Интернет вещей в мониторинге. Очень печальный пример недооценки значения одной из трех основных частей интернета вещей. Применение IoT в разных отраслях

Интернет вещей в мониторинге. Очень печальный пример недооценки значения одной из трех основных частей интернета вещей. Применение IoT в разных отраслях

04.03.2019
25 января 2018 в 10:00

Пять основных тенденций развития Интернета вещей в 2018 году

  • Блог компании Gemalto Russia ,
  • Исследования и прогнозы в IT ,
  • Читальный зал
  • Recovery Mode

Минувший 2017 год стал еще одним важным годом для Интернета вещей (IoT). Потребители по-прежнему покупали все новые подключенные устройства, и в итоге, одним из наиболее популярных новогодних подарков во многих странах стали виртуальные цифровые помощники с функцией распознавания речи. Кроме того, в минувшем году состоялся первый официальный запуск сервисов и продуктов Narrow Band IoT (NB-IoT), ну и наконец, согласно статистике, сегодня в мире насчитывается больше IoT устройств, чем смартфонов или ПК.

Что же несет с собой для Интернета вещей новый 2018 год? Открываем пять основных тенденций, которые, как мы считаем, определят наступивший год.


1. Еще больше подключенных устройств и еще больше возможностей для подключения

В 2017 году мы наблюдали рост числа всевозможных устройств и способов их подключения, и эта тенденция продолжится в 2018 году. В частности, мы увидим дальнейшее развитие сетей на базе Low Power Wide Area Networks (LPWAN), таких как NB-IoT, Sigfox и LoRaWAN. Эти технологии позволяют увеличить время автономной службы устройств, которые должны работать без подзарядки до нескольких лет, и при этом обеспечивают надежное соединение на больших расстояниях.

Мы ожидаем, что повсеместное внедрение подобных устройств приведет к реальным социальным изменениям – например, позволит улучшить мониторинг окружающей среды для решения проблемы глобальных климатических изменений. Развитие сервисов домашней автоматизации сделает нашу жизнь заметно удобнее и проще. Кроме того, наступает эра умного производства. С учетом целой волны пилотных проектов и ряда экспериментальных запусков в 2017 году, мы ожидаем, что в наступившем году мы увидим ряд важных начинаний в этом направлении. Согласно прогнозам IDC , в одном лишь 2018 году на проекты умного производства будет потрачено 189 млрд. долларов.

Все больше компаний будут начинать свои собственные проекты для Интернета вещей, и им потребуются рекомендации по подключению, хранению данных, удаленному мониторингу и т.д.

2. Развитие периферийных вычислений с возможностью мониторинга в режиме реального времени

С ростом числа IoT проектов, особенно в промышленной сфере, где устройства могут быть установлены на географически разделенных объектах, на значительном расстоянии друг от друга, мы увидим более активное использование данных в режиме реального времени на периферии (то есть на самих подключенных устройствах). Помимо снижения издержек на передачу и хранение данных, такой подход позволит моментально осуществлять анализ данных, обеспечивая возможность для принятия более оперативных и более информированных решений.

Согласно прогнозу IDC, к 2019 году 40% всех данных, создаваемых Интернетом вещей, будет храниться и анализироваться на сетевой периферии.

3. Развитие технологий искусственного интеллекта (AI) и машинного обучения

Мы увидим дальнейшее развитие технологий машинного обучения, которые помогут сделать устройства для Интернета вещей еще более эффективными, и перейти от подхода, основанного на использовании правил, к более серьезному, планово-предупредительному подходу. В частности, устройства смогут более эффективно определять потенциальные атаки еще до того, как эти атаки начнут причинять ущерб.

Поставщики IoT-сервисов и устройств смогут предлагать новые сервисы распознавания (matching services), в основе которых будет лежать глубокий анализ специфики пользовательских задач – IoT-устройство сможет самостоятельно изучать, каким образом конечные пользователи взаимодействуют с сервисом или продуктом. В масштабных внедрениях, когда речь идет о сотнях или тысячах IoT устройств, особую роль будут играть технологии искусственного интеллекта – без них объединение устройств в сети и сбор данных окажется весьма трудной задачей.

Сегодня мы видим активные дискуссии о том, что искусственный интеллект будет вытеснять людей на рабочих местах, но мы считаем, для этих опасений на самом деле не так много оснований. Технологии будут выполнять те задачи, на которые «заточен» искусственный интеллект, позволяя людям сосредоточиться на принципиально новых, более творческих задачах.

4. Расширение нормативно-правовой базы, появление новых стандартов безопасности

Будет расти потребность в более развитых и надежных технологиях безопасности для Интернета вещей. Мы станем свидетелями все новых атак, в результате которых мы будем чаще обсуждать проблемы безопасности для Интернета вещей, а также потенциальный урон от подобных атак. Согласно результатам нашего прошлогоднего опроса , большинство организаций и потребителей считают необходимым создание новой нормативно-правовой базы в отношении безопасности Интернета вещей, при этом они хотели бы, чтобы в формировании этих стандартов участвовало правительство.

По мере того, как компании будут работать над повышением уровня безопасности своих сервисов и продуктов, все более распространенной станет практика создания партнерских отношений с внешними экспертами в области Интернета вещей. Это подразумевает работу с «белыми хакерами», экспертами по безопасности Интернета вещей, а также учреждение премий за обнаруженные уязвимости, что позволит протестировать существующую инфраструктуру, выявить возможные уязвимости и добиться необходимых улучшений.

5. Развитие комплексных, универсальных платформ для Интернета вещей

Особым спросом у производителей будут пользоваться платформы для Интернета вещей, которые бы обеспечивали сразу весь комплекс необходимых технологий. И лучшими здесь станут такие платформы, которые способны удовлетворить все потребности производителя или поставщика услуг – в том числе с точки зрения организации соединения, поддержки всех протоколов соединений, обеспечения безопасности, масштабируемости, удаленного мониторинга, возможностей защищенного хранения данных, и которые при этом обеспечивали бы поддержку API крупнейших поставщиков облачных сервисов (AWS, IBM, Microsoft и т.д.).

Эти конкурентоспособные платформы для Интернета вещей позволят поставщикам IoT сервисов разрабатывать свои продукты еще быстрее и проще, и при этом обеспечат должный уровень безопасности.

Разумеется, до конца года мы увидим и другие важные события и неожиданные сюрпризы, но какими бы они ни были, нас, без сомнения, ждет еще один захватывающий год.

Облачный сервис получает данные о скорости тысяч автомобилей и строит карту загруженности дорог города, помогая автомобилистам найти быстрый маршрут. Браслет на ноге юноши-футболиста отслеживает его активность во время тренировки и загружает данные в приложение, отбирающее наиболее успешных юниоров в национальную сборную по футболу. «Умные» счетчики передают показания онлайн, сообщают об утечках, помогают сэкономить на ресурсах и снизить оплату ЖКХ. А конвейеры с интеллектуальной начинкой предупреждают оператора о симптомах приближающегося износа агрегата, предотвращают остановку производства и снижают издержки на ремонт.

Все это - «Интернет вещей» или Internet of Things (IoT).

Как появился «Интернет вещей»

Концепция Интернета вещей была предугадана в начале XX века Николой Тесла - физик пророчил радиоволнам роль нейронов «большого мозга», управляющего всеми предметами. А инструменты его контроля должны будут легко умещаться в кармане. Великий изобретатель не был фантастом, просто он понимал то, что его современники не могли и представить.

Сто лет спустя термин «Интернет вещей» ввел в широкий оборот сотрудник исследовательского агентства при Массачусетском технологическом институте Кевин Эштон. Он предложил увеличить эффективность логистических процессов без вмешательства человека: с помощью радиодатчиков собирать информацию о наличии товаров на складах предприятия и отслеживать их движение к торговым точкам. Каждая метка отправляла в сеть данные о своем местонахождении в настоящий момент времени. Использование RFID-меток ускорило реакцию поставщиков и ритейлеров на изменение спроса и предложения: товары не лежали на складе, а отправлялись туда, где они действительно необходимы. Эффект от введения маркировки оценили, и с января 2007 года все поставщики крупнейшей американской розничной сети производят товары только с радиометками.

Концепция Интернета вещей базируется на принципе межмашинного общения: без вмешательства человека электронные устройства «общаются» между собой. Интернет вещей - это автоматизация, но более высокого уровня. В отличие от «умных» домов узлы системы используют TCP/IP-протоколы для обмена данными через каналы глобальной сети Интернет.

Такой метод коммуникации дает серьезное преимущество - возможность объединять системы между собой, строить «сеть сетей». Это позволяет изменить бизнес-модели отраслей и даже экономики целых стран.

Интернет вещей не только меняет существующие правила, но и формирует новые правила экономики совместного использования» (shared economy), исключая посредников из бизнес-модели.

Менее чем за 20 лет Интернет вещей стал трендом рынка информационных технологий. Аналитики прогнозируют колоссальное количество IoT устройств через несколько лет - свыше 50 миллиардов. Развитие производства электронных компонентов позволяет «штамповать» миллионы дешевых чипов для всевозможных устройств. От радиочипов, нанесенных на складские коробки, IoT трансформировался в глобальную «интернетизацию» окружающих нас предметов, воспринимаемый людьми как глобальная «оцифровка» реальности.

Интернет вещей «на пальцах»

Для широкой публики Интернет вещей - это холодильник, публикующий фото ваших продуктов в Instagram, или стиральная машина, которая постит в Facebook: «У меня была сегодня чумовая стирка». Из 28 миллиардов ожидаемых подключений менее половины придется на пользовательские гаджеты, которые составляют «customer IoT»: смартфоны и планшеты, носимые датчики для фитнеса и амбулаторной медицины.

Более 15 миллиардов устройств будут работать в бизнесе и промышленности: разнообразные датчики для оборудования, терминалы для продаж, сенсоры на производственных агрегатах и общественном транспорте.

Интернет вещей станет тем инструментом, с помощью которого можно дешево, быстро и масштабно решать конкретные бизнес-задачи в конкретных отраслях.

Промышленный IoT (Industrial IoT, IIoT) объединяет концепцию межмашинного общения, использование BigData и проверенные технологии автоматизации производства. Ключевая идея IIoT в превосходстве «умной» машины над человеком в точном, постоянном и безошибочном сборе информации. Интернет вещей повысит уровень контроля качества продукции, выстроит процесс бережливого и экологичного производства, обеспечит надежные поставки сырья и оптимизирует работу заводского конвейера.

Интернет людей - всемирная паутина, которая «высасывает» не только наши деньги, но и время. Мы проводим по несколько часов в неделю в соцсетях, онлайн-играх или на сайтах. Покупаем в интернет-магазинах вещи, которые нам зачастую не нужны, просто потому, что это легко и доступно - в два клика.

В отличие от традиционного «человеческого» интернета IoT применяется для рационального и практичного подхода. Его ключевая задача - автоматизация, оптимизация, сокращение материальных и временных затрат.

Применение IoT в промышленной индустрии и транспорте сокращает затраты за счет снижения аварийности, уменьшения потерь сырья и количества использованных ресурсов. В сфере энергетики - повышает эффективность выработки и распределения электроэнергии.

Интернет вещей экономит не только деньги, но и время: машины заменили человека на рутинной работе и освободили от выполнения рискованных или стандартных задач. Интеллектуальные системы следят за промышленным конвейером, считают товар на складах и регулируют движение вместо человека. В любую погоду, круглосуточно и без выходных.

Нас окружают разнообразные «подключенные» устройства: на улице работают системы безопасности и экомониторинга. Интернет вещей начинает использоваться в быту, в ЖКХ и индустриальной сфере, транспорте, сельском хозяйстве и медицине.

Пример 1. Яндекс.Навигатор - тоже IoT

Знакомый всем пример - Яндекс.Навигатор. Водители по всей России и СНГ пользуются этим сервисом. Смартфоны и планшеты передают координаты, направление движения и скорость в службу Яндекс, а принятая от пользователей информация анализируется на сервере компании. Получив сведения о заторе, приложение автоматически предлагает водителю варианты объезда и отображает маршрут на экране телефона или планшета. Мобильные устройства, центры обработки данных и приложение Яндекса обмениваются данными без вмешательства человека, являя собой отличный пример Интернета вещей.

Как результат - водители тратят меньше времени в пробках, выбирая оптимальные маршруты объезда.

Еще немного и искусственный интеллект Яндекса начнёт перераспределять нагрузку на дорогах городов. Учитывая накопленную статистику, он будет предлагать такие маршруты, которые оптимально загрузят магистрали и минимизируют пробки.

Пример 2. Спортивный IoT

В спорте Интернет вещей используют для накопления статистики и анализа данных. Применение IoT-решений разнообразно: от мобильных приложений для любителей утренних пробежек, следящих за расходом калорий, до производительных информационно-вычислительных систем в профессиональном спорте.

Командное IoT-решение отслеживает состояние отдельных спортсменов и всего коллектива. Информация о перемещении, пульсе считываются датчиками, встроенными в жилет, надетый игроком. Координаты и медицинская телеметрия отправляются на облачную платформу, снабжая оперативной информацией руководство и вспомогательные службы команды. Тренер строит тактику игры, не дожидаясь тайм-аута для оценки состояния коллектива и переигрывает соперников за счет быстрого реагирования на окружающую обстановку.

Ранее у тренерского состава и спортивных аналитиков не было иного выбора, кроме как просматривать после игры заметки и десятки часов видеозаписи для оценки поведения игрока на поле и его работоспособности. Теперь информация предоставляется онлайн и голевой момент матча всегда можно «вытащить» из хранилища и проанализировать. Интернет вещей обрел популярность не только среди тренеров, но и у медиков - бригады оказания первой помощи мгновенно реагируют на критические показания здоровья подопечных.

Пример 3. «Умные» счетчики

В жилищно-коммунальном хозяйстве IoT-технологии нашли применение в системах интеллектуальной диспетчеризации - «умных» приборов учета ресурсов . Подключенные к Интернету счетчики передают показания в «облако», а диспетчер видит расход воды, электричества или газа в отдельном доме, квартале или в целом городе. Это дает возможность, не заглядывая в квартиры собственников, в режиме реального времени, иметь полную картину потребления ресурсов, удаленно управлять приборами учета, оперативно выставлять счета жильцам. Без обходчиков, без обработчиков и без временных потерь.

Такой подход позволит изменить механизм учета ресурсов. Сегодня управляющие компании собирают показания с приборов учета, обрабатывают данные, выставляют счета и собирают оплату за ЖКУ. В случае внедрения «умных» счетчиков в масштабах города, структуры, обслуживающие жилые дома, превращаются в ненужных посредников и «выходят из игры». Что сегодня мы и наблюдаем в некоторых регионах России, где водоканалы переходят на прямые договоры с жильцами. Электросетевые компании, кстати, уже давно применяют такую схему расчетов, но по инерции нанимают обходчиков или требуют данные с жильцов.

Прямой диалог между счетчиками в домах и «ресурсниками» стал возможен благодаря IoT-решениям - беспроводной автоматизированной диспетчеризации. Это отличный пример того, как Интернет вещей меняет бизнес-модель в отрасли.

Аналогично - UBER, который за счет концепции Интернета вещей исключил таксомоторные компании из бизнес-модели частного извоза. Крупные структуры стали просто не нужны и сейчас клиент напрямую общается с водителем.

За счет точного учета, оповещениях о перерасходе ресурсов или авариях подключенные к Интернету приборы учета ЖКХ сохраняют до 30% ресурсов в каждом многоквартирном доме. А помимо удобства, дополнительное преимущество для конечного потребителя - сэкономленные на содержании ненужной «прослойки» деньги.

Диспетчеризация приборов учета воды и удаленного съема показаний - один из наиболее удачных примеров применения технологии Интернета вещей в сфере жилищно-коммунального хозяйства.

Организации, внедрившие IoT-решения для управления многоквартирными жилыми домами, получили эффективный инструмент контроля и учета ресурсов. Такая система автоматизирует трудоемкие операции по сбору и обработке показаний, которые ранее требовали участия половины штата сотрудников. Имея на руках прозрачные данные, управляющая компания выявляет потери и минимизирует расходы на общедомовые нужды (ОДН).

Пример 4. Сельское хозяйство

Более половины производителей томатов и треть хлопководов Израиля используют систему для мониторинга влажности, температуры грунта и других характеристик почвы . Датчик, «закрепленный» за отдельным растением или участком с посевами, отправляет информацию на облачный сервер, откуда данные поступают оператору, выводя на экран состояние саженца и рекомендации по улучшению его плодоносных свойств.

В США сформировали интересный симбиоз такой «пахучей» сферы агротехники как удобрение полей и IoT. Фермер оснастил трактора-распрыскиватели, обслуживающие угодья в радиусе 121 километра от станции, решением на базе беспроводных технологий. Водитель-оператор насосной установки удаленно отслеживает и распределяет подачу органических удобрений на поля, а владелец контролирует расход с экрана своего смартфона.

Пример 5. «Умные» заводы

Зарубежные владельцы заводов уже осознали преимущества IoT в сокращении расходов и увеличении прибыльности индустриального бизнеса. В электроэнергетике и легкой промышленности интерес к применению Интернета вещей есть. С помощью IoT-технологий операторы морских ветрогенераторов удаленно контролируют износ роторов и турбин, отслеживают их производительность. За счет своевременного обслуживания минимизируется риск остановки «ветряков» и отпадает необходимость в отправке бригад на удаленные морские платформы.

Швейцарская компания, выпускающая станки и двигатели, реализовала мечту производственных инженеров - проведение упреждающего техобслуживания (ТО).

Более 5000 единиц оборудования на производственных площадках подключили к IoT-платформе изготовителя, сигнализирующей о необходимости ТО для профилактики возможной поломки. Несколько лет назад компания командировала выездные бригады техников для диагностики на местах.

Сейчас эксплуатант станка или электродвигателя отслеживает состояние оборудования онлайн и вовремя узнает о возможных авариях. Такой «проактивный» мониторинг сократил расходы за счет снижения издержек и ликвидации простоев. Традиционно, ППР (планово-предупредительные ремонты) требовали остановки производственных линий и организовывались по графику, независимо от того, была в них необходимость или нет.

Внедрение IoT-технологии позволило проводить упреждающее техобслуживание тогда, когда оно действительно нужно, и ремонтировать машины до того, как они сломаются. Интернет вещей обеспечил не только непрерывность производства, но и сэкономил на планировании предупредительных работ - затраты на планирование составляют 30-40% от объема ремонтного фонда предприятия.

В ближайшее время бизнес станет первым и основным потребителем IoT-технологий. Топ-менеджеры корпораций рассматривают Интернет вещей в первую очередь как инструмент для снижения расходов и увеличения производительности. Предприниматели хотят использовать инновационную концепцию для вхождения в новые рынки и расширить свой ассортимент за счет использования подключенных устройств.

Промышленники понимают: новые технологии оптимизируют производственный процесс и уберут из него человеческий фактор, а вместе с ним и лишние риски.

Пример 6. «Носимый» IoT

Крупные ИТ-компании начали инвестировать в развитие медицинского Интернета вещей. Одно из таких решений отслеживает динамику болезни и выздоровления пациентов в режиме 24/7 посредством носимого на теле датчика. Мониторинг происходит в режиме реального времени, начиная от сбора показаний в стационаре и дома, завершая направлением данных лечащему врачу и в лаборатории для анализа и принятия решений.

В медицине есть проекты, развернутые в рамках лечебного учреждения и предупреждающие персонал об истощении запаса медикаментов или инструментов.

В обеспечении физической безопасности применение IoT-концепции скорее экзотично, чем привычно. В октябре 2016 года технологию Интернета вещей в прямом смысле «взяла на вооружение» оборонная промышленность - для охраны Крымской военно-морской базы Минобороны РФ закупило комплекс охраны «Часовой-1».

Комплекс, в состав которого входят вибробраслеты, гарантирует безопасность бойцов, охраняющих объекты и проверяющих автотранспорт на «блоках». Каждый браслет оснащен датчиком «неподвижности». Как только часовой прекращает движение более чем на 30 секунд, система посылает на его браслет вибросигнал. Если в течение 15 секунд после предупреждения боец не «оживет» - в караульном помещении объявляется тревога.

IoT - это новый этап развития сети Интернет, который проникает в ранее недоступные сферы, привнося качественные изменения, делая жизнь людей проще, а работу компаний - эффективней.

Интернет вещей будущего

IoT стал всемирным трендом, и скоро возможность «интернетизации» станет обязательным требованием для продуктов и услуг широкого потребления. Устройства будут выходить с конвейера с уже встроенными интеллектуальными и коммуникационными возможностями.

За счет увеличения масштаба производства и удешевления компонентной базы стоимость умных устройств снизится до минимума. IoT проникнет в автомобили, грунт, море и реки, в тело человека. Датчики станут настолько миниатюрными, что будут помещаться в мелких бытовых предметах или продуктах питания.

Соответственно устройствам уменьшатся в размерах и аккумуляторы, а затем они и вовсе исчезнут - «умные» датчики научатся получать энергию из окружающей среды: от вибрации, света или воздушных потоков и станут полностью автономными.

Интернет вещей станет гетерогенной средой, которая будет существовать как отдельный живой организм. Наступит время машин.

Сложности с компонентной базой ушли в прошлое, появился новый вызов: необходимо объединить миллиарды «умных» приборов в единую сеть.

Интеллектуальный станок, датчик температуры масла на промышленном агрегате, смарт холодильник - всем этим устройствам необходима среда для общения. В противном случае они так и останутся «немыми»: обычным счетчиком или датчиком, отличающимся от своих собратьев только «космическим» дизайном.

Если оставить прогнозы о «количестве устройств Интернета вещей к 2020 году» ясно, что IoT-индустрия растет. Инженерам уже не интересно, сколько, 50 миллиардов датчиков и смартфонов будет в сети или 100 миллиардов. Порядок уже ясен, как и цель - подключение «армии» устройств к Интернету.

Для передачи данных разрабатывалось множество протоколов, но каждый из них был «заточен» под определенную задачу: GSM для голосового общения, GPRS для обмена данными с мобильных телефонов, ZigBee - создания локальной сети и управления «умными» домами, а Wi-Fi для беспроводных локальных сетей с высокой скоростью передачи данных.

Эти технологии могут быть применены для решения нецелевых задач и по-разному с ними справляться.

К примеру, Яндекс.Навигатор сможет работать через GPRS/3G/4G и никакая другая связь для такого приложения не подойдет. Мы, конечно, можем подключить смартфон к Wi-Fi и запустить Навигатор, но как только автомобиль отъедет на 100 метров от точки доступа - приложение «закончится». А в «умном» доме не «приживутся» автономные GPRS-датчики - через два дня в них сядут батарейки. Поэтому в интеллектуальном жилище лучше всего подойдет энергоэффективный ZigBee.

Набирая обороты, Интернет вещей выдвигает свои требования:

  1. Небольшой объем данных: датчикам и сенсорам не нужно передавать мега- и гигабайты, как правило это биты и байты.
  2. Энергоэффективность: подавляющая часть датчиков автономны и должны будут работать годами.
  3. Масштабируемость: в сети должны уживаться миллионы различных устройств, и добавление одного-двух миллионов не должно вызывать сложностей.
  4. Глобальность: нужен широкий территориальный охват и как следствие передача информации на большие расстояния.
  5. Проникающая способность: устройства в подвалах, шахтах должны передавать сигнал наружу.
  6. Стоимость устройств: устройства должны быть дешевы и доступны для пользователя, а готовые решения рентабельны для бизнеса.
  7. Простота: принцип «поставил и забыл»: пользователь выберет понятные и дружелюбные устройства.

Казалось бы, сотовые сети - очевидные кандидаты на построение развернутой на десятки километров беспроводной IoT-среды. Однако ни стандарт GSM, ни инфраструктура мобильных операторов изначально не создавались для М2М-диалога. Протоколы сотовой связи предназначены для общения людей: большой объем трафика и высокая скорость обмена данными в густонаселенных районах.

Разработчики изначально не предполагали возможность обмена небольшими объемами данных между разнесенными «умными» сенсорами. Датчику с WiFi необходимо постоянное питание, а элемент умного GSM устройства продержится 2-3 недели. Мы не готовы ежемесячно менять батарейки в десятках устройствах или монтировать к ним проводную систему питания.

Подключение всевозможных устройств к мобильным сетям еще можно представить в населенных пунктах, но за пределами оживленных трасс и урбанизированных территорий протоколы GSM, 3G, LTE не позволяют создавать масштабные IoT проекты - слишком дорого разворачивать и обслуживать инфраструктуру сотовой сети.

В городе сотовая связь ограничена низкой проникающей способностью сигнала. А «умные» датчики или счетчики зачастую будут находиться за несколькими стенами, в техколодцах или на цокольных этажах, где уже не берет GSM.

Фундаментом масштабных проектов станет энергоэффективная сеть, которая удовлетворит запросы промышленников, сельхозпроизводителей, государственные компании в масштабности и невысокой стоимости эксплуатации. Интернету вещей нужен стандарт связи с возможностью широкого территориального охвата, высокой энергоэффективностью, дешевой инфраструктурой и не требующей высоких эксплуатационных расходов.

LPWAN - будущее IoT концепции

С учетом перечисленных требований и ограничений, решением проблемы стало использование технологии на стыке высокой дальности и низкого энергопотребления. Она получила название Low-Power Wide-Area Network (сокращенно – LPWAN) или энергоэффективная сеть дальнего радиуса действия.

LPWAN разрабатывался специально для межмашинного общения, и стал двигателем дальнобойного Интернета вещей.

Отсутствие высоких требований к объему передаваемой информации позволило сконцентрироваться на других, более важных параметрах технологии и обеспечить 50 километровую дистанцию взаимодействия между разнесенными устройствами, высокую энергоэффективность, проникающую способность и масштабируемость.

Дальнобойная и энергоэффективная, LPWAN отлично подходит для IoT, как в бытовом, так и в промышленном секторе, где имеется потребность в автономной передаче телеметрии на дальние расстояния.

LPWAN гораздо лучше соответствует запросам М2М-сетей, чем та же сотовая связь - тысячи квадратных километров могут быть покрыты одной базовой станцией. Построение такой сети проще, а обслуживание - дешевле. Подобный подход становится единственной альтернативой в случае, когда датчики разнесены по большой территории. Как, например, счетчики воды в пределах одного квартала или датчики влажности почвы, размещенные сразу на нескольких полях.

Резюме

Уже сейчас IoT меняет правила игры в отдельных отраслях: проникает в недоступные и невозможные ранее сферы, улучшая качество жизни и увеличивая эффективность бизнеса. Технологии Интернета вещей нашли применение там, где они выгодны бизнесу и удобны людям.

LPWAN - двигатель «дальнобойного» беспроводного IoT

Преимущества LPWAN-технологии хорошо вписываются в потребности масштабного внедрения IoT в промышленности, транспорте, сфере безопасности и десятках других отраслей. Большой радиус действия, высокая автономность конечных устройств, простота развертывания LPWA-сети и низкая стоимость инфраструктуры даст толчок крупномасштабным проектам и развитию Интернета вещей.

Предполагается, что «Интернет вещей» (Internet of things, IoT) предложит перспективные решения проблем по преобразованию функционирования и роли многих промышленных систем. Например, IoT уже используется для создания интеллектуальных транспортных систем, благодаря которым появляется возможность отслеживать местоположение каждого транспортного средства, вести мониторинг его передвижения, а также предсказывать его будущую дислокацию и вероятный дорожный трафик.

Термин «Интернет вещей» изначально был предложен для обозначения однозначной идентификации объектов, связанных посредством технологии радиочастотной идентификации RFID . Позже он стал затрагивать гораздо больше технологий, таких как датчики, приводы, GPS- и мобильные устройства. Сегодня общепринятое определение «Интернета вещей» следующее: динамическая глобальная сетевая инфраструктура с самостоятельной настройкой возможностей на основе стандартных и совместимых протоколов связи, где физические и виртуальные «вещи» имеют идентификаторы, физические атрибуты и виртуальные персоналии, используют интеллектуальные интерфейсы и легко интегрируются в информационную сеть .

В частности, интеграция датчиков/приводов, RFID-меток и коммуникационных технологий служит основой для «Интернета вещей» и объясняет, как различные физические предметы и устройства вокруг нас могут быть связаны с Интернетом, а также позволяет этим объектам и устройствам взаимодействовать друг с другом для достижения общих целей .

Интерес к использованию технологии IoT в различных отраслях промышленности возрастает . Проекты по внедрению промышленного «Интернета вещей» уже были реализованы в таких областях, как сельское хозяйство, пищевая промышленность, экологический мониторинг, видеонаблюдение и др. Между тем число публикаций про «Интернет вещей» тоже стремительно растет. Авторы провели обширный анализ литературы, изучив соответствующие статьи из пяти основных академических баз данных (IEEE Xplore, Web of Knowledge, ACM digital library, INSPEC и ScienceDirect), для того чтобы помочь исследователям понять текущее положение «Интернета вещей» в промышленности и перспективы исследований, касающихся его использования.

Предпосылки и текущие исследования IoT

«Интернет вещей» можно рассматривать в качестве глобальной сетевой инфраструктуры, состоящей из множества подключенных устройств, которые используют сенсорные, коммуникационные, сетевые и информационные технологии . Основополагающей технологией для «Интернета вещей» является технология RFID, позволяющая микрочипам посредством беспроводной связи передавать считывателям идентификационную информацию. С помощью RFID-считывателей люди могут идентифицировать, отслеживать и контролировать любые объекты, автоматически подключенные с помощью RFID-меток . Технология RFID широко используется в логистике, фармацевтическом производстве, розничной торговле и управлении цепочками поставок начиная еще с 1980-х гг. . Другая основополагающая технология для IoT - беспроводные сенсорные сети (WSN), которые в основном используют взаимодействующие интеллектуальные датчики (сенсоры) для совместной работы и мониторинга. Область их применения включает в себя мониторинг окружающей среды, медицинский мониторинг, производственный контроль, мониторинг трафика и т. д. , .

Достижения в обеих технологиях (RFID и WSN) внесли значительный вклад в развитие «Интернета вещей». Кроме того, теперь множество других технологий и устройств, таких как штрихкоды, смартфоны, социальные сети и облачные вычисления, также используется для формирования широкой сети поддержки IoT (рис. 1).

Рис. 1. Технологии, связанные с IoT

Сегодня IoT также набирает популярность в логистике, различных отраслях промышленности, розничной торговле и фармацевтике. В связи с развитием беспроводной связи, смартфонов и датчиков сетевых технологий все больше и больше сетевых «вещей», или «умных» объектов, участвуют в IoT. В результате все эти IoT-технологии оказывают значительное влияние на новые информационные и коммуникационные технологии (ИКТ) и технологии корпоративных систем (рис. 2).

Рис. 2. Связанные с IoT технологии и их влияние на новые информационно-коммуникационные технологии (ИКТ) и на корпоративные системы

Чтобы обеспечить высокое качество услуг для конечных пользователей, в рамках «Интернета вещей» должны быть разработаны технические стандарты, спецификации, определяющие обмен информацией и ее обработку, а также связи между вещами. Успех в использовании IoT зависит от стандартизации, которая обеспечит интероперабельность, совместимость, надежность и эффективную работу в мировом масштабе . Многие страны и организации заинтересованы в разработке стандартов для IoT, так как это может принести огромную экономическую выгоду в будущем. Сегодня Международный телекоммуникационный союз, Международная электротехническая комиссия, Международная организация по стандартизации, Институт инженеров электротехники и электроники, Европейский Комитет по электротехнической стандартизации, Китайский институт по электронным стандартам и Американский национальный институт стандартов занимаются разработкой различных стандартов для «Интернета вещей» . При этом необходимо согласовывать стандартизации различных организаций с международными стандартами, а также национальными и региональными организациями по стандартизации . Благодаря созданию общепринятых стандартов разработчики и потребители смогут использовать приложения и сервисы IoT в больших масштабах при сохранении развития и расходов (на техническое обслуживание) в долгосрочной перспективе. Стандартизация технологий IoT также ускорит их распространение.

Сегодня многие страны вкладывают большие средства в инициативы в области IoT. Например, правительство Великобритании приступило к реализации проекта по развитию IoT стоимостью в 5 млн фунтов. В ЕС Европейский исследовательский кластер IoT (IERC) FP7 (http://www.rfid-in-action.eu/cerp/) предложил ряд проектов для «Интернета вещей», а также создал Международный IoT-форум для разработки совместной стратегии и технического видения использования IoT в Европе . В свою очередь, Китай намерен играть ведущую роль в установлении международных стандартов для технологий «Интернета вещей» . В США компания IBM и Фонд Информационных Технологий и Инноваций (ITIF) сообщали еще в 2009 г., что IoT может стать эффективным способом для улучшения традиционной физической и информационной технологической инфраструктуры, а также окажет большое положительное влияние на производительность и инновации. Япония запустила стратегии u-Япония и i-Япония в 2008 и 2009 гг. соответственно, для того, чтобы использовать «Интернет вещей» в повседневной жизни .

Сервис-ориентированная архитектура (SOA) для «Интернета вещей» (IoT)

Как ключевая технология интеграции гетерогенных систем или устройств, SOA может быть применена для поддержки «Интернета вещей». SOA успешно используется в таких научно-исследовательских областях, как облачные вычисления, беспроводные сенсорные сети (WSN) и транспортные сети . Немало идей было предложено для создания многоуровневых архитектур SOA для «Интернета вещей» в соответствии с выбранной технологией, нуждами бизнеса и техническими требованиями. Например, рекомендованная Международным телекоммуникационным союзом архитектура IoT состоит из пяти различных уровней (или слоев): обнаружение, доступ, сетевое подключение, промежуточное ПО, слой приложений. Цзя с соавторами и Доминго предлагают разделить системную архитектуру IoT на три основных слоя: уровень восприятия, сетевой уровень и сервисный (или прикладной) уровень. Атцори с соавторами разработал для «Интернета вещей» трехслойную модель архитектуры, которая состоит из прикладного уровня, сетевого уровня и слоя зондирования. Лю с соавторами предложил инфраструктуру приложений IoT, которая содержит физический уровень, транспортный уровень, уровень промежуточного ПО, а также слой приложений. Функциональные возможности четырехслойной SOA для IoT приведены в таблице 1. Таблица 2 иллюстрирует проектирование архитектуры приложений промышленного «Интернета вещей». На рис. 3 показана SOA, где четыре уровня взаимодействуют друг с другом.

Таблица 1. Четырехуровневая архитектура для «Интернета вещей»
Уровень Описание
Уровень зондирования Уровень интегрирован с существующими аппаратными средствами (RFID, датчиками, исполнительными механизмами и т.д.), для того чтобы распознавать/контролировать физический мир и собирать соответствующие данные.
Сетевой уровень Уровень обеспечивает базовую сетевую поддержку и передачу данных по беспроводной или проводной сети.
Сервисный уровень На этом уровне создаются сервисы и осуществляется управление ими.
Интерфейсный уровень Уровень обеспечивает взаимодействие между пользователями и со сторонними приложениями.
Таблица 2. Проектирование приложений промышленного «Интернета вещей» (адаптировано из )
Цель разработки Описание
Энергия Как долго могут IoT-устройства работать с ограниченным электропитанием?
Время ожидания Сколько времени требуется для передачи и обработки сообщения?
Производительность Каков максимум данных, которые можно передать через сеть?
Масштабируемость Сколько устройств поддерживается?
Топология Кто и с кем должен взаимодействовать?
Надежность и безопасность Насколько надежно и безопасно приложение?

Архитектура «Интернета вещей» охватывает сети и коммуникации, «умные» объекты, веб-сервисы и приложения, бизнес-модели и соответствующие процессы, совместную обработку данных, безопасность и т. д. С точки зрения технологии при разработке архитектуры «Интернета вещей» нужно продумать ее расширяемость, масштабируемость, модульность и возможность взаимодействия гетерогенных устройств. Поскольку «вещи» могут передвигаться или нуждаться во взаимодействии с окружающей средой в режиме реального времени, необходима адаптивная архитектура. Также децентрализованная и гетерогенная природа «Интернета вещей» требует, чтобы его архитектура предоставляла различные эффективные событийные возможности. Таким образом, SOA является хорошим методом для достижения взаимодействия разнородных устройств множеством различных путей .

Рис. 3. Сервис-ориентированная архитектура для IoT

Уровень зондирования

«Интернет вещей» можно рассматривать как всемирную физическую сеть, в которой все может быть связано и дистанционно управляемо. Поскольку все больше и больше устройств оснащается RFID- или интеллектуальными датчиками, подключение «вещей» становится все более простым . На уровне зондирования беспроводные смарт-системы с метками или датчиками теперь могут автоматически распознаваться и обмениваться информацией с различными устройствами. В некоторых отраслях промышленности уже развернуты схемы интеллектуальных служб, а универсальные уникальные идентификаторы (UUID) назначаются каждому необходимому сервису или устройству. Устройство с UUID можно легко обнаружить и идентифицировать, поэтому идентификаторы UUID имеют решающее значение для успешного развертывания сервисов в такой огромной сети, как «Интернет вещей» .

Сетевой уровень

Роль сетевого уровня состоит в том, чтобы соединить все «вещи» воедино и позволить устройствам делиться информацией с другими связанными «вещами». Кроме того, сетевой уровень способен агрегировать информацию из существующих ИТ-инфраструктур (например, бизнес-систем, транспортных систем, электросетей, систем здравоохранения, информационных и коммуникационных систем и т. д.). В сервис-ориентированном «Интернете вещей» сервисы, предоставляемые «вещами», обычно развертываются в гетерогенной сети, и все связанные «вещи» заносятся в сервисы Интернета . Этот процесс может включать в себя управление качеством обслуживания сервиса (QoS) и службу контроля в соответствии с требованиями пользователей или приложений. С другой стороны, важным для динамично меняющейся сети являются автоматическое обнаружение и сопоставление карты «вещей» в сети. Устройствам автоматически должны назначаться роли для развертывания, управления и планирования поведения таким образом, чтобы можно было переключаться на любую другую роль в любое время по мере необходимости. Эти возможности позволяют устройствам выполнять задания совместно. При проектировании сетевого уровня «Интернета вещей» разработчики должны решить вопросы выбора технологии сетевого управления для неоднородных сетей (например, фиксированной, беспроводной, мобильной и т. п.), эффективности использования энергии в сетях, требований QoS (качества сервисов), служб обнаружения и извлечения данных и обработки сигнала, а также безопасности и конфиденциальности .

Сервисный уровень

Сервисный уровень опирается на технологию связующего ПО (англ. middleware – промежуточное, межплатформенное ПО), которое обеспечивает функциональные возможности для интеграции сервисов и приложений в сфере IoT. Технология middleware предоставляет «Интернету вещей» экономичную платформу, где аппаратные и программные платформы могут использоваться повторно. В настоящее время различные организации занимаются разработкой спецификаций сервиса для промежуточного ПО (middleware). Правильно спроектированный сервисный уровень сможет определить общие требования, а также предоставить интерфейсы прикладного программирования (API) и протоколы для поддержки необходимых сервисов, приложений и потребностей пользователей. Этот уровень также обрабатывает все сервис-ориентированные проблемы, включая обмен информацией и хранение данных, управление данными, поисковые системы и коммуникации . Также он включает в себя следующие компоненты:

  • Служба обнаружения: поиск объектов, которые могут предоставить необходимые услуги и информацию наиболее эффективным способом .
  • Состав сервиса: включение взаимодействия и коммуникации между связанными «вещами» (устройствами). Используя взаимоотношения между различными устройствами, установленные на этапе обнаружения, этот компонент находит требуемый сервис и компонентный состав службы для планирования или повторного создания наиболее подходящих сервисов для удовлетворения запроса .
  • Управление надежностью: определяет целевой и репутационный механизмы, которые позволят оценить и использовать информацию, предоставленную другими сервисами, для создания наиболее надежной системы .
  • Сервисы API (интерфейсов прикладного программирования): поддержка взаимодействия между необходимыми в IoT сервисами , .

Интерфейсный уровень

Большинство устройств для «Интернета вещей» разрабатывается разными производителями/поставщиками, и они не всегда придерживаются одних и тех же стандартов и протоколов. Из-за такой неоднородности возникают проблемы взаимодействия, связанные с обменом информацией, установлением связи между устройствами и совместной обработкой событий различными «вещами». Кроме того, постоянное развитие устройств, участвующих в «Интернете вещей», усложняет их динамическое подключение, взаимодействие, управление и отключение. Интерфейсный профиль (IFP) можно рассматривать как подмножество сервисных стандартов, поддерживающих взаимодействие с приложениями, развернутыми в сети.

Хороший интерфейсный профиль основан на реализации универсальной самонастройки (UPnP, Universal Plug and Play), которая определяет протокол для упрощения взаимодействия с сервисами, предоставляемыми различными устройствами . Сервисы на сервисном уровне запускаются напрямую на ограниченной сетевой инфраструктуре для того, чтобы эффективно находить новые сервисы для приложений по мере того, как они подключаются к сети. Недавно для эффективного взаимодействия между приложениями и сервисами была предложена интеграционная архитектура SOCRADES (SIA, от европейского научно-исследовательского проекта SOCRADES) . Традиционно сервисный уровень обеспечивается универсальным API для приложений. Однако в результатах недавних исследований сервис-ориентированного «Интернета вещей» сообщается , что процесс предоставления услуг (SPP, service provisioning process) может также эффективно обеспечивать взаимодействие между приложениями и сервисами. SPP сначала выполняет «типовой запрос», который запрашивает услугу с помощью универсального формата WSDL (Web Services Description Language), а затем использует механизм «поиска кандидата» для обнаружения потенциального сервиса. Основываясь на «контексте приложений» и на «информации о качестве обслуживания сервиса» (QoS), все экземпляры сервиса классифицируются, а механизм «предоставления услуг по требованию» (On-Demand service provisioning) может быть использован для идентификации экземпляра сервиса, удовлетворяющего требованиям приложения. И, наконец, «процесс оценки» (Process Evaluation) применяется для определения качества процесса .

Ключевые технологии

Технологии идентификации и отслеживания

Технологии идентификации и отслеживания, применяемые в IoT, включают системы RFID, штрихкоды и интеллектуальные датчики. Простая RFID-система состоит из RFID-считывателя и RFID-метки. Благодаря способности этой системы к выявлению и отслеживанию устройств и физических объектов она все чаще используется в промышленных отраслях, таких как логистика, управление цепями поставок, служба мониторинга здоровья . Другое преимущество системы RFID заключается в предоставлении точной информации в режиме реального времени о подключенных устройствах, что позволяет сократить затраты на рабочую силу, упростить бизнес-процессы, повысить точность информации об оборудовании и в итоге улучшить общую экономическую эффективность.

На данный момент развитие технологий RFID фокусируется на следующих аспектах : 1) активные RFID-системы с расширенным спектром передачи; 2) технология управления RFID-приложениями .

Также существует много возможностей для развития RFID-приложений . Например, RFID-технология может быть интегрирована с WSN для лучшего выявления «вещей» и слежения за ними в режиме реального времени. Развивающиеся беспроводные интеллектуальные сенсорные технологии, такие как электромагнитные датчики, биосенсоры, встроенные датчики, датчики тегов, независимые теги и сенсорные устройства, в дальнейшем поспособствуют внедрению и развертыванию производственных служб и приложений. Посредством интеграции данных, полученных интеллектуальными датчиками с помощью RFID, могут быть созданы более мощные приложения IoT, которые подходят для индустриальной среды.

Коммуникационные технологии в IoT

Реализация «Интернета вещей» может содержать множество электронных аппаратов, мобильных устройств и промышленного оборудования. Разным «вещам», которые можно подключить к сетевым и коммуникационным технологиям, соответствуют различные способы коммуникации, соединения по сети, обработки и хранения данных, а также пропускания электроэнергии. Например, многие смартфоны уже сейчас обладают качественной связью, богатыми сетевыми возможностями и способами обработки и хранения данных, а в мониторах сердечного ритма наблюдаются лишь ограниченные возможности коммуникации и вычислений.

«Интернет вещей» включает в себя ряд гетерогенных сетей, таких как WSN, беспроводные ячеистые сети, WLAN и т. п. Они помогают «вещам» в IoT обмениваться информацией. Сетевой шлюз в состоянии облегчить коммуникацию или взаимодействие различных устройств посредством Интернета, а также может использовать свою «сеть знаний» для локального выполнения алгоритмов оптимизации, что позволяет применять его при обработке множества сложных аспектов коммуникации в сети .

У «вещей» могут быть различные требования к качеству сервиса (QoS-требования, англ. quality of service - качество обслуживания, качество сервиса) по производительности, энергоэффективности и безопасности. К примеру, многим устройствам для работы нужны аккумуляторы, и поэтому снижение энергопотребления является для них одной из главных проблем. Напротив, для устройств с постоянным питанием улучшение энергосбережения чаще всего не является первоочередной задачей. IoT также значительно выиграет от использования существующих протоколов Интернета, таких как IPv6, поскольку это позволит напрямую обращаться к любому числу необходимых «вещей» через Интернет . Основные коммуникационные протоколы и стандарты включают в себя радиочастотную идентификацию RFID (например, ISO 18000 6c EPC Class 1 Gen 2), NFC, IEEE 802.11 (WLAN), IEEE 802.15.4 (ZigBee), IEEE 802.15.1 (Bluetooth), мультихоп-беспроводные датчики и ячеистые сети, маломощные беспроводные персональные пространственные сети IETF (6LoWPAN), межмашинные соединения (M2M), а также традиционные IP-технологии (IP, IPv6 и т. д.).

Сети для IoT

Для беспроводных сетей существует довольно много слоев пересекающихся протоколов, например беспроводные датчики и приводные сети (WSAN) или ad-hoc-сети (AHNs) . Однако они должны быть переработаны, прежде чем подойдут для применения в «Интернете вещей». Причина в том, что «вещи» в IoT часто обладают весьма разнообразными возможностями коммуникаций и вычислений, а также различными требованиями к качеству сервиса (QoS). Узлы в WSN, как правило, имеют схожие требования к оборудованию и сетям связи. Кроме того, в сети IoT для поддержки обмена информацией используется Интернет, но в отличие от WSN и AHN Интернет не нужно «включать», чтобы обеспечить соединение.

Управление сервисами в IoT

Управление сервисами в «Интернете вещей» связано с их реализацией и качеством, которые отвечают потребностям пользователей и приложений. Сервис-ориентированную архитектуру (англ. Service-oriented Architecture, SOA) можно использовать для инкапсуляции услуг, скрывая детали их реализации, например используемые протоколы . Это дает возможность разделить компоненты в системе и, следовательно, скрыть гетерогенность от конечных пользователей. Сервис-ориентированная архитектура «Интернета вещей» позволяет приложениям использовать разнородные объекты, такие как совместимые сервисы .

Более того, динамический характер приложений «Интернета вещей» требует от него последовательного предоставления надежных услуг. Эффективная сервис-ориентированная архитектура может минимизировать негативные последствия, вызванные перемещением устройства или отказом батареи. Хорошим примером является OSGi-платформа (Open Services Gateway Initiative - спецификация динамической модульной системы и сервисной платформы для Java-приложений) , которая применяет динамическую сервис-ориентированную архитектуру (dynamic SOA architecture) для развертывания интеллектуальных сервисов. С этой целью OSGi используется в различных контекстах - например, для мобильных приложений, плагинов, серверов приложений и т. д. В «Интернете вещей» композиция сервисов на базе OSGi-платформы может быть реализована посредством Apache Felix iPoJo .

Сервис представляет собой сбор данных, а также режимы, которые необходимы, чтобы выполнить определенную функцию, обслужить устройство или его части. Сервис могжет предоставляться различными способами: так, он может ссылаться на другие первичные или вторичные сервисы и/или на набор характеристик сервиса. Сервисы можно разделить на два типа: первичные и вторичные. Первые выполняют первичные функции в узле IoT, и их можно рассматривать как основные компоненты сервиса, которые могут быть включены в другой сервис. Вторые могут предоставлять вспомогательные функции для основного сервиса или другие дополнительные услуги. Сервис может обладать одним или несколькими признаками, которые определяют структуры данных, разрешения, дескрипторы и прочие атрибуты сервисов . В сервис-ориентированном IoT сервисы могут быть созданы и развернуты поэтапно : 1) развитие структурной платформы сервисов; 2) суммирование функциональных и коммуникационных возможностей устройств; 3) предоставление единого комплекса сервисов. Сервис управления идентификационной информацией включает в себя управленческий контекст и классификацию объектов. «Интернет вещей» также позволяет создать зеркало для каждого реального объекта в IoT. Кроме того, IoT имеет сервис-ориентированную и связанную архитектуру, в которой виртуальные и физические объекты могут взаимодействовать между собой. Сервис-ориентированный IoT позволяет каждому из компонентов предлагать свои функциональные характеристики в качестве стандартных сервисов, что значительно повышает эффективность как всех устройств, так и сетей, участвующих в «Интернете вещей».

Ключевые приложения IoT в промышленности

IoT-приложения пока находятся на относительно ранней стадии развития . Однако «Интернет вещей» используется все чаще. Довольно много приложений для IoT разрабатывается и/или уже используется для мониторинга окружающей среды, в службах здравоохранения, управлении товарными запасами и продукцией, а также в сферах, связанных с продуктами питания, транспортом, поддержкой рабочих мест и домов, обеспечением безопасности и видеонаблюдения. В работах и дается обзор применения «Интернета вещей» в различных областях. Мы же в нашем обсуждении фокусируемся именно на промышленных приложениях IoT, для разработки которых необходимо решить несколько задач. В зависимости от предполагаемой области применения дизайнерам нужно найти некий компромисс для достижения баланса между издержками и выгодами . Ниже приведены некоторые приложения IoT в промышленности.

Использование IoT в горном производстве

Обеспечение безопасности на шахтах является большой проблемой для многих стран в связи с условиями труда на подземных рудниках. В целях предотвращения и уменьшения количества несчастных случаев необходимо использовать технологии IoT, которые смогут принимать аварийные сигналы из шахты . С помощью RFID, Wi-Fi и других технологий и устройств беспроводной связи, обеспечивающих эффективное взаимодействие между наземным и подземным пространствами, горнодобывающие компании смогут отслеживать местоположение шахтеров и анализировать критически важные данные по безопасности, полученные от датчиков. Еще одним полезным приложением являются химические и биологические сенсоры, применяемые для диагностики и раннего определения заболеваний у шахтеров, что особенно важно, поскольку они работают в опасных условиях. Эти сенсоры можно использовать для получения биологической информации о состоянии человеческого тела и органов, для выявления опасной пыли, вредных газов и других факторов окружающей среды, которые могут стать причиной несчастных случаев. Проблема использования всех этих технологий заключается в том, что беспроводным устройствам нужна энергия, которая потенциально может привести к взрыву газа в шахте. Таким образом, необходимы дополнительные исследования характеристик безопасности IoT-устройств, используемых в горнорудной промышленности.

Использование IoT в сфере здравоохранения

«Интернет вещей» дает новые возможности для улучшения здравоохранения . При повсеместной поддержке идентификации, зондирования и коммуникационных возможностей «Интернета вещей» все объекты системы здравоохранения (люди, техника, препараты и т. д.) можно постоянно отслеживать и контролировать . Глобальная связь «Интернета вещей» позволяет все медицинские сведения (обеспечение, диагностика, терапия, выздоровление, лекарства, управление, финансы и даже суточная активность) собрать, обработать и эффективно использовать. Например, можно измерять частоту сердечных сокращений пациента с помощью датчиков, а затем отправлять в кабинет врача. При использовании персональных вычислительных устройств (ноутбук, мобильный телефон, планшет и т. д.) и мобильного доступа в Интернет (Wi-Fi, сети 3G, LTE и т. д.) медицинские службы, базирующиеся на IoT, становятся мобильными и персональными . Широкое распространение сервисов мобильного Интернета ускоряет развитие основанных на «Интернете вещей» услуг здравоохранения «на дому» . Но пока этому препятствуют проблемы, связанные с безопасностью и конфиденциальностью.

Использование IoT в цепочках поставок пищевых продуктов

Сегодня цепочки поставок пищевых продуктов (Food Supply Chains, FSC) широко распространены. Они обладают сложными рабочими процессами, имеют внушительные географические и временные масштабы, а также могут включать большое число участников. Их сложность вызывала много вопросов по управлению качеством, оперативности и общественной безопасности пищевых продуктов. Большой потенциал для решения проблем отслеживаемости, прозрачности и контроля открыли технологии IoT. Они могут защитить сети FSC в так называемых цепочках «от фермы до тарелки»: от высокоточного сельского хозяйства к производству продуктов питания, их обработке, хранению, распределению и потреблению. В будущем следует ожидать появления более безопасных, эффективных и устойчивых FSC. Типичное решение «Интернета вещей» для FSC (т. н. пищевого IoT) состоит из трех частей: a) полевых устройств, таких как узлы беспроводной сенсорной сети (WSN), считыватели RFID-меток, терминалы пользовательского интерфейса и т. д.; б) магистральной системы, включающей базы данных, сервера и терминалы многих видов, подключенных к распределенным компьютерным сетям и т. д.; в) инфраструктуры связи, такой как беспроводная локальная сеть (WLAN), сотовая, спутниковая связь, линии электропередач, Ethernet и т. д. Помимо этого, IoT также предоставляет эффективные функции зондирования для отслеживания и контроля процессов производства продуктов питания.

Использование IoT в области транспорта и логистики

Роль «Интернета вещей» в транспортной и логистической отраслях промышленности становится все более значимой . Поскольку все больше и больше физических объектов оснащаются штрихкодами, RFID-метами или датчиками, транспортные и логистические компании могут отслеживать в реальном времени движение физических объектов от исходного пункта к месту назначения по всей цепочке поставок, наблюдая за производством, доставкой, дистрибьюцией и т. д. . Кроме того, ожидается, что IoT предоставит перспективные решения для преобразования транспортных систем и автомобильных сервисов . Так как средства передвижения обладают все более мощными сетевыми и коммуникативными возможностями, а также средствами зондирования и обработки данных, «Интернет вещей» можно использовать как для их улучшения, так и для того, чтобы делиться малоиспользуемыми ресурсами с другими автомобилями на парковке или на дороге.

Например, интеллектуальная информационная система (iDrive), недавно разработанная компанией BMW, использует различные датчики и метки для мониторинга обстановки, в частности отслеживания местоположения транспортного средства и обеспечения схемы проезда . Группа авторов разработала интеллектуальную систему мониторинга для контроля температуры и влажности внутри грузовиков-рефрижераторов посредством RFID-меток, датчиков и беспроводных коммуникационных технологий. В ближайшем будущем мы увидим развитие автомобильного автопилота, который сможет обнаруживать пешеходов или другие транспортные средства, а также маневрировать таким образом, чтобы избежать столкновения . Также для широкого применения «Интернета вещей» в сфере транспорта и логистики важны безопасность и защита конфиденциальности, так как многие водители опасаются утечки информации и вторжения в частную жизнь. Разумные усилия с помощью технологий, законов и регулирования будут необходимы для предотвращения несанкционированного доступа или раскрытия конфиденциальных данных.

Использование IoT для пожаротушения

«Интернет вещей» уже используется в области пожарной безопасности для обнаружения возгораний и раннего предупреждения возможных стихийных бедствий, связанных с пожарами. В Китае RFID-метки и/или штрих-коды связываются со средствами пожаротушения для организации общенациональной противопожарной информационной базы данных и систем управления. Благодаря использованию RFID-меток, мобильных RFID-считывателей, а также интеллектуальных видеокамер, сенсорных и беспроводных сетей, управление пожаротушения и приравненные к ним организации могут выполнять автоматическую диагностику, чтобы осуществлять в режиме реального времени мониторинг окружающей среды для раннего предупреждения пожаров и проведения необходимых аварийно-спасательных мер. Исследователи в Китае также используют технологии IoT, чтобы вывести на новый уровень систему автоматического противопожарного оповещения в целях повышения управления возгораниями и прочими чрезвычайными ситуациями . Недавно Цзи и Ци продемонстрировали инфраструктуру IoT-приложений, которые используются для управления чрезвычайными ситуациями в Китае. Инфраструктура этих IoT-приложений содержит уровни зондирования, передачи, поддержки, а также платформенный и прикладной. IoT-инфраструктура разработана таким образом, чтобы интегрировать локальные и специфические отраслевые системы. В настоящее время актуальной в этой области является проблема создания стандартов для противопожарного «Интернета вещей».

Исследовательские проблемы и будущие тенденции

Общепризнано, что технологии и приложения «Интернета вещей» пока что находятся в зачаточном состоянии . Все еще остается множество научных проблем внедрения IoT в промышленность, касающихся технологий, стандартизации, безопасности и конфиденциальности . В будущем необходимо стремиться к их решению, изучая особенности различных отраслей индустрии, для того чтобы обеспечить оптимальное внедрение IoT-устройств в промышленных условиях. Отраслевую специфику и требования к таким факторам, как стоимость, безопасность, конфиденциальность и риски, необходимо осознать еще до того, как «Интернет вещей» начнет широко использоваться в промышленности.

Технические проблемы

Хотя уже было проведено немало исследований по технологиям IoT, остается еще достаточно технических проблем.

  1. Дизайн сервис-ориентированной архитектуры (SOA) для IoT доставляет определенные трудности, так как сервис-ориентированные «вещи» могут пострадать от своей производительности и ценовых издержек. Также, по мере того как все больше и больше физических объектов подключается к сети, часто возникают проблемы с масштабируемостью на разных уровнях, включая передачу данных и работу по сети, обработку данных и управление, а также обеспечение сервисов .
  2. «Интернет вещей» является очень сложной гетерогенной сетью, включающей в себя соединения между разными типами сетей с помощью различных коммуникационных технологий. В настоящее время отсутствует общепринятая единая платформа, которая скрывает неоднородность выделенных сетевых/коммуникативных технологий и обеспечивает прозрачность именованных сервисов для различных приложений . Передача больших по объему данных по сети в одно и то же время также может стать причиной частых задержек, конфликтов и коммуникативных проблем. Эта задача может быть разрешена путем сбора данных с помощью большого количества устройств. Управление связанными «вещами» с точки зрения облегчения взаимодействия субъектов и администрирования адресации, идентификации и оптимизации устройств на уровнях архитектуры и протоколов является одной из важных исследовательских задач .
  3. Отсутствие общепринятого языка описания делает затруднительным развитие сервиса и усложняет интеграцию ресурсов физических объектов в сервисы, приносящие дополнительный доход (VAS-сервисы). Развитые сервисы могут быть несовместимы с разным коммуникационным и внедренным окружением . Кроме того, для распространения технологии IoT должны быть разработаны мощные методы обнаружения сервисов и службы именования объектов .
  4. Так как «Интернет вещей» часто развивается на основе традиционного ИКТ-окружения и на него влияет все, что подключено к сети, потребуется много работы, чтобы провести интеграцию IoT с существующими, в том числе устаревшими, ИТ-системами в единую информационную инфраструктуру. Помимо этого, большое количество подключенных к Интернету связанных «вещей» будет автоматически воспроизводить в режиме реального времени огромный поток данных , которые не будут иметь особого смысла, если люди не смогут найти эффективный способ их анализа и понимания . Анализ или осмысление больших объемов данных, генерируемых как приложениями IoT, так и существующими ИТ-системами, потребует серьезных навыков, и это может оказаться сложным для многих конечных пользователей. Кроме того, для интеграции IoT-устройств с внешними ресурсами, такими как существующие программные системы и веб-сервисы, необходимы разработки различного промежуточного ПО, так как приложения сильно разнятся по отраслям. Выстраивание практических приложений, в которых разнородные и зависящие от «Интернета вещей» данные комбинируются с обычными, может оказаться сложной задачей для различных отраслей промышленности.

Стандартизация

Быстрое развитие «Интернета вещей» усложняет стандартизацию. Однако именно она играет важную роль в дальнейшем становлении и распространении «Интернета вещей». Стандартизация в IoT призвана снизить барьеры для входа новых поставщиков сервисов и пользователей, служит для улучшения взаимодействия различных приложений и сервисов, а также для обеспечения лучшего качества продуктов или сервисов более высокого уровня. Достаточная координация усилий в процессе стандартизации обеспечит устройствам и приложениям из разных стран возможность обмениваться информацией . Различные стандарты, используемые в IoT (например, стандарты безопасности, связи и идентификации), могут оказаться ключевыми факторами для распространения и разработки технологий IoT. К специфическим вопросам в области стандартизации «Интернета вещей» относятся проблемы совместимости, уровня радиодоступа, семантической интероперабельности, а также безопасности и конфиденциальности . Кроме того, рекомендуется разработать и отраслевые стандарты или инструкции для упрощения интеграции различных сервисов при внедрении «Интернета вещей» в промышленность.

Информационная безопасность и защита конфиденциальности

Широкое распространение новых технологий и сервисов «Интернета вещей» будет во многом основываться на информационной безопасности и защите конфиденциальности данных, которые становятся проблематичными в IoT из-за особенностей их развертывания, мобильности и комплексности . Многие из существующих сегодня технологий доступны для бытового использования, но не подходят для промышленных приложений, в которых предъявляются повышенные требования по безопасности. Существующие технологии шифрования, заимствованные из WSN (беспроводной сенсорной сети) или других сетей, должны быть тщательно проверены перед их использованием для защиты информации при реализации «Интернета вещей». Так как IoT позволяет многие повсе­дневные вещи отслеживать, мониторить и связывать, значительное количество личной и персональной информации может собираться автоматически . Защита приватности в среде «Интернета вещей» станет более серьезной, чем в традиционной среде ИКТ, так как количество векторов атак на «вещи» IoT, видимо, будет намного больше . К примеру, монитор здоровья будет собирать данные пациента, такие как частота сердечных сокращений и уровень сахара в крови, а затем отправлять информацию непосредственно в кабинет врача по сети. При этом она может быть украдена или взломана. Другой пример - биодатчик, используемый в пищевой промышленности. Он может применяться для мониторинга температуры и бактериального состава продуктов питания, хранящихся в холодильнике. Когда что-то портится, данные об этом отправляются в компанию через сеть. Однако такая информация должна быть строго конфиденциальной, чтобы защитить репутацию пищевой компании . Следует отметить, что некоторые вопросы, такие как определение конфиденциальности в IoTи ее юридическое толкование, по-прежнему четко не определены. Несмотря на то, что уже существуют сетевые технологии безопасности, для обеспечения основ конфиденциальности и безопасности в IoT предстоит проделать еще много работы. В первую очередь, необходимо изучить следующие аспекты: 1) определение безопасности и конфиденциальности с социальной, правовой и культурной точек зрения; 2) механизм доверия и репутации; 3) безопасность связи - в частности, сквозное шифрование (end-to-end); 4) конфиденциальность переписки и данных пользователя; 5) защита сервисов и приложений.

Направления исследований

Подход к развитию инфраструктуры «Интернета вещей» будет поэтапным, включающим в себя расширение существующих методов идентификации, таких как RFID. При этом для решения множества вышеописанных проблем необходимы международное сотрудничество и высокий уровень системной перспективы . В связи с этим мы определили, помимо уже указанных, некоторые направления исследования.

  1. Интеграция социальных сетей с IoT-решениями. В последнее время возник большой интерес к использованию социальных сетей для улучшения коммуникаций между различными «IoT-вещами». Недавно группой ученых была предложена новая парадигма - социальный «Интернет вещей» (SIoT). Также наблюдается тенденция перехода от «Интернета вещей» к новому направлению, называемому «Веб вещей» (Web of Things), которое позволит IoT-объектам стать акторами и равноправными участниками процессов во Всемирной паутине .
  2. Разработка «зеленых» IoT-технологий. Так как «Интернет вещей» включает в себя миллиарды подключенных через беспроводную сеть коммуникативных датчиков, потребляемая ими мощность вызывает большую тревогу и ограничивает использование «Интернета вещей». Улучшение энергосбережения должно стать важнейшей целью для разработчиков IoT-устройств, прежде всего беспроводных датчиков .
  3. Разработка контекстно зависимых решений связующего програм­много обеспечения IoT. Когда миллиарды датчиков подключены к Интернету, для человека становится невозможным обработать все данные, собранные этими датчиками. Контекстно зависимые техники вычислений, такие как связующее программное обеспечение IoT, предназначены для лучшего понимания данных с датчиков и помощи в отборе информации для обработки . В настоящее время большинство связующего программного обеспечения IoT не имеет возможностей для осознания контекста. Европейский союз назвал контекстную зависимость важной областью исследований IoT и указал сроки (2015–2020 гг.) для проведения компьютерных исследований и разработки контекстно-зависимого «Интернета вещей» .
  4. Применение методов искусственного интеллекта для создания умных «вещей». Некоторые исследователи предлагают создать «Интернет разумных вещей», привнеся искусственный интеллект в «вещи» и коммуникационные сети. По их мнению, будущие системы IoT должны иметь такие характеристики, как «самоконфигурирование, само­оптимизация, самозащита и самоисцеление» . В будущем «умные» вещи станут еще умнее , контекстно зависимы, будут обладать большой памятью и широкими возможностями обработки, а также способностью рассуждать.
  5. Объединение «Интернета вещей» и облачных вычислений. Облака - хороший способ подключения «вещей», они могут предоставить нам доступ к различным «вещам» через Интернет. Дальнейшие исследования будут сосредоточены на внедрении новых моделей и платформ, которые обеспечат «зондирование как сервис» в облаках .

Заключение

В качестве сложной киберфизической системы «Интернет вещей» объединяет различные устройства, оснащенные зондированием, идентификацией, обработкой данных, коммуникацией и обладающие сетевыми возможностями. В частности, датчики и исполнительные устройства становятся все мощнее, дешевле и меньше, что приводит к их повсеместному использованию. Индустрия сильно заинтересована в развертывании IoT-устройств для разработки промышленных приложений, таких как автоматический мониторинг, контроль, управление, эксплуатация и техническое обслуживание. Предполагается, что из-за стремительного развития технологий и промышленной инфраструктуры «Интернет вещей» будет широко применяться в промышленности. Например, в пищевой промышленности интеграция беспроводных сенсорных сетей (WSN) и радиочастотной идентификации (RFID) служит для построения автоматизированных систем контроля, мониторинга и отслеживания качества продуктов питания по всей цепочке поставок.

Вконтакте

Литература

  1. Van Kranenburg R. The Internet of Things: A Critique of Ambient Technology and the All-Seeing Network of RFID. The Netherlands, Amsterdam: Institute of Network Cultures, 2007.
  2. Van Kranenburg R., Anzelmo E., Bassi A., Caprio D., Dodson S., Ratto M. The internet of things // Proc. 1st Berlin Symp. Internet Soc. Germany, Berlin, 2011.
  3. Li Y., Hou M., Liu H., Liu Y. Towards a theoretical framework of strategic decision, supporting capability and information sharing under the context of Internet of Things // Inf. Technol. Manage. 2012. Vol. 13, No. 4.
  4. Tan L., Wang N. Future internet: The internet of things // Proc. 3rd Int. Conf. Adv. Comput. Theory Eng. (ICACTE). China, Chengdu, 2010.
  5. Jia X., Feng O., Fan T., Lei Q. RFID technology and its applications in internet of things (IoT) // Proc. 2nd IEEE Int. Conf. Consum. Electron., Commun. Netw. (CECNet). China, Yichang, 2012.
  6. Sun C. Application of RFID technology for logistics on internet of things // AASRI Procedia. 2012. Vol. 1.
  7. Ngai E. W. T., Moon K. K., Riggins F. J., Yi C. Y. RFID research: An academic literature review (1995–2005) and future research directions // Int. J. Prod. Econ. 2008. Vol. 112, No. 2.
  8. Li S., Xu L., Wang X. Compressed sensing signal and data acquisition in wireless sensor networks and internet of things // IEEE Trans. Ind. Informat. 2013. Vol. 9, No. 4.
  9. He W., Xu L. Integration of distributed enterprise applications: A survey // IEEE Trans. Ind. Informat. 2014. Vol. 10, No. 1.
  10. Uckelmann D., Harrison M., Michahelles F. An architectural approach towards the future internet of things // Uckelmann D., Harrison M., Michahelles F. Architecting the Internet of Things. USA, NY: Springer, 2011.
  11. Li S., Xu L., Wang X., Wang J. Integration of hybrid wireless networks in cloud services oriented enterprise information systems // Enterp. Inf. Syst. 2012. Vol. 6, No. 2.
  12. Wang L., Xu L., Bi Z., Xu Y. Data filtering for RFID and WSN integration // IEEE Trans. Ind. Informat. 2014. Vol. 10, No. 1.
  13. Ren L., Zhang L., Tao F., Zhang X., Luo Y., Zhang Y. Amethodology towards virtualization-based high performance simulation platform supporting multidisciplinary design of complex products // Enterp. Inf. Syst. 2012. Vol. 6, No. 3.
  14. Tao F., Laili Y., Xu L., Zhang L. FC-PACO-RM: A parallel method for service composition optimal-selection in cloud manufacturing system // IEEE Trans. Ind. Informat. 2013. Vol. 9, No. 4.
  15. Li Q., Wang Z., Li W., Li J., Wang C., Du R. Applications integration in a hybrid cloud computing environment: Modelling and platform // Enterp. Inf. Syst. 2013. Vol. 7, No. 3.
  16. Bandyopadhyay D., Sen J. Internet of things: Applications and challenges in technology and standardization // Wireless Pers. Commun. 2011. Vol. 58, No. 1.
  17. ITU NGN-GSI Rapporteur Group. Requirements for Support of USN Applications and Services in NGN Environment. Switzerland, Geneva: International Telecommunication Union (ITU), 2010.
  18. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Comput. Netw., vol. 54, no. 15, pp. 2787–2805, 2010.
  19. Miorandi D., Sicari S., De Pellegrini F., Chlamtac I. Internet of things: Vision, applications and research challenges // Ad Hoc Netw. 2012. Vol. 10, No. 7.
  20. Vermesan O., Friess P., Guillemin P. Internet of things strategic research roadmap . The Cluster of European Research Projects.
  21. Sundmaeker H., Guillemin P., Friess P. Vision and Challenges for Realizing the Internet of Things. Belgium, Brussels: European Commission, 2010.
  22. Zhang H., Zhu L. Internet of things: Key technology, architecture and challenging problems // Proc. 2011 IEEE Int. Conf. Comput. Sci. Autom. Eng. (CSAE). China, Shanghai.
  23. Wang S., Li L., Wang K., Jones J. E-business system integration: A systems perspective // Inf. Technol. Manag. 2012. Vol. 13, No. 4.
  24. Tao F., Guo H., Zhang L., Cheng Y. Modelling of combinable relationship-based composition service network and the theoretical proof of its scale-free characteristics // Enterp. Inf. Syst. 2012. Vol. 6, No. 4.
  25. Xu L., Viriyasitavat W., Ruchikachorn P., Martin A. Using propositional logic for requirements verification of service workflow // IEEE Trans. Ind. Informat. 2012. Vol. 8, No. 3.
  26. Paulraj D., Swamynathan S., Madhaiyan M. Process model-based atomic service discovery and composition of composite semantic web services using web ontology language for services // Enterp. Inf. Syst. 2012. Vol. 6, No. 4.
  27. Panetto H., Cecil J. Information systems for enterprise integration, interoperability and networking: Theory and applications // Enterp. Inf. Syst. 2013. Vol. 7, No. 1.
  28. Viriyasitavat W., Xu L., Martin A. SWSpec, service workflow requirements specification language: The formal requirements specification in service workflow environments // IEEE Trans. Ind. Informat. 2012. Vol. 8, No. 3.
  29. Hachani S., Gzara L., Verjus H. A service-oriented approach for flexible process support within enterprises: An application on PLM systems // Enterp. Inf. Syst. 2013. Vol. 7, No. 1.
  30. Xu L. Enterprise Systems: State-of-the-art and future trends // IEEE Trans. Ind. Informat. 2011. Vol. 7, No. 4.
  31. Domingo M. C. An overview of the internet of things for people with disabilities // J. Netw. Comput. Appl. 2012. Vol. 35, No. 2.
  32. Liu C. H., Yang B., Liu T. Efficient naming, addressing and profile services in Internet-of-Things sensory environments // Ad Hoc Netw. To be published.
  33. Wu Y., Sheng Q. Z., Zeadally S. RFID: Opportunities and challenges // Next-Generation Wireless Technologies. USA, NY: Springer, 2013.
  34. Ilie-Zudor E., Kemeny Z., van Blommestein F., Monostori L., van der Meulen A. A survey of applications and requirements of unique identification systems and RFID techniques // Comput. Ind. 2011. Vol. 62, No. 3.
  35. Han C., Jornet J. M., Fadel E., Akyildiz I. F. A cross-layer communication module for the internet of things // Comput. Netw. 2013. Vol. 57, No. 3.
  36. Guinard D., Trifa V., Karnouskos S., Spiess P., Savio D. Interacting with the soa-based internet of things: Discovery, query, selection, and ondemand provisioning of web services // IEEE Trans. Serv. Comput. 2010. Vol. 3, No. 3.
  37. Gama K., Touseau L., Donsez D. Combining heterogeneous service technologies for building an internet of things middleware // Comput. Commun. 2012. Vol. 35, No. 4.
  38. Romero D., Hermosillo G., Taherkordi A., Nzekwa R., Rouvoy R., Eliassen F. RESTful integration of heterogeneous devices in pervasive environments // Distributed Applications and Interoperable Systems. Germany, Berlin: Springer-Verlag, 2010.
  39. Zhou H. The Internet of Things in the Cloud: A Middleware Perspective. USA, FL, Boca Raton: CRC Press, 2012.
  40. Atzori L., Iera A., Morabito G., Nitti M. The social internet of things (SIoT)-when social networks meet the internet of things: Concept, architecture and network characterization // Comput. Netw. 2012. Vol. 56, No. 16.
  41. Lim M. K., Bahr W., Leung S. RFID in the warehouse: A literature analysis (1995–2010) of its applications, benefits, challenges and future trends // Int. J. Prod. Econ. 2013. Vol. 145, No. 1.
  42. Zhu Q., Wang R., Chen Q., Liu Y., Qin W. IoT gateway: Bridging wireless sensor networks into internet of things // Proc. IEEE/IFIP 8th Int. Conf. Embedded Ubiquitous Comput. (EUC). China, Hong Kong, 2010.
  43. Liu Y., Zhou G. Key technologies and applications of internet of things // Proc. 2012, 5th Int. Conf. Intell. Comput. Technol. Autom. (ICICTA). China, Zhangjiajie.
  44. Cervantes H., Hall R. S. Automating service dependency management in a service-oriented component model // Proc. 6th Workshop Compon.- Based Softw. Eng. USA, Oregon, Portland, 2003.
  45. Vazquez J. I., Almeida A., Doamo I., Laiseca X., Ordu?a P. Flexeo: An architecture for integrating wireless sensor networks into the internet of things // Proc. 2008, 3rd Symp. Ubiquitous Comput. Ambient Intell. Spain, Salamanca, 2009.
  46. Fl?gel C., Gehrmann V. Scientific workshop 4: Intelligent objects for the internet of things: Internet of things-application of sensor networks in logistics // Commun. Comput. Inf. Sci. 2009. Vol. 32.
  47. Pang Z., Chen Q., Tian J., Zheng L., Dubrova E. Ecosystem analysis in the design of open platform-based in-home healthcare terminals towards the internet-of-things // Proc. 2013, 15th Int. Conf. Adv. Commun. Technol. (ICACT). Korea, Pyeongchang.
  48. Alemdar H., Ersoy C. Wireless sensor networks for healthcare: A survey // Comput. Netw. 2010. Vol. 54, No. 15.
  49. Plaza I., Martin L., Martin S., Medrano C. Mobile applications in an aging society: Status and trends // J. Syst. Softw. 2011. Vol. 84, No. 11.
  50. Pang Z., Chen Q., Han W., Zheng L. Value-centric design of the internet-of-things solution for food supply chain: Value creation, sensor portfolio and information fusion // Inf. Syst. Front. To be published.
  51. Wei Q., Zhu S., Du C. Study on key technologies of internet of things perceiving mine // Procedia Eng. 2011. Vol. 26.
  52. Karakostas B. A DNS architecture for the internet of things: A case study in transport logistics // Procedia Comput. Sci. 2013. Vol. 19.
  53. Zhou H., Liu B., Wang D. Design and research of urban intelligent transportation system based on the internet of things // Commun. Comput. Inf. Sci. 2012. Vol. 312.
  54. Qin E., Long Y., Zhang C., Huang L. Cloud computing and the internet of things: Technology innovation in automobile service // LNCS 8017. USA, NY, 2013.
  55. Zhang Y., Chen B., Lu X. Intelligent monitoring system on refrigerator trucks based on the internet of things // Wireless Commun. Appl. 2012. Vol. 72.
  56. Keller C. G., Dang T., Fritz H., Joos A., Rabe C., Gavrila D. M. Active pedestrian safety by automatic braking and evasive steering // IEEE Trans. Intell. Transp. Syst. 2011. Vol. 12, No. 4.
  57. Zhang Y. C., Yu J. A study on the fire IOT development strategy // Procedia Eng. 2013. Vol. 52.
  58. Ji Z., Qi A. The application of internet of things (IOT) in emergency management system in China // Proc. 2010 IEEE Int. Conf. Technol. Homeland Security (HST).
  59. Wang S., Zhang Z., Ye Z., Wang X., Lin X., Chen A. Application of environmental internet of things on water quality management of urban scenic river // Int. J. Sustain. Develop. World Ecol. 2013. Vol. 20, No. 3.
  60. Perera C., Zaslavsky A., Christen P., Georgakopoulos D. Context aware computing for the internet of things: A survey // IEEE Commun. Surveys Tuts. To be published.
  61. Wang F., Ge B., Zhang L., Chen Y., Xin Y., Li X. A system framework of security management in enterprise systems // Syst. Res. Behav. Sci. 2013. Vol. 30, No. 3.
  62. Li J., Yang J., Zhao Y., Liu B. A top-down approach for approximate data anonymization // Enterp. Inf. Syst. 2013. Vol. 7, No. 3.
  63. Xing Y., Li L., Bi Z., Wilamowska-Korsak M., Zhang L. Operations research (OR) in service industries: A comprehensive review // Syst. Res. Behav. Sci. 2013. Vol. 30, No. 3.
  64. Wan J., Jones J. Managing IT service management implementation complexity from the perspective of the Warfield version of systems science // Enterp. Inf. Syst. 2013. Vol. 7, No. 4.
  65. Roman R., Najera P., Lopez J. Securing the internet of things // Computer. 2011. Vol. 44, No. 9.
  66. Li L. Technology designed to combat fakes in the global supply chain // Bus. Horizons. 2013. Vol. 56, No. 2.
  67. Ting S. L., Ip W. H. Combating the counterfeits with web portal technology. Inf. Syst. To be published.
  68. Clarke J., Castro R., Sharma A., Lopez J., Suri N. Trust & security RTD in the internet of things: Opportunities for international cooperation // Proc. 1st Int. Conf. Security of Internet of Things. India, Kollam, 2012.
  69. Xu L. Introduction: Systems science in industrial sectors // Syst. Res. Behav. Sci. 2013. Vol. 30, No. 3.
  70. Li F., Jin C., Jing Y., Wilamowska-Korsak M., Bi Z. A rough programming model based on the greatest compatible classes and synthesis effect // Syst. Res. Behav. Sci. 2013. Vol. 30, No. 3.
  71. Lin Y., Duan X., Zhao C., Xu L. Systems Science Methodological Approaches. USA, FL: CRC Press, 2013.
  72. Atzori L., Carboni D., Iera A. Smart things in the social loop: Paradigms, technologies, and potentials. Ad Hoc Netw. To be published.
  73. Xu L. Information architecture for supply chain quality management // Int. J. Prod. Res. 2011. Vol. 49, No. 1.
  74. Sun J. Z. Towards the web of things: Open research issues and the BASAMI use case // Lect. Notes Electr. Eng. 2012. Vol. 144.
  75. Guinard D., Trifa V., Mattern F., Wilde E. From the internet of things to the web of things: Resource-oriented architecture and best practices // Architecting the Internet of Things. USA, NY: Springer, 2011.
  76. Xia F. Wireless sensor technologies and applications // Sensors. 2009. Vol. 9, No. 11.
  77. Yaacoub E., Kadri A., Abu-Dayya A. Cooperative wireless sensor networks for green internet of things // Proc. 8th ACMSymp. QoS Security Wireless Mobile Netw. Cyprus, Paphos, 2012.
  78. Ars?nio A., Serra H., Francisco R., Nabais F., Andrade J., Serrano E. Internet of Intelligent Things: Bringing artificial intelligence into things and communication networks // Stud. Comput. Intell. 2014. Vol. 495.
  79. Kephart J. O., Chess D. M. The vision of autonomic computing // IEEE Computer. 2003. Vol. 36, No. 1.
  80. Kortuem G., Kawsar F., Fitton D., Sundramoorthy V. Smart objects as building blocks for the internet of things // IEEE Internet Comput. 2010. Vol. 14, No. 1.
  81. Ding Y., Jin Y., Ren L., Hao K. An intelligent self-organization scheme for the internet of things // IEEE Comput. Intell. Mag. 2013. Vol. 8, No. 3.
  82. Rao B. P., Saluia P., Sharma N., Mittal A., Sharma S. V. Cloud computing for internet of things & sensing based applications // Proc. 2012 6th Int. Conf. Sens. Technol. (ICST). India, Kolkata, West Bangal.
  83. Fang S., Xu L., Pei H., Liu Y. An integrated approach to snowmelt flood forecasting in water resource management // IEEE Trans. Informat. 2014. Vol. 10, No.1.
  84. Gubbi J., Buyya R., Marusic S., Palaniswami M. Internet of things (IoT): A vision, architectural elements, and future directions // Future Gen. Comput. Syst. 2013. Vol. 29, No. 7.

Решения КРОК на основе технологий интернета вещей открывают богатые возможности для понимания бизнеса, развития инновационных сервисов, управления сложными программно-аппаратными инфраструктурами.

К технологиям, на которых базируется интернет вещей (Internet of things, IoT), относятся датчики, сенсоры, RFID-метки, передающие данные посредством радиосигналов, телематические устройства для межмашинного взаимодействия (Machine-to-Machine, M2M), облачные технологии для хранения и обработки и многое другое. По оценкам отраслевых аналитиков, к 2020 году число подключенных к интернету гаджетов может достичь 50 миллиардов. Уже сегодня интеллектуальные датчики встраиваются в инженерные системы и оборудование на промышленных, энергетических, нефтегазовых предприятиях. В «разумных городах» IoT-системы обеспечивают мониторинг общественного транспорта и регулирование дорожного движения, помогают контролировать состояние жилищно-коммунальной инфраструктуры и следить за общественной безопасностью.

Решения КРОК в IoT

Применение IoT в разных отраслях

Автоматические датчики способствуют оптимизации работы крупных турбин и сложного оборудования, уменьшают топливные расходы. Предиктивная диагностика сокращает количество сбоев и поломок на предприятии. Интеллектуальный коммерческий учет электроэнергии (smart metering) сокращает затраты на энергию.

Автоматизированное управление технологическими режимами работы нефтегазового оборудования включает в себя запуск и переход между режимами по команде диспетчера «одной кнопкой», удержание технологического оборудования в зоне его характеристик, отслеживание выполнения регламентов по обслуживанию и ремонтов.

Внедрение механизмов предиктивной диагностики сокращает расходы на обслуживание и ремонты при одновременном уменьшении количества поломок. Это продлевает срок эксплуатации оборудования и уменьшает себестоимость конечной продукции.

КРОК предлагает заказчикам системы для автоматизации управления грейдерами, бульдозерами, машинами для установки свай, прокладки подводных коммуникаций и прочей строительной техникой. Бортовой компьютер в реальном времени регулирует положение рабочего органа техники, а высокоточные лазерные, оптические, GPS/ГЛОНАСС-приемники гарантируют точное следование плану.

Подробнее о решениях КРОК

КРОК предлагает заказчикам решения на основе интернета вещей с использованием продуктов от ведущих разработчиков: Intel, General Electric. При необходимости умные системы можно бесшовно интегрировать с существующей инфраструктурой и встроить в уже работающие процессы. Специализированные решения для информационной безопасности защищают от вмешательства киберпреступников, перехвата, хищения информации и прочих специфических угроз.

Промышленный интернет вещей

Промышленное направление IoT обеспечивает взаимодействие киберфизических систем в современном машиностроении и высокотехнологичном сборочном производстве. Эти технологии применяются в системах управления производственными процессами, непрерывного мониторинга и онлайн-диагностики состояния промышленного оборудования, особенно высоконагруженного - насосов, конвейеров, компрессоров, генераторов и т.п.

Smart Metering

Многоуровневые системы учета электроэнергии () обеспечивают качественно новую надежность и точность измерения энергоресурсов, повышая контроль их поставки, транспортировки и потребления. Комплексное решение включает в себя счетчики нового поколения, системы верхнего уровня, которые обеспечивают сбор, обработку и анализ информации из любого количества точек учета, современные сети, позволяющие передавать большие массивы информации как от поставщика к пользователю, так и в обратном направлении.

Видеоаналитика

Умные видеокамеры берут на себя обработку видеопотоков и обнаружение значимых событий. Торговые организации с их помощью анализируют поведение покупателей и сотрудников в зале, отслеживают эффект маркетинговых акций и оптимизируют работу касс. Интеграция с системой контроля и управления доступом (СКУД) позволяет узнавать сотрудников в лицо, автоматически подсчитывать время присутствие на рабочем месте, пресекать доступ посторонних в закрытые зоны.

WiFi-аналитика

Специализированная платформа использует сигналы от WiFi-модулей смартфонов, чтобы отслеживать поведение посетителей торговых центров и отвечать на вопросы: сколько из проходящих мимо покупателей заходят в ТЦ или конкретный магазин? Сколько времени они проводят на площадке? Какова доля постоянных посетителей? Куда ещё они ходят? В результате заказчик может корректировать свои маркетинговые акции и формировать индивидуальные предложения для клиентов с учётом их личных потребностей.

Безопасность IoT

Комплекс программно-аппаратных средств не позволяет злоумышленникам перехватить контроль над распределенными IoT-системами. На уровне конечных устройств (датчики, сенсоры, сервоприводы, актуаторы) обеспечивается защита от несанкционированных изменений в программном обеспечении, защита от отправки и приема команд в обход системы управления. Криптографическая защита каналов связи блокирует вмешательства в обмен данными между конечными устройствами и системой управления. Средства защиты системы управления обеспечивают обнаружение несанкционированных устройств, мониторинг, централизованное управление и обновление конечных устройств.

Разумный город

В городской среде технологии Интернета вещей применяются для контроля ЖКХ-инфраструктуры, предупреждения аварийных ситуаций и общественно-опасных действий. Средства видеонаблюдения могут автоматически сообщать о подозрительных предметах и попытках проникновения в закрытые зоны. На дорогах решения для автоматического обмена данными между автомобилями и объектами дорожной инфраструктуры позволяют участникам движения в реальном времени получать и передавать информацию об опасных маневрах, сложных метеоусловиях, инцидентах на дороге и др. Вся информация поступает в ситуационный центр оперативного реагирования, который служит командной точкой для координации оперативных служб.

Управление складами и архивами

Использование RFID-меток в сочетании с мобильными считывателями упрощает приёмку, инвентаризацию и учёт товаров на складах. Сотрудники избавляются от большой части ручной работы по заполнению документации. Поступающие товары автоматически регистрируются в системе, которая позже при необходимости быстро подскажет местоположение нужных позиций. По такому же принципу организуется хранение документации в бумажных архивах. Интеграция с системой электронного документооборота позволяет максимально автоматизировать работу с поступающими документами - от получения и регистрации до сдачи архивации.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows