Локальная сеть кольцо. Принципы построения локальных вычислительных сетей. Топология сети — “звезда”

Локальная сеть кольцо. Принципы построения локальных вычислительных сетей. Топология сети — “звезда”

Рис.3 Топология кольцо

Сеть кольцевой топологии использует в качестве каналов связи замкнутое кольцо из приема-передатчиков, соединенных коаксиальным или оптическим кабелем.

В сетях с кольцевой конфигурацией данные передаются от одного компьютера к другому, как правило, в одном направлении. Если компьютер распознает данные как «свои», то он копирует их себе во внутренний буфер. В сети с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какой-либо станции не прервался канал связи между остальными станциями. Кольцо представляет собой очень удобную конфигурацию для организации обратной связи – данные, сделав полный оборот, возвращаются к узлу-источнику. Поэтому этот узел может контролировать процесс доставки данных адресату. Часто это свойство кольца используется для тестирования связности сети и поиска узла, работающего некорректно. Для этого в сеть посылаются специальные тестовые сообщения.

Самым распространенным методом доступа в сетях этой топологии является Token-Ring – метод доступа с передачей маркера .

Маркер – это пакет снабженный специальной последовательностью бит. Он последовательно передается по кольцу от узла к узлу в одном направлении. Каждый узел ретранслирует передаваемый маркер. Узел может передать свои данные, если он получил пустой маркер. Маркер с пакетом передается пока не обнаружится узел, которому предназначен пакет. В этом узле данные принимаются, но маркер не освобождается, а передается по кольцу дальше. Только вернувшись к отправителю, который может убедиться, что переданные им данные благополучно получены, маркер освобождается. Пустой маркер передается следующему узлу, который при наличии у него данных, готовых к передаче заполняет его и передает по кольцу. В сетях Token-Ring обеспечивается скорость передачи данных, равная 4-м Мбит/сек.

Ретрансляция данных узлами приводит к снижению надежности сети, так как неисправность в одном из узлов сети разрывает всю сеть.

Смешанные типы топологии

В то время как небольшие сети, как правило, имеют типовую топологию звезда, кольцо, или общая шина, для крупных сетей характерно наличие произвольных связей между компьютерами. В таких сетях можно выделить отдельные произвольно связанные фрагменты (подсети), имеющие типовую топологию, поэтому их называют сетями со смешанной топологией .

По мере все белее широкого распространения локальных сетей, возникают проблемы, связанные с обменом информацией между сетями. Так, в рамках университета в нескольких учебных классах могут использоваться локальные сети, причем это могут быть сети разных типов. Для обеспечения связи между этими сетями используются средства межсетевого взаимодействия, называемые мостами и маршрутизаторами . В качестве моста и маршрутизатора могут использоваться компьютеры, в которых установлено по 2 или более сетевых адаптера. Каждый из адаптеров обеспечивает связь с одной из связываемых сетей. Мост или маршрутизатор получает пакеты, посылаемые компьютером одной сети компьютеру другой сети, переадресует их и отправляет по указанному адресу. Мосты, как правило используются для связи сетей с одинаковыми коммуникационными системами, например, для связи 2-х сетей Ethernet или 2-х сетей Arcnet. Маршрутизаторы связывают сети с разными коммуникационными системами, так как имеют средства преобразования пакетов одного формата в другой. Существуют мосты-маршрутизаторы, объединяющие функции обоих средств. Для обеспечения связи тетей с различными компьютерными системами предназначены шлюзы. Например, через шлюз локальная сеть может быть связана с большой ЭВМ.

абонента должно быть существенно более сложным, чем оборудование периферийных абонентов . О равноправии всех абонентов (как в шине) в данном случае говорить не приходится. Обычно центральный компьютер самый мощный, именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, так как управление полностью централизовано.

Если говорить об устойчивости звезды к отказам компьютеров, то выход из строя периферийного компьютера или его сетевого оборудования никак не отражается на функционировании оставшейся части сети, зато любой отказ центрального компьютера делает сеть полностью неработоспособной. В связи с этим должны приниматься специальные меры по повышению надежности центрального компьютера и его сетевой аппаратуры.

Обрыв кабеля или короткое замыкание в нем при топологии звезда нарушает обмен только с одним компьютером, а все остальные компьютеры могут нормально продолжать работу.

В отличие от шины, в звезде на каждой линии связи находятся только два абонента : центральный и один из периферийных. Чаще всего для их соединения используется две линии связи , каждая из которых передает информацию в одном направлении, то есть на каждой линии связи имеется только один приемник и один передатчик. Это так называемая передача точка-точка . Все это существенно упрощает сетевое оборудование по сравнению с шиной и избавляет от необходимости применения дополнительных, внешних терминаторов .

Проблема затухания сигналов в линии связи также решается в звезде проще, чем в случае шины, ведь каждый приемник всегда получает сигнал одного уровня. Предельная длина сети с топологией звезда может быть вдвое больше, чем в шине (то есть 2 L пр), так как каждый из кабелей, соединяющий центр с периферийным абонентом , может иметь длину L пр.

Серьезный недостаток топологии звезда состоит в жестком ограничении количества абонентов . Обычно центральный абонент может обслуживать не более 8-16 периферийных абонентов . В этих пределах подключение новых абонентов довольно просто, но за ними оно просто невозможно. В звезде допустимо подключение вместо периферийного еще одного центрального абонента (в результате получается топология из нескольких соединенных между собой звезд).

Звезда, показанная на рис. 1.6 , носит название активной или истинной звезды. Существует также топология , называемая пассивной звездой, которая только внешне похожа на звезду (рис. 1.11). В настоящее время она распространена гораздо более широко, чем активная звезда. Достаточно сказать, что она используется в наиболее популярной сегодня сети Ethernet.

В центре сети с данной топологией помещается не компьютер, а специальное устройство - концентратор или, как его еще называют, хаб (hub), которое выполняет ту же функцию, что и репитер , то есть восстанавливает приходящие сигналы и пересылает их во все другие линии связи .


Рис. 1.11.

Получается, что хотя схема прокладки кабелей подобна истинной или активной звезде, фактически речь идет о шинной топологии , так как информация от каждого компьютера одновременно передается ко всем остальным компьютерам, а никакого центрального абонента не существует. Безусловно, пассивная звезда дороже обычной шины, так как в этом случае требуется еще и концентратор. Однако она предоставляет целый ряд дополнительных возможностей, связанных с преимуществами звезды, в частности, упрощает обслуживание и ремонт сети. Именно поэтому в последнее время пассивная звезда все больше вытесняет истинную звезду, которая считается малоперспективной топологией .

Можно выделить также промежуточный тип топологии между активной и пассивной звездой. В этом случае концентратор не только ретранслирует поступающие на него сигналы, но и производит управление обменом , однако сам в обмене не участвует (так сделано в сети 100VG-AnyLAN ).

Большое достоинство звезды (как активной, так и пассивной) состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности путем простого отключения от центра тех или иных абонентов (что невозможно, например, в случае шинной топологии ), а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения. К периферийному абоненту в случае звезды может подходить как один кабель (по которому идет передача в обоих направлениях), так и два (каждый кабель передает в одном из двух встречных направлений), причем последнее встречается гораздо чаще.

Общим недостатком для всех топологий типа звезда (как активной, так и пассивной) является значительно больший, чем при других топологиях , расход кабеля. Например, если компьютеры расположены в одну линию (как на рис. 1.5), то при выборе топологии звезда понадобится в несколько раз больше кабеля, чем при топологии шина. Это существенно влияет на стоимость сети в целом и заметно усложняет прокладку кабеля.

Топология кольцо

Кольцо - это топология , в которой каждый компьютер соединен линиями связи с двумя другими: от одного он получает информацию, а другому передает. На каждой линии связи , как и в случае звезды, работает только один передатчик и один приемник (связь типа точка-точка). Это позволяет отказаться от применения внешних терминаторов .

Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает, усиливает) приходящий к нему сигнал, то есть выступает в роли репитера. Затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Если предельная длина кабеля, ограниченная затуханием, составляет L пр, то суммарная длина кольца может достигать NL пр, где N - количество компьютеров в кольце. Полный размер сети в пределе будет NL пр /2, так как кольцо придется сложить вдвое. На практике размеры кольцевых сетей достигают десятков километров (например, в сети FDDI ). Кольцо в этом отношении существенно превосходит любые другие топологии .

Четко выделенного центра при кольцевой топологии нет, все компьютеры могут быть одинаковыми и равноправными. Однако довольно часто в кольце выделяется специальный абонент , который управляет обменом или контролирует его. Понятно, что наличие такого единственного управляющего абонента снижает надежность сети, так как выход его из строя сразу же парализует весь обмен .

Такая топология сети (ее схема приведена на рис. 4.5) широко применяется для построения сетей SDH с использованием первых двух уровней систем передачи SDH (скорости передачи 155,52 и 622,08 Мбит/с) на сети доступа . Основная особенность и достоинство этой топологии – легкость обеспечения системы защиты типа «1+1» благодаря наличию в синхронных мультиплексорах DIM двух пар оптических линейных (агрегатных) портов. Они дают возможность образовать СЛТ в форме двойной кольцевой структуры со встречными цифровыми потоками (на рис. 4.5 они показаны стрелками).

Кольцевая топология обладает рядом свойств, которые позволяют сети самовосстанавливаться, т. е. обеспечивать защиту от некоторых достаточно 226

распространенных типов отказов. Поэтому остановимся на основных свойствах кольцевой топологии сети более подробно.

«Интеллектуальные» возможности DIM позволяют образовать кольцевые самовосстанавливающиеся («самозалечивающиеся») сети двух типов: однонаправленные и двунаправленные .

В сетях первого типа используются два оптических волокна. Каждый передаваемый цифровой поток направляется по кольцевой сети в обоих (противоположных) направлениях, а в пункте приема, как и в случае защиты по схеме «1+1» в топологии сети «точка – точка» (см. рис. 4.2), осуществляется выбор одного из двух принятых сигналов (лучшего по качеству, например, по наименьшему коэффициенту ошибок). Передача цифровых потоков по всем основным участкам СЛТ происходит в одном направлении (например, по часовой стрелке), а по всем резервным – в противоположном. Поэтому такая кольцевая сеть и называется однонаправленной с переключением СЛТ или с закрепленным резервом. Схема прохождения сигналов по основному и резервному участкам СЛТ рассматриваемой кольцевой сети показана на рис. 4.5 .

Двунаправленная кольцевая сеть может быть образована с помощью двух (топология

«сдвоенное кольцо») или четырех (два «сдвоенных кольца») оптических волокон. В двунаправленной кольцевой сети с двумя волокнами передаваемые ЦЛС не дублируются. При работе такой сети цифровые потоки пунктов доступа передаются по кольцу кратчайшим путем во встречных направлениях (отсюда и название «двунаправленное кольцо»). При возникновении отказа на любом участке СЛТ посредством DIM, включенных на концах отказавшего участка, выполняется переключение всего цифрового потока, поступавшего на этот участок, в обратном направлении. Такую конфигурацию сети называют также кольцом с переключением участков или кольцом, защищенным с помощью совместно используемого резерва.

Пример двунаправленной кольцевой сети с двумя ОВ приведен на рис. 4.6 . На нем показаны схемы прохождения сигналов для одного из вариантов соединения пунктов доступа в рабочем (доаварийном) режиме (рис. 4.6, а) и в аварийном режиме при отказе одного из участков СЛТ кольцевой сети, который перечеркнут крестом (рис. 4.6, б). Поврежденный участок СЛТ исключается из схемы кольца, но связь между всеми пунктами доступа на сети сохраняется.

Сравнивая однонаправленную и двунаправленную кольцевые сети с двумя волокнами между собой, следует заметить, что при отказе одного участка можно сохранить полную работоспособность любой из этих сетей. Однако в большинстве случаев двунаправленное кольцо сети оказывается более экономичным, поскольку требует меньшей пропускной способности. Это объясняется тем, что для сигналов, передаваемых на различных пересекающихся участках кольцевой сети, используют одни и те же оптические волокна (как в основном, так и в аварийном режиме работы). В то же время однонаправленное кольцо сети проще в реализации.

Однонаправленные кольцевые сети больше подходят в случае «центростремительного» трафика, в частности, для сетей доступа к ближайшему узлу. Двунаправленные кольца сети предпочтительнее при равномерном трафике, например, для построения цифровых соединительных линий между мощными электронными АТС, или цифровыми коммутационными станциями (ЦКС).

Двунаправленная кольцевая сеть с четырьмя волокнами обеспечивает более высокий уровень отказоустойчивости, чем кольцо сети с двумя оптическими волокнами, однако затраты на построение четырехволоконной кольцевой сети существенно больше. В сетевых структурах с двумя сдвоенными кольцами при отказе на каком-либо участке СЛТ первоначально делается попытка перейти на другую пару оптических волокон в пределах того же (отказавшего) участка. Но если это не удается, то осуществляется реконфигурация кольцевой сети, аналогичная той, что показана на рис. 4.6, б.

Несмотря на высокую стоимость четырехволоконной кольцевой сети, в последнее время она находит все большее применение на высокоскоростных сетях SDH, так как она обеспечивает очень высокую надежность.

Выше рассматривался только случай, когда в аварийном состоянии оказался участок СЛТ кольцевой сети, т. е. оптическое волокно линейного кабеля. Однако в такой сети отказать в работе может и мультиплексор. В этой ситуации резервирование как таковое не используется, а работоспособность сети в целом (на уровне линейных блоков) восстанавливается путем исключения из схемы функционирования поврежденного мультиплексора. Современные системы управления DIM обеспечивают обходной путь, который позволяет пропускать цифровой поток в обход отказавшего мультиплексора в данном пункте кольцевой сети .

Сетевая топология

(от греч. τόπος, - место) - способ описания конфигурации сети, схема расположения и соединения сетевых устройств. Термин «топология», или «топология сети», характеризует физическое расположение компьютеров, кабелей и других компонентов сети. Топология - это стандартный термин, который используется профессионалами при описании основной компоновки сети. Если Вы поймете, как используются различные топологии, Вы сумеете понять, какими возможностями обладают различные типы сетей. Чтобы совместно использовать ресурсы или выполнять другие сетевые задачи, компьютеры должны быть подключены друг к другу. Для этой цели в большинстве сетей применяется кабель. Однако просто подключить компьютер к кабелю, соединяющему другие компьютеры, не достаточно. Различные типы кабелей в сочетании с различными сетевыми платами, сетевыми операционными системами и другими компонентами требуют и различного взаимного расположения компьютеров. Каждая топология сети налагает ряд условий. Например, она может диктовать не только тип кабеля, но и способ его прокладки. Топология может также определять способ взаимодействия компьютеров в сети. Различным видам топологий соответствуют различные методы взаимодействия, и эти методы оказывают большое влияние на сеть.

Сетевая топология может быть

физической - описывает реальное расположение и связи между узлами сети.

логической - описывает хождение сигнала в рамках физической топологии.

информационной - описывает направление потоков информации, передаваемых по сети.

управления обменом - это принцип передачи права на пользование сетью.

Существует множество способов соединения сетевых устройств, из них можно выделить восемь базовых топологий:

B. Решётка

C. Звезда

D. Кольцо

E. Шина

ü Двойное кольцо

ü Ячеистая топология

A - линия; B - решетка;

C - звезда; D - кольцо;

E - шина ; F - дерево.



Остальные способы являются комбинациями базовых. В общем случае такие топологии называются смешанными или гибридными, но некоторые из них имеют собственные названия, например «Дерево».

Базовые топологии

Все сети строятся на основе трех базовых топологий:

ü шина (bus) – (компьютеры подключены вдоль одного кабеля)

ü звезда (star) – (компьютеры подключены к сегментам кабеля, исходящим из одной точки, или концентратора)

ü кольцо (ring) – (кабель, к которому подключены компьютеры, замкнут в кольцо)

Хотя сами по себе базовые топологии несложны, в реальности часто встречаются довольно сложные комбинации, объединяющие свойства нескольких топологий.

Шина

Топологию «шина» часто называют «линейной шиной» (linear bus). Данная топология относится к наиболее простым и широко распространенным топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети.

Взаимодействие компьютеров

В сети с топологией «шина» компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов. Чтобы понять процесс взаимодействия компьютеров по шине, Вы должны уяснить следующие понятия:

  • передача сигнала;
  • отражение сигнала;
  • терминатор.

Передача сигнала

Данные в виде электрических сигналов передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, " зашифрованному в этих

сигналах. Причем в каждый момент времени только один компьютер может вести передачу.Так как данные в сеть передаются лишь одним компьютером, ее производительность зависит от количества компьютеров, подключенных к шине. Чем их больше, т.е. чем больше компьютеров, ожидающих передачи данных, тем медленнее сеть. Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Ибо, кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:

ü характеристики аппаратного обеспечения компьютеров в сети;

ü частота, с которой компьютеры передают данные;

ü тип работающих сетевых приложений;

ü тип сетевого кабеля;

ü расстояние между компьютерами в сети.

Шина - пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.

Отражение сигнала

Данные, или электрические сигналы, распространяются по всей сети -- от одного конца кабеля к другому. Если не предпринимать никаких специальных действий, сигнал, достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить.

Терминатор

Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливают терминаторы (terminators), поглощающие эти сигналы. Все концы сетевого кабеля должны быть к чему-нибудь подключены, например к компьютеру или к баррел-коннектору - для увеличения длины кабеля. К любому свободному - неподключенному - концу кабеля должен быть подсоединен терминатор, чтобы предотвратить отражение электрических сигналов.

Нарушение целостности сети

Разрыв сетевого кабеля происходит при его физическом разрыве или отсоединении одного из его концов. Возможна также ситуация, когда на одном или нескольких концах кабеля отсутствуют терминаторы, что приводит к отражению электрических сигналов в кабеле и прекращению функционирования сети. Сеть «падает». Сами по себе компьютеры в сети остаются полностью работоспособными, но до тех пор, пока сегмент разорван, они не могут взаимодействовать друг с другом.

Звезда

При топологии «звезда» все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, именуемому концентратором (hub). Сигналы от передающего компьютера поступают через концентратор ко всем остальным. Эта топология возникла на заре вычислительной техники, когда компьютеры были подключены к центральному, главному, компьютеру.

Здесь подключение кабеля и управление конфигурацией сети централизованны.

Недостатки :

  • так как все компьютеры подключены к центральной точке, для больших сетей значительно увеличивается расход кабеля .
  • если центральный компонент выйдет из строя, нарушится работа всей сети.

Достоинства:

  • Если выйдет из строя только один компьютер (или кабель, соединяющий его с концентратором), то лишь этот компьютер не сможет передавать или принимать данные по сети. На остальные компьютеры в сети это не повлияет.
  • Пропускная способность такой локальной вычислительной гарантирована для каждой рабочей станции сети и зависит только от вычислительной мощности узла. Возникновение коллизий в сети такой топологии невозможно.
  • Сети, построенные по топологии «звезда» имеют максимально возможное быстродействие , так как данных между рабочими станциями передаются через центральный узел по отдельным линиям, которые используются исключительно этими станциями. Частота запросов для передачи информации между станциями относительно невелика.

Производительность ЛВС находится в прямой зависимости от мощности файлового сервера. Если центральный узел выходит из строя, сеть также прекращает работу.

Монтаж кабельного соединения несложен, поскольку каждая рабочая станция связана только с головной машиной, но общая стоимость кабеля может оказаться достаточно большой, и увеличивается в случае расположения главной машины не в центре сети.

Для расширения сети необходим монтаж отдельного кабеля от новой рабочей станции к головной машине.

Управление сетью осуществляется из ее центра, в центре же реализуется механизм защиты информации.

Кольцо

При топологии «кольцо» компьютеры подключаются к кабелю, замкнутому в кольцо. Поэтому у кабеля просто не может быть свободного конца, к которому надо подключать терминатор. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии «шина», здесь каждый компьютер выступает в роли репитера, усиливая сигналы и передавая их следующему компьютеру. Поэтому, если выйдет из строя один компьютер, прекращает функционировать вся сеть.

Передача маркера

Один из принципов передачи данных в кольцевой сети носит название передачи маркера . Суть его такова. Маркер последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который «хочет» передать данные. Передающий компьютер изменяет маркер, помещает электронный адрес в данные и посылает их по кольцу.

Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя, указанным в данных. После этого принимающий компьютер посылает передающему сообщение, где подтверждает факт приёма данных. Получим подтверждение, передающий компьютер создаёт новый маркер и возвращает его в сеть. На первый взгляд кажется, что передача маркера отнимает много времени, однако на самом деле маркер передвигается приктически со скоростью света. В кольце диаметром 200 м маркер может циркулировать с частотой 10 000 оборотов в секунду.

Достоинства :


Недостаток:

  • при выходе из строя хотя бы одной рабочей станции вся сеть становится неработоспособной. Любую неисправность кабельного соединения в такой сети обнаружить несложно.
  • Для подключения новой станции в локальную сеть необходимо временное отключение сети.
  • Время передачи информации растет с увеличением количества станций в ЛВС.

Протяженность такой сети может быть неограниченной.

Логическая кольцевая локальная вычислительная сеть

Логическая кольцевая локальная вычислительная сеть является специальной формой топологии ЛВС. Она представляет собой соединение нескольких сетей, организованных по топологии звезда. Для подключения в сеть отдельных «звезд» используются специальные концентраторы, которые часто называют хабами. Хабы могут быть активными либо пассивными. Отличие активных концентраторов – в наличии дополнительного усилителя, которых служит для подключения 4 - 16 рабочих станций. Пассивный концентратор рассчитан на три рабочих станции и по своей сути является просто разветвительным устройством. Управление каждой конкретной станцией в сети осуществляется точно так же, как в кольцевой ЛВС. Каждая рабочая станция сети получает собственный адрес, по которому и осуществляется передача управления. Сбой в работе одной из машин может повлиять только на нижестоящие станции, выход из строя всей сети маловероятен.

Термин топология сети означает способ соединения компьютеров в сеть. Вы также можете услышать другие названия – структура сети или конфигурация сети (это одно и то же). Кроме того, понятие топологии включает множество правил, которые определяют места размещения компьютеров, способы прокладки кабеля, способы размещения связующего оборудования и многое другое. На сегодняшний день сформировались и устоялись несколько основных топологий. Из них можно отметить “шину ”, “кольцо ” и “звезду ”.

Топология “шина”

Топология шина (или, как ее еще часто называют общая шина или магистраль ) предполагает использование одного кабеля, к которому подсоединены все рабочие станции. Общий кабель используется всеми станциями по очереди. Все сообщения, посылаемые отдельными рабочими станциями, принимаются и прослушиваются всеми остальными компьютерами, подключенными к сети. Из этого потока каждая рабочая станция отбирает адресованные только ей сообщения.

Достоинства топологии “шина”:

  • простота настройки;
  • относительная простота монтажа и дешевизна, если все рабочие станции расположены рядом;
  • выход из строя одной или нескольких рабочих станций никак не отражается на работе всей сети.

Недостатки топологии “шина”:

  • неполадки шины в любом месте (обрыв кабеля, выход из строя сетевого коннектора) приводят к неработоспособности сети;
  • сложность поиска неисправностей;
  • низкая производительность – в каждый момент времени только один компьютер может передавать данные в сеть, с увеличением числа рабочих станций производительность сети падает;
  • плохая масштабируемость – для добавления новых рабочих станций необходимо заменять участки существующей шины.

Именно по топологии “шина” строились локальные сети на коаксиальном кабеле . В этом случае в качестве шины выступали отрезки коаксиального кабеля, соединенные Т-коннекторами. Шина прокладывалась через все помещения и подходила к каждому компьютеру. Боковой вывод Т-коннектора вставлялся в разъем на сетевой карте. Вот как это выглядело:Сейчас такие сети безнадежно устарели и повсюду заменены “звездой” на витой паре, однако оборудование под коаксиальный кабель еще можно увидеть на некоторых предприятиях.

Топология “кольцо”

Кольцо – это топология локальной сети, в которой рабочие станции подключены последовательно друг к другу, образуя замкнутое кольцо. Данные передаются от одной рабочей станции к другой в одном направлении (по кругу). Каждый ПК работает как повторитель, ретранслируя сообщения к следующему ПК, т.е. данные передаются от одного компьютера к другому как бы по эстафете. Если компьютер получает данные, предназначенные для другого компьютера – он передает их дальше по кольцу, в ином случае они дальше не передаются.

Достоинства кольцевой топологии:

  • простота установки;
  • практически полное отсутствие дополнительного оборудования;
  • возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети.

Однако “кольцо” имеет и существенные недостатки:

  • каждая рабочая станция должна активно участвовать в пересылке информации; в случае выхода из строя хотя бы одной из них или обрыва кабеля – работа всей сети останавливается;
  • подключение новой рабочей станции требует краткосрочного выключения сети, поскольку во время установки нового ПК кольцо должно быть разомкнуто;
  • сложность конфигурирования и настройки;
  • сложность поиска неисправностей.

Кольцевая топология сети используется довольно редко. Основное применение она нашла в оптоволоконных сетях стандарта Token Ring.

Топология “звезда”

Звезда – это топология локальной сети, где каждая рабочая станция присоединена к центральному устройству (коммутатору или маршрутизатору). Центральное устройство управляет движением пакетов в сети. Каждый компьютер через сетевую карту подключается к коммутатору отдельным кабелем. При необходимости можно объединить вместе несколько сетей с топологией “звезда” – в результате вы получите конфигурацию сети с древовидной топологией. Древовидная топология распространена в крупных компаниях. Мы не будем ее подробно рассматривать в данной статье.

Топология “звезда” на сегодняшний день стала основной при построении локальных сетей. Это произошло благодаря ее многочисленным достоинствам:

  • выход из строя одной рабочей станции или повреждение ее кабеля не отражается на работе всей сети в целом;
  • отличная масштабируемость: для подключения новой рабочей станции достаточно проложить от коммутатора отдельный кабель;
  • легкий поиск и устранение неисправностей и обрывов в сети;
  • высокая производительность;
  • простота настройки и администрирования;
  • в сеть легко встраивается дополнительное оборудование.

Однако, как и любая топология, “звезда” не лишена недостатков:

  • выход из строя центрального коммутатора обернется неработоспособностью всей сети;
  • дополнительные затраты на сетевое оборудование – устройство, к которому будут подключены все компьютеры сети (коммутатор);
  • число рабочих станций ограничено количеством портов в центральном коммутаторе.

Звезда – самая распространенная топология для проводных и беспроводных сетей. Примером звездообразной топологии является сеть с кабелем типа витая пара, и коммутатором в качестве центрального устройства. Именно такие сети встречаются в большинстве организаций.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows