью пытаются снизить стоимость на основе составляющих компонентов. Последующая роботизация всего процесса производства также способствует падению цены на изделие.

Важным вопросом считается и уменьшение корпуса устройства при сохранении высоких технических параметров. Уже проводятся эксперименты на новых типах корпусов в уменьшенном исполнении.

Конденсаторы из полиэстера.

Показатель емкости этого типа устройства может колебаться от 1 nF до 15 uF. Спектром рабочего напряжения является показатель от 50 до 1500 V.

Существуют устройства с разной степенью допуска (допустимое отклонение емкости составляет 5%, 10% и 20%).

Это вид обладает стабильностью температуры, высоким уровнем емкости и низкой стоимостью, что и объясняет их широкое применение.

Конденсаторы с переменной емкостью.

Типы переменных конденсаторов обладают определенным принципом работы, который заключается в накоплении заряда на пластинах-электродах, изолированных посредством диэлектрика. Пластины эти отличаются подвижностью. Они могут перемещаться.

Подвижная пластина называется ротором, а неподвижная - статором. При изменении их положения изменятся и площадь пересечения, и, как следствие, показатель емкости конденсатора.

Конденсаторы бывают с двумя типами диэлектриков: воздушным и твердым.

В первом случае в роли диэлектрика выступает обыкновенный воздух. Во втором случае применяют керамику, слюду и др. материалы. Для увеличения показателя емкости устройства статорные и роторные пластины собираются в блоки, закрепленные на единой оси.

Конденсаторы с воздушным типом диэлектрика применяются в системах с постоянной регулировкой емкости (например, в узлах настройки радиоприемников). Такой тип устройства обладает более высоким уровнем стойкости, чем керамический.


Электрический конденсатор - один из самых распространених радио элементов, служит он для накопления электроэнергии (заряда). Самый простой конденсатор можно представить в виде двух металлических пластин (обкладок) и диэлектрика который находится между ними.

Когда к конденсатору подключают источник напряжения, то на его обкладках (пластинах) появляются противоположные заряды и возникнет электрическое поле притягивающие их друг к другу, и даже после отключения источника питания, такой заряд остается некоторое время и энергия сохраняется в электрическом поле между обкладками.

В электронных схемах роль конденсатора также может состоять не только в накоплении заряда но и в разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и разных других задачах.
В зависимости от задач и факторов работы, конденсаторы используются очень разных типов и конструкций. Здесь мы рассмотрим наиболее популярные типы конденсаторов.

Конденсаторы алюминиевые электролитические

Это может быть, например, конденсатор К50-35 или К50-2 или же другие более новые типы.
Они состоят из двух тонких полосок алюминия свернутых в рулон, между которыми в том же рулоне находится пропитанная электролитом бумага в роли диэлектрика.
Рулон находится в герметичном алюминиевом цилиндре, чтобы предотвратить высыхание электролита.
На одном из торцов конденсатора (радиальный тип корпуса) или на двух торцах которого (аксиальный тип корпуса) располагаются контактные выводы. Выводы могут быть под пайку либо под винт.


В электролитических конденсаторах емкость исчисляется в микрофарадах и может быть от 0.1 мкф до 100 000 мкф. Как правило большая емкость и характеризует этот тип конденсаторов.
Еще одним из важных параметров есть максимальное рабочее напряжение, которое всегда указывается на корпусе и в конденсаторах этого типа может быть до 500 вольт!


Среди недостатков данного типа можно рассмотреть 3 причины:
1. Полярность. Полярные конденсаторы недопустимы с работой в переменном токе. На корпусе обозначаются соответствующими значками выводы конденсатора, как правило конденсаторы с одним выводом минусовой контакт имеют на корпусе, а плюсовой на выводе.
2. Большой ток утечки. Естественно такие конденсаторы не годятся для длительного хранения энергии заряда, но они хорошо себя зарекомендовали в качестве промежуточных элементов, в фильтрах активных схем и пусковых установках двигателей.
3.Снижение емкости с увеличением частоты. Такой недостаток легко устраняется с помощью параллельно подключенного керамического конденсатора с очень маленькой ёмкостью.

Керамические однослойные конденсаторы

Такие типы, например как К10-7В, К10-19, КД-2. Максимальное напряжения такого типа конденсаторов лежит в пределах 15 - 50 вольт, а ёмкость от 1 пФ до 0.47 мкф при сравнительно небольших размерах довольно не плохой результат технологии.
У данного типа характерны малые токи утечки и низкая индуктивность что позволяет им легко работать на высоких частотах, при постоянном, переменном и пульсирующих токах.
Тангенс угла потерь tgδ не превышает обычно 0,05, а максимальный ток утечки – не более 3 мкА.
Конденсаторы данного типа спокойно переносят внешние факторы, такие как вибрация с частотой до 5000 Гц с ускорением до 40 g, многократные механические удары и линейные нагрузки.


Маркировка на корпусе конденсатора обозначает его номинал. Три цифры расшифровываются следующим образом. Если две первые цифры умножать на 10 в степени третьей цифры, то получится значение емкости данного конденсатора в пф. Так, конденсатор с маркировкой 101 имеет емкость 100 пф, а конденсатор с маркировкой 472 — 4,7 нф. Для удобства составлены таблицы наиболее "ходовых" ёмкостей конденсаторов и их маркировочные коды.
Наиболее часто применяются в фильтрах блоков питания и как фильтр поглощающий высокочастотные импульсы и помехи.

Керамические многослойные конденсаторы

Например К10-17А или К10-17Б.
В отличии от вышеописанных, состоят уже из нескольких слоев металлических пластин и диэлектрика в виде керамики, что позволяет иметь им большую ёмкость чем у однослойных и может быть порядка нескольких микрофарад, но максимальное напряжение у данного типа все также ограничено 50 вольтами.
Применяются в основном как фильтрующие элементы и могут исправно работать как с постоянным так и с переменным и пульсирующим током.

Керамические высоковольтные конденсаторы

Например К15У, КВИ и К15-4
Максимальное рабочее напряжение данного типа может достигать 15 000 вольт! Но ёмкость у них небольшая, порядка 68 - 100 нФ.


Работают они как с переменным так и с постоянным током. Керамика в качестве диэлектрика создает нужное диэлектрическое свойство выдерживать большое напряжение, а особая форма защищает конструкцию от пробоя пластин.


Применение у них самое разнообразное, например в схемах вторичных источников питания в качестве фильтра для поглощения высокочастотных помех и шумов, или в конструирование катушек Тесла, мощной и ламповой радиоаппаратуре.

Танталовые конденсаторы

Например К52-1 или smd А. Основным веществом служит - пентоксид тантала, а в качестве электролита - диоксид марганца.

Твердотельный танталовый конденсатор состоит из четырех основных частей: анода, диэлектрика, электролита (твердого или жидкого) и катода.
По рабочим свойствам танталовые конденсаторы схожи с электролитическими, но рабочее максимальное напряжение ограничено 100 вольтами, а ёмкость как правило не превышает 1000 мкФ.
Но в отличии от электролитических, у данного типа собственная индуктивность намного меньше что дает возможность их использования на высоких частотах, до несколько сотен килогерц.


Основной причиной выхода из строя бывает превышение максимального напряжения.
Применение у них в большинстве наблюдается в современных платах электронных устройств, что возможно из за конструктивной особенности smd-монтажа.

Полиэстеровые конденсаторы

Например K73-17 или CL21, на основе металлизированной пленки...
Весьма популярные из за небольшой стоимости конденсаторы встречающиеся в почти всех электронных устройствах, например в балластах энергосберегающих ламп. Их корпус состоит из эпоксидного компаунда что придает конденсатору устойчивость к внешним неблагоприятным факторам, химическим растворам и перегревам.


Ёмкость таких конденсаторов идет порядка 1 нф - 15мкф и максимальное рабочее напряжение у них от 50 до 1500 вольт.
Большой диапазон максимального напряжения и ёмкости дает возможность использования полиэстеровых конденсаторов в цепях постоянного, переменного и импульсных токов.

Полипропиленовые конденсаторы

Например К78-2 и CBB-60.
В данного типа конденсаторов в качестве диэлектрика выступает полипропиленовая пленка. Корпус изготовлен из негорючих материалов, а сам конденсатор призначен для работы в тяжелых условиях.
Ёмкость, как правило в пределах 100пф - 10мкф, но в последнее время выпускают и больше, а по поводу напряжение то большой запас может достигать и 3000 вольт!

Преимущество этих конденсаторов заключается не только в высоком напряжении, но и в чрезвычайно низком тангенсе угла потерь, поскольку tg? может не превышать 0,001, что позволяет использовать конденсаторы на больших частотах в несколько сотен килогерц и применять их в индукционных обогревателях и пусковых установках асинхронных электродвигателей.

Пусковые конденсаторы (CBB-60) могут иметь ёмкость и до 1000мкф что стает возможным из за особенностей конструкции такого типа конденсаторов. На пластиковый сердечник наматывается металлизированная полипропиленовая пленка, а сверху весь этот рулон покрывается компаундом.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows