Анализ преимуществ использования internet для продвижения продукции. Основные средства интернет-маркетинга для продвижения коммерческими компаниями своих товаров и услуг. Преимущества продвижения в Интернете

Анализ преимуществ использования internet для продвижения продукции. Основные средства интернет-маркетинга для продвижения коммерческими компаниями своих товаров и услуг. Преимущества продвижения в Интернете

Технология программированного обучения

Учитель МБСЛШ им. Ю. А. Гагарина Котляр Светлана Артуровна

Научимся программировать -
научимся обучать. А.Берг

Программированное обучение возникло в начале 50-х годов ХХ в., когда американский психолог Б. Скиннер предложил повысить эффективность управления усвоением материала, построив его как последовательную программу подачи порций информации и их контроля. Впоследствии Н.Краудер разработал разветвленные программы, которые в зависимости от результатов контроля предлагали ученику различный материал для самостоятельной работы. Дальнейшее развитие технологии программированного обучения будет зависеть от разработки путей управления внутренней психической деятельностью человека.

Классификационные параметры технологии

  • По уровню применения : общепедагогическая.
  • По философской основе : приспосабливающаяся.
  • По основному фактору развития: социогенная.
  • По концепции усвоения: ассоциативно-рефлекторная + бихевиористская
  • . По ориентации на личностные структуры:
  • 1) ЗУН. По характеру содержания и структуры: проникающая.
  • По типу управления: программная.
  • По организационным формам: классно-урочная, групповая, индивидуальная.
  • По подходу к ребенку: помощь
  • По преобладающему методу: репродуктивная.
  • По направлению модернизации: эффективная организация и управление.
  • По категории обучаемых: любые.
  • Целевые ориентации Эффективное обучение на основе научно разработанной программы.Обучение, учитывающее индивидуальные данные ребенка.

Концептуальные основы

Под программированным обучением понимается управляемое усвоение программированного учебного материала с помощью обучающего устройства (ЭВМ, программированного учебника, кинотренажера и др.). Программированный учебный материал представляет собой серию сравнительно небольших порций учебной информации (“кадров”, файлов, “шагов”), подаваемых в определенной логической последовательности.

Принципы программированного обучения (по В.Я. Беспалько)

Первым принципом программированного обучения является определенная иерархия управляющих устройств.

Термин “иерархия” означает ступенчатую соподчиненность частей в каком-то целостном организме (или системе) при относительной самостоятельности этих частей. Поэтому говорят, что управление таким организмом или системой построено по иерархическому принципу.

Уже структура технологии программированного обучения (объединение систем (1+2+7+8, см. п. 2.4.) свидетельствует об иерархическом характере построения ее управляющих устройств, образующих, однако, целостную систему. В этой иерархиии выступает в первую очередь педагог (системы 1 и 7), управляющий системой в наиболее ответственных ситуациях: создание предварительной общей ориентировки в предмете, отношение к нему (система 1), индивидуальная помощь и коррекция в сложных нестандартных ситуациях обучения (система 7).

Сущность второго принципа – принципа обратной связи вытекает из кибернетической теории построения преобразований информации (управляющих систем) и требует цикличной организации системы управления учебным процессом по каждой операции учебной деятельности. При этом имеется в виду не только передача информации о необходимом образе действия от управляющего объекта к управляемому (прямая связь), но и передача информации о состоянии управляемого объекта управляющему (обратная связь).

Обратная связь необходима не только педагогу, но и учащемуся; одному – для внимания учебного материала, другому – для коррекции. Поэтому говорят об оперативной обратной связи. Обратная связь, которая служит для самостоятельной коррекции учащимися результатов и характера его умственной деятельности, называется внутренней. Если же это воздействие осуществляется посредством тех же управляющих устройств, которые ведут процесс обучения (или педагогом), то такая обратная связь называется внешней. Таким образом, при внутренней обратной связи учащиеся сами анализируют итоги своей учебной работы, а при внешней это делают педагоги или управляющие устройства.

Третий принцип программированного обучения состоит в осуществлении долгового технологического процесса при раскрытии и подаче учебного материала. Выполнение этого требования позволяет достичь общепонятности обучающей программы.

Шаговая учебная процедура – это технологический прием, означающий, что учебный материал в программе состоит из отдельных, самостоятельных, но взаимосвязанных, оптимальных по величине порций информации и учебных заданий (отражающих определенную теорию усвоения знаний учащимися и способствующих эффективному усвоению знаний и умений). Совокупность информации для прямой и обратной связи и правил выполнения познавательных действий образует шаг обучающей программы.

В состав шага включаются три взаимосвязанных звена (кадра): информация, операция с обратной связью и контроль.

Последовательность шаговых учебных процедур образует обучающую программу – снову технологии программированного обучения.

Четвертый принцип программированного обучения исходит из того, что работа учащихся по программе является строго индивидуальной, возникает естественное требование вести направленный информационный процесс и предоставлять каждому учащемуся возможность продвигаться в учении со скоростью, которая для его познавательных сил наиболее благоприятна, а в соответствии с этим возможность приспосабливать и подачу управляющей информации. Следование принципу индивидуального темпа и управления в обучении создает для успешного изучения материала всеми учащимися, хотя и за разное время.

Пятый принцип требует использования специальных технических средств для подачи программированных учебных материалов при изучении ряда дисциплин, связанных с развитием определенных черт личности и качеств учащихся, например, хорошей реакции, ориентировки. Эти средства можно назвать обучающими, так как ими моделируется с любой полнотой деятельность педагога в процессе обучения.

Виды обучающих программ

Линейные программы представляют собой последовательно сменяющиеся небольшие блоки учебной информации с контрольным заданием. Обучающийся должен дать правильный ответ, иногда просто выбрать его из нескольких возможных. В случае правильного ответа он получает новую учебную информацию, а если ответ неправильный, то предлагается вновь изучить первоначальную информацию (рис. 1).

Фрагмент линейной программы, предназначенный для изучения сопротивления проводников (физика 8 класс).

Разветвленная программа отличается от линейной тем, что обучаемому, в случае неправильного ответа, может предоставляться дополнительная учебная информация, которая позволит ему выполнить контрольное задание, дать правильный ответ и получить новую порцию учебной информации.

Фрагмент разветвленной программы, предназначенный для изучения темы «Вынесение множителя из по знака корня. Внесение множителя под знак корня» . (алгебра 8 класс)

Адаптивная программа подбирает или предоставляет обучаемому возможность самому выбирать уровень сложности нового учебного материала, изменять его по мере усвоения, обращаться к электронным справочникам, словарям, пособиям и т.д

Адаптивность в темпе учебной работы и оптимальность обучения достигаются только путем использования специальных технических средств, в частности, компьютера, работающих по программе поиска наивыгоднейшего режима обучения и автоматически поддерживающих найденные условия.

В частично адаптивной программе осуществляется разветвление (дается другой вариант) на основе одного (последнего) ответа ученика. В полностью адаптивной программе диагностика знаний учащегося представляет многошаговый процесс, на каждом шаге которого учитываются результаты предыдущих.

Комбинированная программа включает в себя фрагменты линейного, разветвленного, адаптивного программирования.

.(тетрадный вариант 6 класс)

Алгоритм. Пошаговые программы породили алгоритмизацию обучения – составление учебных алгоритмов. Алгоритм в дидактике – это предписание, определяющее последовательность умственных и/или практических операций по решению задач определенного класса. Алгоритм является как самостоятельным средством обучения, так и частью обучающей программы.

На своих уроках в системе использую приём алгоритмизации, заключающийся в применении графической наглядности: опорных схем, таблиц, памяток, карточек-информаторов содержащих алгоритмы действий направленных на формирование знаний, умений, навыков и активизацию познавательной деятельности учеников. На уроке с направляющей помощью учителя в самом начале изучения трудной темы составляем опорные схемы или карточки-информаторы.

Такие алгоритмические предписания обеспечивают доступность учебной информации для обучающихся. Помогают слабым учащимся изложить материал самостоятельно, вселяют в них уверенность, создают ситуацию успеха («я – могу, я – умею»), активизируя познавательную деятельность на уроках .

Фрагмент урока, предназначенный для изучения темы «Физические величины» .

(алгоритм нахождения цены деления) (физика 7 класс)

Фрагмент урока, предназначенный для изучения темы «Решение уравнений» .

(алгоритм решения линейных уравнений) (математика 6 класс)

Как разновидность идей программирования в обучении возникает блочное и модульное обучение.

Блочное обучение осуществляется на основе гибкой программы, обеспечивающей ученикам возможность выполнять разнообразные интеллектуальные операций и использовать приобретаемые знания при решении учебных задач. Выделяются следующие последовательные блоки такой обучающей программы, предусматривающие гарантированное усвоение определенного темой материала:

  • информационный блок;
  • тестово-информационный (проверка усвоенного);
  • коррекционно-информационный (в случае неверного ответа – дополнительное обучение);
  • проблемный блок: решение задач на основе полученных знаний;
  • блок проверки и коррекции.

Изучение темы «Четырехугольники» (геометрия 8 класс) и «Свойства степеней» (алгебра 7 класс)

Модульное обучение (как развитие блочного) – такая организация процесса учения, при которой учащийся работает с учебной программой, составленной из модулей. Технология модульного обучения является одним из направлений индивидуализированного обучения, позволяющим осуществлять самообучение, регулировать ее только темп работы, но и содержание учебного материала.

Сам модуль может представлять содержание курса в трех уровнях: полном, сокращенном и углубленном.

Программный материал подается одновременно на всех возможных кодах: рисуночном, числовом, символическом и словесном.

Обучающим модулем называют автономную часть учебного материала, состоящую из следующих компонентов:

  • точно сформулированная учебная цель (целевая программа);
  • банк информации: собственно учебный материал в виде обучающих программ;
  • методическое руководство по достижению целей;
  • практические занятия по формированию необходимых умений;
  • контрольная работа, которая строго соответствует целям, поставленным в данном модуле.

Перпендикулярные и параллельные прямые. (математика 6 класс)

Еще одним вариантом программированного обучения является технология полного усвоения знаний . После определения диагностично поставленных по предмету материал разбивается на фрагменты – учебные элементы, подлежащие усвоению. Затем разрабатываются проверочные работы по разделам (учебных элементов), далее организуется обучение, проверка – текущий контроль, корректировка и повторная, измененная проработка – обучение. И так до полного усвоения заданных учебных элементов и тем, разделов, предмета в целом.

Фрагмент такой программы предназначенный для изучения темы «Пропорция. Основное свойство пропорции» .(тетрадный вариант 6 класс)

Элементы технологии программированного обучения можно использовать не только при изучении нового материала, но и на этапах закрепления, обобщения и проверки знаний.

К программированным заданиям относятся различные перфокарты с выбором ответа, программированные диктанты (зрительно-слуховые), занимательные тесты с выбором ответа. Таблицы и алгоритмы вызывают у учащихся со сниженным интеллектом некоторые трудности лишь на начальных этапах использования. Перфокарта, дающая возможность правильного выбора ответа из серии предложенных, сокращает время проверки. Кроме этого, она позволяет осуществить самопроверку и взаимопроверку. Перфокарта способствует выработке навыков самоконтроля. На выполнение программированного задания отвожу 3-5 минут.

Формы подкрепления правильности решения примеров и задач самые разнообразные:

1 .Перфокарты с выбором ответов, зашифрованных геометрическими фигурами . Учащиеся, кроме задания составить и решить примеры, получают несколько возможных ответов к ним, «зашифрованных» геометрическими фигурами. Ученик, решив первый пример, сверяет свой ответ с данными ответами. Найдя, он «зашифровывает» его геометрической фигурой в тетради и т. д. в итоге получается геометрический ряд.

2. Перфокарты с указанием шифра. Задания составлены разной степени сложности и объема в зависимости от потенциальных возможностей обучающихся. Учащиеся получают ответы с указанием шифра (ответы располагаются вразброс). Ученик, решив первый пример, сверяет ответ с данными ответами, а на полях против решенного примера ставит шифр, в итоге получается цифровой ряд. Если ученик ошибся, то он не найдет ответа, ему снова придется решать пример до тех пор, пока он не решит его правильно, что имеет большое коррекционное значение, формирует настойчивость, терпение, ответственность за полученный результат.

3. Программированные диктанты (зрительно-слуховые).

1) Если вы согласны с утверждениями, высказанными мною, поставьте цифру 1, если вы считаете, что информация неправильная - ставьте 0. В конце диктанта дайте итоговый ответ. Работу нужно выполнить в быстром темпе.

а)36 + 3 - 6 = 33 (карточка)

б) чтобы найти неизвестное слагаемое, надо к сумме прибавить известное слагаемое и т. п.

2) Зрительно-слуховой диктант

Для зрительно-слуховых диктантов подбираю задания, которые расширяют общий кругозор, прививают любовь к родному краю, родине. С этой целью использую программированные буквенные цифровые задания, в ответе которых содержится краеведческая информация. Например: выполните вычисления, запишите в таблицу буквы, соответствующие найденным ответам, и вы узнаете «как первоначально назывался город Челябинск», «какое озеро самое чистое в Челябинской области » и «какое озеро в Челябинской области самое большое» и т. п.

Большой интерес у обучающихся вызывают занимательные тесты с выбором ответа. В предлагаемых тестах для учащихся даны математические задания вычислительного характера, для проверки выбора ответа, словесные формулировки познавательных вопросов и дополнительные сведения познавательного характера о животных и событиях. Данные занимательные тесты с выбором ответа провожу в начале урока, чтобы привлечь внимание учащихся к новому материалу, и в середине урока в качестве повторения, чтобы сменить вид деятельности и поднять интерес к изучаемой теме.

  • Математические задания в тестах расположены в порядке возрастания сложности, форма их записи самая разнообразная: цепочки примеров простые и с разветвлением, таблицы , магические квадраты, удивительные квадраты. Разнообразная подача математического материала эмоционально воздействует на детей, способствует интеграции изучаемых в школе предметов, расширяет кругозор, развивает познавательную активность, тем самым побуждает их к самостоятельному познанию нового.

Достоинства и недостатки программированного обучения

Программирование обучение имеет ряд достоинств:

  • мелкие дозы усваиваются легко,
  • темп усвоения выбирается учеником,
  • обеспечивается высокий результат,
  • вырабатываются рациональные способы умственных действий,
  • воспитывается умение логически мыслить.

Однако оно имеет и ряд недостатков, например:

  • не в полной мере способствует развитию самостоятельности в обучении;
  • требует больших затрат времени;
  • применимо только для алгоритмически разрешимых познавательных задач;
  • обеспечивает получение знаний, заложенных в алгоритме и не способствует получению новых. При этом чрезмерная алгоритмизация обучения препятствует формированию продуктивной познавательной деятельности.

Программированное обучение - это такое обучение, когда решение поставленной задачи представлено в виде строгой последовательности элементарных операций, изучаемый материал подается в форме строгой последовательности, каждый элемент которой содержит, как правило, порцию нового материала и контрольный вопрос или задание.

Программированное обучение предусматривает:

Правильный отбор и разбиение учебного материала на небольшие порции;

Частый контроль знаний;

Переход к следующей порции лишь после ознакомления учащегося с правильным ответом или характером допущенной им ошибки;

Обеспечение возможности каждому ученику работать со свойственной ему, индивидуальной скоростью усвоения, что является необходимым условием активной самостоятельной деятельности ученика по усвоению учебного материала.

Учащиеся с большим интересом относятся к программированным заданиям, проявляя при их выполнении максимум самостоятельности. Каждый ученик работает в доступном ему темпе. Ненужно отводить специального времени на проверку выполняемых заданий, следовательно, рационально используется время ученика и учителя на уроке. Подобные программированные задания делают процесс обучения интересным, личностно значимым для каждого ученика, формируют навыки самоконтроля, имеющие жизненно практическое значение.

Таким образом, программированное обучение получило новый толчок к развитию в связи развитием компьютерных технологий и становлением дистанционного обучения, внесло серьёзный вклад в разработку подходов к индивидуализации обучения на основе специально построенных учебных курсов индивидуального пользования.


1. Понятие «педагогическая технология обучения».

2. Обзор педагогических технологий обучения.

1. Понятие «педагогическая технология обучения»

Долгое время термин «технология» оставался за пределами понятийного аппарата педагогики, относился к технократическому языку. Хотя его бук-вальное значение («учение о мастерстве») не противоречит задачам педаго-гики: описанию, объяснению, прогнозированию, проектированию педаго-гических процессов.

В педагогической литературе встречается много терминов, характеризую-щих те или иные педагогические технологии: технология обучения, техно-логия воспитания, технология преподавания, образовательная технология, традиционная технология, технология программированного обучения, тех-нология проблемного обучения, авторская технология и т. д.

Первоначально многие педагоги не делали различий между понятия-ми «педагогическая технология», «технология обучения», «обучающая тех-нология». Термин «педагогическая технология» использовался только применительно к обучению, а сама технология понималась как обучение с помощью технических средств. Сегодня педагогическую технологию понимают как последовательную систему действий педагога, связанную с решением педагогических задач, или как планомерное и последова-тельное воплощение на практике заранее спроектированного педагоги-ческого процесса.

Таким образом, педагогическая технология — это строго научное проек-тирование и точное воспроизведение гарантирующих успех педагогических действий.

Следует также обратить внимание на то, что понятие «педагогическая технология» обозначает приемы работы в сфере обучения и воспитания. Поэтому понятие «педагогическая технология» шире, чем понятия «техно-логия обучения» и «технология воспитания».

При всем многообразии педагогических технологий существует два пути их появления. В одних случаях технологии возникают из теории (В. П. Беспалько, В. В. Давыдов, В. К. Дьяченко, Л. В. Занков, П. Я. Гальперин, Н. В. Кузьмина и др.), в других случаях технологии вытекают из практики (Е. Н. Ильин, С. Н. Лысенкова, В. Ф. Шаталов, В. В. Шейман и др.).

^ Что же следует понимать под технологией обучения? Когда возникла идея технологизации обучения?

Идея технологизации обучения является не новой. Еще Я. А. Комен-ский ратовал за технологизацию обучения. Он призывал к тому, чтобы обу-чение стало «механическим» (т. е. «технологическим»), стремился отыскать такой порядок обучения, который неминуемо приводил бы к положитель-ным результатам. Я. А. Коменский писал: «Для дидактической машины не-обходимо отыскать: 1) твердо установленные цели; 2) средства, точно при-способленные для достижения этих целей; 3) твердые правила, как пользо-ваться этими средствами, чтобы было невозможно не достигнуть цели»".

Со времен Коменского в педагогике было немало попыток сделать обу-чение похожим на хорошо налаженный механизм. Впоследствии многие представления о технологизации обучения существенно дополнялись и конкретизировались. Особенно идея технологизации обучения актуализи-ровалась с внедрением достижений технического прогресса в различные области теоретической и практической деятельности.

Массовое внедрение технологий обучения исследователи относят к на-чалу 60-х гг. XX столетия и связывают его с реформированием вначале аме-риканской, а затем и европейской школы. К наиболее известным авторам современных педагогических технологий за рубежом относятся Дж. Кэр-ролл, Б. Блум, Д. Брунер, Г. Гейс, В. Коскарелли и др. Отечественная тео-рия и практика осуществления технологических подходов к обучению отра-жена в научных трудах Петра Яковлевича Гальперина, Нины Фёдоровны Талызиной, Юрия Константиновича Бабанского, Пюрвя Мучкаевича Эрдниева, Владимира Павловича Беспалько, Михаила Владимировича Кларина и др.

Но есть и противники идеи технологизации в педагогике. Они считают недопустимой вольностью рассматривать творческий пе-дагогический процесс как технологический.

Педагогическая технология характеризуется рядом признаков.

В. П. Бес-палько выделяет следующие:

Четкая, последовательная педагогическая, дидактическая разработка целей обучения, воспитания;

Структурирование, упорядочение, уплотнение информации, подле-жащей усвоению;

Комплексное применение дидактических, технических, в том числе и компьютерных, средств обучения и контроля;

Усиление, насколько это возможно, диагностических функций обу-чения и воспитания;

Гарантированность достаточно высокого уровня качества обучения.

Следует отличать педагогическую технологию от методики обучения. От-личие заключается в том, что педагогические технологии удается воспроиз-водить и тиражировать и при этом гарантировать высокое качество учебно-воспитательного процесса или решение тех педагогических задач, которые заложены в педагогической технологии. Методики часто не гарантируют должного качества.

2. Обзор педагогических технологий обучения

В современной дидактике представлены самые разнообразные технологии, так как каждый автор и исполнитель привносят в педагогический про-цесс что-то свое индивидуальное. Однако по многочисленным сходствам и общим признакам можно выделить следующие технологии:

. по уровню применения : общепедагогические, частнометодические (предметные) и локальные (модульные);

. по философской основе : научные и религиозные, гуманистические и авторитарные;

. по ориентации на личностные структуры : информационные (формирование знаний, умений и навыков); операционные (формирование спосо-бов умственных действий); эвристические (развитие творческих способно-стей); прикладные (формирование действенно-практической сферы);

. по характеру модернизации традиционной системы обучения : техноло-гии по активизации и интенсификации деятельности учащихся; технологии на основе гуманизации и демократизации отношений между учителем и учащимися; технологии на основе дидактической реконструкции учебного материала и др.

Педагогические технологии также классифицируются по доминированию целей и решаемых задач; по применяемой форме организацииобучения; по доми-нирующим методам , которым отдается предпочтение, и другим основаниям.

Однако при большом разнообразии педагогических технологий в совре-менной дидактике сложился общий план их анализа. В каждой технологии автор должен видеть:

Уровень ее применения;

Философскую основу;

Ведущую концепцию усвоения знаний;

Отличительный характер содержания образования;

Организационные формы обучения;

Преобладающий метод обучения;

Более подробно остановимся на некоторых технологиях обучения.

Традиционная (репродуктивная) технология обучения

Технология ориентирована на передачу знаний, умений и навыков. Она обеспечивает усвоение учащимися содержания обучения, проверку и оцен-ку его качества на репродуктивном уровне.

Это древний вид технологии, являющийся распространенным и в на-стоящее время (особенно в средней школе). Суть его состоит в обучении по схеме: изучение нового — закрепление — контроль — оценка. В основе этой технологии лежит образовательная парадигма, согласно которой мож-но определить достаточный для успешной жизнедеятельности объем зна-ний и передавать его ученику. Главные методы обучения, лежащие в осно-ве этой технологии, — объяснение в сочетании с наглядностью; ведущие виды деятельности учащихся — слушание и запоминание; главное требова-ние и основной критерий эффективности — безошибочное воспроизведе-ние изученного.

В рамках традиционной технологии обучаемому отведены исполнитель-ские функции репродуктивного характера. Действия учителя связаны с объяснением, показом действий, оценкой их выполнения учащимися и корректировкой.

Данная технология имеет ряд важных преимуществ: она экономична, облегчает учащимся понимание сложного материала, обеспечивает доста-точно эффективное управление образовательно-воспитательным процес-сом, в нее органически вписываются новые способы изложения знаний.

Вместе с тем традиционная технология имеет и определенные недостатки: располагает незначительными возможностями индивидуализации и диффе-ренциации учебного процесса, слабо развивает мыслительный потенциал учащихся.

Технология развивающего обучения

Из всех существующих отечественных технологий обучения технология развивающего обучения является одной из наиболее признанных. У ее ис-токов стояли такие выдающиеся психологи и педагоги, как Л. С. Выгот-ский, Л. В. Занков, Д. Б. Эльконин, В. В. Давыдов и многие другие. На ста-новление идей технологии развивающего обучения большое влияние ока-зали труды Л. С. Выготского, создателя культурно-исторической теории психического развития человека.

До Л. С. Выготского считалось, что развитие ребенка, в частности раз-витие интеллекта, идет вслед за обучением и воспитанием. Л. С. Выготский доказал, что педагогика должна ориентироваться не на вчерашний, а на завтрашний день детского развития. Только тогда она сумеет в процессе обучения вызвать к жизни те процессы развития, которые в данный мо-мент лежат в зоне ближайшего развития. Смысл понятия «зона ближайшего развития» состоит в том, что на определенном этапе развития ребенок может решать учебные задачи под руководством взрослых и в сотрудниче-стве с более умными товарищами.

Однако до исследований Л. В. Занкова идеи Л. С. Выготского были не востребованы применительно к дидактике и практике обучения. Л. В. Занкову удалось развернуть на базе обучения в начальных классах педагогиче-ский эксперимент, в основу которого была положена идея о том, что мож-но ускорить развитие школьников за счет повышения эффективности обу-чения.

Реализация идеи потребовала разработки ряда новых дидактических принципов. Решающая роль отводилась принципу обучения на высоком уровне трудности, который характеризуется не тем, что повышает некую абстрактную «среднюю норму трудности», а тем, что раскрывает духовные силы ребенка, дает им простор и направление. Если учебный материал и методы его изучения таковы, что перед школьниками не возникает препят-ствий, которые должны быть преодолены, то развитие детей идет слабо.

Принцип обучения на высоком уровне трудности определяет отбор и конструирование содержания образования. Учебный материал становится более обширным и глубоким, ведущая роль отводится теоретическим зна-ниям, при этом однако не понижается значение практических умений и навыков учащихся.

Л. В. Занков также утверждал, что в изучении программного материала следует идти вперед быстрым темпом. Непреднамеренное замедление тем-па, связанное с многократным и однообразным повторением пройденного, создает помехи или даже делает невозможным обучение на высоком уровне трудности.

Технологию развивающего обучения также активно разрабатывали Д. Б. Эльконин, В. В. Давыдов и их многочисленные ученики. Д. Б. Эльконин с учетом возрастных особенностей школьников обосновал системно-деятельностный подход к обучению.

К дидактическим идеям технологии развивающего обучения относится также идея стимулирования рефлексии учащихся в различных ситуациях учебной деятельности. Под рефлексией понимается осознание и осмысление учащимся собственных действий, приемов, способов учебной деятельности.

Поскольку процедуры рефлексии тесно связаны с процедурой самоконт-роля и самооценки, им в обучении (согласно технологии развивающего обучения) также придается очень большое значение.

Идеи технологии развивающего обучения в нашей стране получили ши-рокое распространение среди учителей. Однако ряд положений этой техно-логии остается дискуссионным. Исследования Института психологии РАН показали, что дети с врожденными замедленными динамическими характе-ристиками личности обречены на неизбежные затруднения при работе в едином для всего класса темпе. Поэтому требования обучать всех быстрым темпом и на высоком уровне сложности выполнимы не для всех учеников.

Технология поэтапного формирования умственных действий

Технология поэтапного формирования умственных действий разработа-на на основе соответствующей теории П. Я. Гальперина, Д. Б. Эльконина, Н. Ф. Талызиной и др. Авторы данной теории установили, что знания, уме-ния и навыки не могут быть усвоены и сохранены вне деятельности чело-века. В ходе практической деятельности у человека формируется ориенти-ровочная основа как система представлений о цели, плане и средствах осу-ществления действия. То есть для безошибочного выполнения действия человек должен знать, что при этом произойдет, на какие аспекты происхо-дящего необходимо обратить внимание, чтобы не выпустить из-под конт-роля главное. Эти положения составляют основу теории обучения как по-этапного формирования умственных действий.

Согласно данной теории технология обучения строится в соответствии с ориентировочной основой выполнения действия, которое должно быть усвоено обучаемым. Цикл усвоения состоит из ряда этапов.

Первый этап предполагает актуализацию соответствующей мотивации учащегося.

Второй этап связан с осознанием схемы ориентировочной основы дея-тельности (действия). Учащиеся предварительно знакомятся с характером деятельности, условиями ее протекания, последовательностью ориентиро-вочных, исполнительных и контрольных действий. Уровень обобщенности действий, а значит, и возможность переноса их в другие условия зависят от полноты ориентировочной основы этих действий. Выделяют три типа ори-ентировок:

Конкретный образец (например, показ) или описание действия без указаний о методике его выполнения (неполная система ориентировок);

Полные и подробные указания о правильном выполнении действия;

Ориентировочная основа действия создается обучаемыми самостоя-тельно на основе полученного знания.

Третий этап — выполнение действия во внешней форме, материальной или материализованной, т. е. с помощью каких-либо моделей, схем, черте-жей и т. п. Эти действия включают исполнительные и контрольные функ-ции, а не только ориентационные. На этом этапе от учащихся требуется рассказывать о совершаемых ими операциях и их особенностях.

Четвертый этап — внешнеречевой, когда обучаемые проговаривают вслух те действия, которые осваиваются. Происходит дальнейшее обобще-ние, автоматизация действий. Необходимость в ориентировочной основе действия (инструкции) отпадает, так как ее роль выполняет внешняя речь обучаемого.

Пятый этап — этап внутренней речи, когда действие проговаривается про себя. Установлено, что в процессе внутренней речи обобщение и свер-тывание действия идет наиболее интенсивно.

Шестой этап связан с переходом действия во внутренний (умственный) план (интериоризация действия).

Управление процессом обучения согласно данной теории происходит путем смены названных этапов и осуществления контроля со стороны учителя.

Технология поэтапного формирования умственных действий имеет как позитивные, так и негативные стороны.

Достоинствами данной технологии являются: создание условий для работы ученика в индивидуальном темпе; сокращение времени формирования умений и навыков за счет показа образцового выполнения разучиваемых действий; достижение высокой авто-матизации выполняемых действий в связи с их алгоритмизацией; обеспече-ние доступного контроля качества выполнения как действия в целом, так и его отдельных операций; возможность оперативной коррекции методик обучения с целью их оптимизации.

Недостатками технологии поэтапного формирования умственных дей-ствий являются ограничение возможностей усвоения теоретических зна-ний, сложность разработки методического обеспечения, формирование у обучаемых стереотипных мыслительных и моторных действий в ущерб развитию их творческого потенциала.

Технология коллективного взаимодействия

Технология коллективного взаимодействия (организованный диалог, сочетательный диалог, коллективный способ обучения, работа учащихся в парах сменного состава) разработана А. Г. Ривиным, его учениками и последователями В. В. Архиповой, В. К. Дьяченко, А. С. Соколовым и др.

Технология коллективного взаимодействия включает три компонента:

а) подготовку учебного материала; б) ориентацию учащихся; в) технологию хода самого учебного занятия.

Подготовка учебного материала заключается в отборе учебных текстов, дополнительной и справочной литературы по теме; разделении учебного материала на единицы усвоения (смысловые абзацы); в разработке целевых заданий, в том числе и домашних.

Ориентация учащихся включает два этапа:

Подготовительный, цель которого состоит в том, чтобы сформиро-вать и отработать необходимые общеучебные умения и навыки: ориентиро-ваться в пространстве; слушать партнера и слышать то, что он говорит; ра-ботать в шумовой среде; находить нужную информацию; использовать лист-ки индивидуального учета; переводить образ в слова и слова в образы и др. Эти умения отрабатываются в ходе специальных тренинговых занятий;

Ознакомительный, имеющий различные модификации, общим эле-ментом которых является сообщение целевых установок, усвоение «правил игры», способов учета результатов учения и т. д.

Ход учебного занятия в зависимости от содержания занятия, объема учебного материала и времени, отведенного на его изучение, возраста обу-чаемых, избранного варианта технологии может протекать по-разному. Наиболее характерный вариант технологии коллективного взаимообучения имеет следующие этапы:

Каждый ученик прорабатывает свой абзац (это может быть предло-жение, часть текста, описание, характеристика, пункт или параграф учеб-ника, статья, исторический документ и т. д.);

Обмен знаниями с партнером, происходящий по правилам ролевой игры «учитель — ученик». Обязательна смена ролей. Обучающий предлагает свой вариант заглавия абзаца, свой план, отвечает на поставленные воп-росы, предлагает контрольные вопросы или задания и т. п.;

Проработка только что воспринятой информации и поиск нового партнера для взаимообучения и т. д.

Учет выполненных заданий ведется либо в групповой ведомости, в ко-торой указаны все учебные элементы и фамилии участников организован-ного диалога, либо в индивидуальной карточке.

Практическая реализация этой технологии показывает целесообраз-ность «погружения» учащихся в тему на время, необходимое для прохожде-ния обучающего цикла. Под обучающим циклом понимается совокупность действий обучающего и учащегося, которые приводят последнего к усвое-нию определенного фрагмента содержания с заранее заданными показате-лями.

В условиях технологии коллективного взаимообучения каждый обучае-мый работает в индивидуальном темпе; повышается ответственность не только за свои успехи, но и за результаты коллективного труда; формирует-ся адекватная самооценка личности, своих возможностей и способностей, достоинств и ограничений. У учителя отпадает необходимость в сдержива-нии темпа продвижения одних и стимулировании других учащихся, что по-зитивно сказывается на микроклимате в коллективе. Обсуждение одной информации с несколькими сменными партнерами увеличивает число ас-социативных связей, а следовательно, обеспечивает более прочное усвое-ние материала.

Технология полного усвоения

Авторами технологии полного усвоения являются американские ученые Дж. Кэрролл и Б. Блум. Подробное описание этой технологии в отече-ственной литературе дано М. В. Клариным. Технология полного усвоения отличается от традиционной технологии (классно-урочной системы) по ко-нечному результату. При классно-урочной системе, задающей для всех уче-ников одно и то же учебное время, содержание, условия труда, на выходе получаются неоднозначные результаты. Одни ученики лучше усваивают материал, другие — хуже, а некоторые вообще часть информации не усваи-вают, т. е. уровень овладения знаниями у учеников разный.

Технология полного усвоения задает единый для учащихся фиксиро-ванный уровень овладения знаниями, умениями и навыками, но делает пе-ременными для каждого обучающегося время, методы, формы, условия труда.

Определяющим в этой технологии являются планируемые результаты обучения, которые должны быть достигнуты всеми учащимися. Это есть эталон полного усвоения (критерий). Эталон задается в унифицированном виде с помощью таксономии целей, т. е. иерархически взаимосвязанной системы педагогических целей, разработанных для мыслительной, чув-ственной и психомоторной сфер.

Учитель должен довести до учащихся планируемые показатели полного усвоения учебного содержания. Он определяет цели предстоящей деятель-ности, конкретные действия и операции, которые должен выполнять обу-чающийся, чтобы достичь эталона. К целям познавательной деятельности относятся:

. знание (ученик запомнил, воспроизвел, узнал);

. понимание (ученик объяснил, проиллюстрировал, интерпретировал);

. применение (ученик применил изученный материал в конкретных ус-ловиях и в новой ситуации);

. обобщение и систематизация (ученик выделил части из целого, обра-зовал новое целое);

. оценка (ученик определил ценность и значение объекта изучения).

Подготовка учебного материала при данной технологии состоит в том, что все содержание учебного материала разбивается на отдельные учебные единицы (у разных авторов — «учебные элементы», «единицы содержания», «малые блоки» и т. д.). Учебные единицы закончены по смыслу (содержа-тельная целостность) и небольшие по объему (3—6 уроков). По каждой из единиц усвоения готовится тест (контрольное задание) по двухбалльной шкале (зачет-незачет). К каждой учебной единице также разрабатывается коррекционный дидактический материал, рассчитанный на такую допол-нительную проработку неусвоенного материала, которая отличается от пер-воначального способа его изучения и дает возможность ученику подобрать подходящие для него способы восприятия, осмысления и запоминания. По всей теме определяется эталон ее полного усвоения.

Определенным образом к предстоящей работе подготавливаются уча-щиеся. Ориентация учащихся имеет целью обеспечить мотивацию совмест-ной работы класса с учителем на договорных началах и разъяснить основ-ные принципы данного способа обучения. Отметка за усвоение темы (раз-дела, курса) выставляется после заключительной проверки по эталону, заранее указанному учащимся.

В ходе работы каждый ученик получает необходимую помощь, разъяс-нение, поддержку. В случае затруднений ученику дается возможность вы-бора альтернативных процедур для их преодоления.

Деятельность учителя в рамках данной технологии предполагает следую-щее:

Ознакомление с учебными целями;

Разъяснение общего плана обучения;

Изложение нового материала (осуществляется традиционно);

Организацию текущей проверки;

Оценивание текущих результатов;

Коррекционную работу с учащимися, не достигшими полного усвое-ния;

Организацию малых подгрупп взаимопомощи;

Повторное тестирование тех учащихся, которым была оказана по-мощь.

Аналогично проводится работа по всем единицам усвоения, завершаю-щаяся итоговым тестом и оценкой усвоения материала в целом каждым учеником.

Технология разноуровневого обучения

Технология разноуровневого обучения предполагает создание педагоги-ческих условий для включения каждого ученика в деятельность, соответ-ствующую зоне его ближайшего развития. Ее появление было вызвано тем, что традиционная классно-урочная система, ориентированная на обучение всех детей по унифицированным программам и методикам, не может обес-печить полноценного развития каждого ученика. Учитель в образователь-ном процессе имеет дело с учащимися, имеющими различные интересы, склонности, потребности, мотивы, особенности темперамента, мышления и памяти, эмоциональной сферы. При традиционной классно-урочной системе эти особенности трудно учитываются.

Технология разноуровневого обучения предусматривает уровневую диф-ференциацию за счет деления потоков на подвижные и относительно гомо-генные по составу группы, каждая из которых овладевает программным ма-териалом в различных образовательных областях на базовом и вариативном уровнях (базовый уровень определяется государственным стандартом, вариативный — носит творческий характер, но не ниже базового уровня).

Используются три варианта дифференцированного обучения:

1) на основе предварительной диагностики динамических характерис-тик личности и уровня овладения общеучебными умениями учащиеся с на-чала обучения распределяются по классам, работающим по программам разного уровня;

2) внутриклассная дифференциация происходит в среднем звене, в за-висимости от познавательных интересов на добровольной основе создают-ся группы углубленного изучения отдельных предметов;

3) дифференциация за счет профильного обучения в основной школе и старших классах, организованная на основе психодидактической диагнос-тики, экспертной оценки, рекомендаций учителей и родителей, самопозна-ния и самоопределения школьника.

Дифференцированное разноуровневое обучение предусматривает:

Создание познавательной мотивации и стимулирование познаватель-ной деятельности учащихся;

Добровольный выбор каждым учеником уровня усвоения учебного материала (не ниже Госстандарта);

Организацию самостоятельной работы обучаемых на различных уровнях;

Полное усвоение базового компонента содержания образования;

Парные, групповые и коллективные (работа в парах сменного соста-ва) формы организации учебного процесса;

Текущий контроль за усвоением учебного материала;

Вводный и итоговый контроль по каждой укрупненной единице усвое-ния учебного материала (для учащихся, не справившихся с ключевыми за-даниями, организуется коррекционная работа до полного усвоения);

Опережающее обучение учащихся по индивидуальным планам в ка-ких-либо образовательных областях.

В условиях применения технологии разноуровневого обучения предпоч-тительны такие по времени занятия, которые позволяют реализовать пол-ный цикл обучения по укрупненной единице усвоения.

Специфика занятия, связанная с особенностями образовательной области (предмета), оказывает существенное влияние на подбор, срдержательное и временное соотношение его различных этапов.

Этап подготовки к осуществлению основного вида деятельности пред-полагает создание целевой установки. Далее проводится вводный контроль в виде теста, диктанта, объяснения опорных определений, правил, алгорит-мов и т. п. Работа завершается коррекцией выявленных пробелов и неточ-ностей.

Для обеспечения полной ориентировочной основы деятельности обучае-мым сообщается объем обязательной и сверхнормативной частей работы, критерии оценивания, домашнее задание.

На этапе усвоения новых знаний объяснение дается в емкой, компакт-ной форме, обеспечивающей переход к самостоятельной отработке учебной информации большинством учащихся. Для остальной части предлагается повторное объяснение с использованием дополнительных дидактических средств. Каждый ученик по мере усвоения изучаемой информации включа-ется в обсуждение, отвечает на вопросы товарищей, ставит собственные вопросы. Эта работа может проходить как в группах, так и в парах.

Этап закрепления знаний предполагает самопроверку и взаимопроверку обязательной части заданий. Сверхнормативная часть работы вначале оце-нивается учителем, а затем наиболее значимые результаты докладываются всем учащимся.

Подведение итогов занятия включает контрольное тестирование. После самопроверки и взаимопроверки учащиеся оценивают свою работу на уроке.

Технология адаптивного обучения

Разновидностью технологии разноуровневого обучения является техно-логия адаптивного обучения, предполагающая гибкую систему организа-ции учебных занятий с учетом индивидуальных особенностей обучаемых. Центральное место в этой технологии отводится обучаемому, его деятель-ности, качествам его личности. Особое внимание уделяется формированию у них учебных умений.

При использовании технологии адаптивного обучения учитель работает со всем классом (сообщает новое, объясняет, показывает, тренирует и т. д.) и индивидуально (управляет самостоятельной работой учащихся, осуществ-ляет контроль и т. д.). Деятельность учащихся совершается совместно с учителем, индивидуально с учителем и самостоятельно под руководством учителя.

Учение в условиях применения технологии адаптивного обучения ста-новится преимущественно активной самостоятельной деятельностью: это чтение обязательной и дополнительной литературы, реферативная работа, решение задач различного уровня сложности, выполнение лабораторных и практических работ, индивидуальная работа с учителем, контроль зна-ний и т. д.

Технология адаптивного обучения предполагает осуществление контро-ля всех видов: контроль учителя, самоконтроль, взаимоконтроль учащихся, контроль с использованием технических средств и безмашинных контроли-рующих программ и т. д. В противовес традиционной одноканальной об-ратной связи (ученик — учитель), которая слабо выполняет обучающую функцию, вводится многоканальная (учитель — ученик, ученик — ученик, учитель — коллектив учащихся, ученик — коллектив учащихся), предпола-гающая совершенно иные формы взаимоотношений между ними.

Процесс обучения при рассматриваемой технологии может быть пред-ставлен тремя этапами:

Объяснение нового учебного материала (учитель обучает всех уча-щихся);

Индивидуальная работа учителя с учащимися на фоне самостоятель-яо занимающегося класса;

Самостоятельная работа учащихся.

Так как приоритет при использовании технологии адаптивного обуче-ния отдается самостоятельной работе, то это требует оптимизации этапа объяснения нового учебного материала. Необходимо выделить тот мате-риал, которому учитель будет обучать фронтально школьников; разделить его на укрупненные блоки; по всему учебному курсу спланировать систему занятий обучения всех учащихся; определить необходимые и целесообраз-ные средства наглядности.

Цель второго этапа состоит в обучении учащихся приемам самостоя-тельной работы, поиску знаний, решению проблемных задач, творческой деятельности. Предварительно учитель создает необходимую эмоциональ-ную атмосферу, условия для индивидуальной работы, он настраивает уча-щихся на самостоятельную работу.

На фоне самостоятельно работающих учащихся учитель по специально-му графику занимается с отдельными из них индивидуально по адаптив-ным заданиям трех уровней, требующих репродуктивной, частично-поис-ковой и творческой деятельности.

Самостоятельная работа учеников, которая предполагает общение «уче-ник — ученик», «ученик — группа учеников», осуществляется в парных группах (статических, динамических и вариационных).

Статическая пара объединяет по желанию двух учеников, которые ме-няются ролями «учитель-ученик». Она обеспечивает постоянное общение друг с другом. В парном общении активизируется речевая и мыслительная деятельность учащихся, каждый имеет возможность отвечать на вопросы и задавать их, объяснять, доказывать, подсказывать, проверять, оценивать, исправлять ошибки в момент их возникновения. В статической паре могут заниматься два слабых и два сильных ученика, слабый и сильный.

Динамические пары образуются в рамках микрогруппы, которую со-ставляют более чем два ученика. Микрогруппе дается одно общее задание, имеющее несколько частей для каждого ученика. После выполнения своей части задания и его контроля со стороны учителя или самоконтроля школьник обсуждает задание с каждым партнером по микрогруппе. При-чем каждый раз ему необходимо менять логику изложения, акценты, темп и т. д., т. е. адаптироваться к индивидуальным особенностям товарищей.

При работе в вариационных парах каждый член группы получает свое задание, выполняет его, анализирует результаты вместе с учителем. После этого ученик может проводить по данному вопросу взаимообучение и взаи-моконтроль. По окончании работы каждый учащийся усваивает все части содержания учебного задания.

Таким образом, технология адаптивного обучения предполагает разно-образную, гибкую систему организации учебных занятий, учитывающих индивидуальные особенности школьников. Объяснение нового материала может занимать весь урок или его часть. То же самое относится и к само-стоятельной работе учащихся. Данная технология дает возможность целе-направленно варьировать продолжительность и последовательность этапов обучения.

Организация обучения в вариационных парах создает комфортную об-становку и ситуацию успеха, которые стимулируют познавательный инте-рес учащихся и способствуют развитию у них учебных и коммуникативных умений и навыков.

Технология программированного обучения

Технология программированного обучения начала активно внедряться в образовательную практику с середины 60-х гг. XX столетия. Основная цель программированного обучения состоит в улучшении управления учеб-ным процессом. У истоков программированного обучения стояли амери-канские психологи и дидакты Н. Краудер, Б. Скиннер, С. Пресси. В отече-ственной науке технологию программированного обучения разрабатывали П. Я. Гальперин, Л. Н. Ланда, А. М. Матюшкин, Н. Ф. Талызина и др.

Технология программированного обучения — это технология самостоя-тельного индивидуального обучения по заранее разработанной обучающей программе с помощью специальных средств (программированного учебни-ка, особых обучающих машин, ЭВМ и др.). Она обеспечивает каждому уча-щемуся возможность осуществления учения в соответствии с его индиви-дуальными особенностями (темп обучения, уровень обученности и др.).

Характерные черты технологии программированного обучения:

Разделение учебного материала на отдельные небольшие, легко усваи-ваемые части;

Включение системы предписаний по последовательному выполне-нию определенных действий, направленных на усвоение каждой части;

Проверка усвоения каждой части. При правильном выполнении конт-рольных заданий учащийся получает новую порцию материала и выполняет следующий шаг обучения; при неправильном ответе учащийся получает помощь и дополнительные разъяснения;

Фиксирование результатов выполнения контрольных заданий, кото-рые становятся доступными как самим учащимся (внутренняя обратная связь), так и педагогу (внешняя обратная связь).

Основное средство реализации технологии программированного обуче-ния — обучающая программа. Она предписывает последовательность действий по овладению определенной единицей знаний. Обучающие програм-мы могут быть оформлены в виде программированного учебника или дру-гих видов печатных пособий (безмашинное программированное обучение) или в виде программы, подаваемой с помощью обучающей машины (ма-шинное программированное обучение).

В основу обучающих программ кладутся три принципа программирова-ния: линейное, разветвленное и смешанное.

При линейном принципе программирования обучаемый, работая над учеб-ным материалом, последовательно переходит от одного шага программы к следующему. При этом все ученики последовательно выполняют предпи-санные шаги программы. Различия могут быть лишь в темпе проработки материала.

При использовании разветвленного принципа программирования работа учеников, давших верные или неверные ответы, дифференцируется. Если учащийся выбрал верный ответ, то получает подкрепление в виде подтверж-дения правильности ответа и указание о переходе к следующему шагу программы. Если же учащийся выбрал ошибочный ответ, ему разъясняется сущность допущенной ошибки, и он получает указание вернуться к како-му-то из предыдущих шагов программы или же перейти к некоторой под-программе.

Принцип разветвленного программирования по сравнению с линейным позволяет больше индивидуализировать обучение учащихся. Ученик, даю-щий верные ответы, может быстрее продвигаться вперед, переходя без за-держек от одной порции информации к другой. Ученики, делающие ошиб-ки, продвигаются медленнее, но зато читают дополнительные пояснения и устраняют пробелы в знаниях.

Разработаны также смешанные технологии программированного обучения. В качестве таковых известны шеффилдская и блочная технологии.

Независимо от характера технологической системы программированно-го обучения обучающая программа может быть представлена с помощью учебников или машин. Существуют учебники с линейной, разветвленной и смешанной структурами программирования материала.

Технология проблемного обучения

Технология проблемного обучения предполагает организацию под руководством учителя самостоятельной поисковой деятельности учащихся по решению учебных проблем, в ходе которых у учащихся формируются но-вые знания, умения и навыки, развиваются способности, познавательная активность, любознательность, эрудиция, творческое мышление и другие личностно значимые качества.

Фундаментальные работы, посвященные теории и практике проблемно-го обучения, появились в конце 60-х — начале 70-х гг. XX столетия. Боль-шой вклад в разработку технологии проблемного обучения внесли ученые Т. В. Кудрявцев, А. М. Матюшкин, М. И. Махмудов, В. Оконь и др.

При проблемном обучении преподаватель не сообщает знания в готовом виде, а ставит перед учеником задачу (проблему), заинтересовывает его, пробуждает у него желание найти способ ее разрешения.

Ключевым понятием проблемного обучения является проблемная ситуация.

Проблемная ситуация возникает в том случае, если:

Для осмысления чего-либо или совершения каких-то необходи-мых действий человеку не хватает имеющихся знаний или известных способов действия, т. е. имеет место противоречие между знанием и не-знанием;

Обнаруживается несоответствие между имеющимися у учащихся зна-ниями и новыми требованиями (между старыми знаниями и новыми фак-тами, между знаниями более низкого и более высокого уровня, между жи-тейскими и научными знаниями);

Необходимость использовать ранее усвоенные знания в новых прак-тических условиях;

Имеется противоречие между теоретически возможным путем реше-ния задачи и практической неосуществимостью избранного способа;

Имеется противоречие между практически достигнутым результатом выполнения учебного задания и отсутствием у учащихся знаний для его теоретического обоснования.

Проблемная ситуация в обучении имеет обучающую ценность только тогда, когда предлагаемое ученику проблемное задание соответствует его интеллектуальным возможностям, способствует пробуждению у обучаемых желания выйти из этой ситуации, снять возникшее противоречие.

В качестве проблемных заданий могут выступать учебные задачи, во-просы, практические задания и т. п. Однако нельзя смешивать проблемное задание и проблемную ситуацию. Проблемное задание само по себе не яв-ляется проблемной ситуацией, оно может вызвать проблемную ситуацию лишь при определенных условиях. Одна и та же проблемная ситуация мо-жет быть вызвана различными типами заданий. В общем виде технология проблемного обучения состоит в том, что пе-ред учащимися ставится проблема и они при непосредственном участии учителя или самостоятельно исследуют пути и способы ее решения, т. е. строят гипотезу, намечают и обсуждают способы проверки ее истинности, аргументируют, проводят эксперименты, наблюдения, анализируют их ре-зультаты, рассуждают, доказывают. По степени познавательной самостоятельности учащихся проблемное обучение осуществляется в трех основных формах: проблемного изложе-ния, частично-поисковой деятельности и самостоятельной исследователь-ской деятельности.

Наименьшая познавательная самостоятельность учащихся имеет место при проблемном изложении: сообщение нового материала осуществляется самим преподавателем. Поставив проблему, учитель вскрывает путь ее ре-шения, демонстрирует учащимся ход научного мышления, заставляет их следить за диалектическим движением мысли к истине, делает их как бы соучастниками научного поиска.

В условиях частично-поисковой деятельности работа в основном на-правляется преподавателем с помощью специальных вопросов, побуждаю-щих обучаемого к самостоятельному рассуждению, активному поиску отве-та на отдельные части проблемы.

Исследовательская деятельность представляет собой в полной мере са-мостоятельный поиск учеником решения проблемы.

Если учитель чувствует, что учащиеся затрудняются выполнить то или иное задание, он может ввести дополнительную информацию, снизить тем самым степень проблемности и перевести учащихся на более низкий уро-вень технологии проблемного обучения.

Технология проблемного обучения, как и другие технологии, имеет по-ложительные и отрицательные стороны.

Преимущества технологии проб-лемного обучения: способствует не только приобретению учащимися необ-ходимой системы знаний, умений и навыков, но и достижению высокого уровня их умственного развития, формированию у них способности к са-мостоятельному добыванию знаний путем собственной творческой дея-тельности; развивает интерес к учебному труду; обеспечивает прочные ре-зультаты обучения.

Недостатки: большие затраты времени на достижение запланированных результатов, слабая управляемость познавательной дея-тельностью учащихся.

Технология модульного обучения

Технология модульного обучения как альтернатива традиционному обу-чению появилась и приобрела большую популярность в учебных заведени-ях США и Западной Европы в начале 60-х гг. XX в. В отечественной дидак-тике наиболее полно основы модульного обучения изучались и разрабаты-вались П. Юцявичене и Т. И. Шамовой.

Сущность технологии модульного обучения состоит в том, что ученик са-мостоятельно (или с определенной помощью) достигает конкретных целей в процессе работы с модулем. Модуль — это целевой функциональный узел, в котором объединено учебное содержание и технология овладения им.

Состав модуля:

Целевой план действий;

Банк информации;

Методическое руководство по достижению дидактических целей.

Содержание обучения при данной технологии представлено в закончен-ных самостоятельных информационных блоках. Их усвоение осуществля-ется в соответствии с дидактической целью, которая содержит в себе указа-ние не только на объем изучаемого содержания, но и на способ и уровень его усвоения.

При применении технологии модульного обучения разрабатывается мо-дульная программа, которая состоит из комплексной дидактической цели и совокупности модулей, обеспечивающих достижение этой цели. В модули входят крупные блоки учебного содержания. Для составления программы выделяются основные научные идеи курса, вокруг которых в определенные блоки структурируется содержание учебного предмета. Затем формулируется комплексная дидактическая цель, имеющая два уровня: уровень усвое-ния учебного содержания и уровень ориентации на его использование в практике и в ходе дальнейшего обучения. Из комплексной дидактической цели выделяются интегрирующие дидактические цели, в соответствии с ко-торыми разрабатываются модули.

Модули подразделяются на три типа: познавательные, используемые при изучении основ наук; операционные, которые необходимы для форми-рования и развития способов деятельности, и смешанные, содержащие пер-вые два компонента.

При модульном обучении на самостоятельную работу отводится макси-мальное время. Ученик учится целеполаганию, планированию, организа-ции, самоконтролю и самооценке, что дает ему возможность осознать себя в учебной деятельности, самому определить уровень освоения знаний, уви-деть пробелы в своих знаниях и умениях.

Применение технологии модульного обучения позволяет перевести обу-чение на субъектно-субъектную основу. Наличие модулей с печатной основой дает возможность учителю индивидуализировать работу с отдельными учениками.

Технология модульного обучения предполагает также контроль, анализ и коррекцию в сочетании с самоуправлением:

Для того чтобы иметь информацию об уровне готовности к работе по новому модулю, перед изучением каждого из них проводится предвари-тельный контроль знаний и умений учащихся;

При необходимости осуществляется соответствующая коррекция знаний учащихся;

В конце каждого учебного элемента в виде самоконтроля, взаимоконт-роля, сверки с образцом проводятся текущий и промежуточный контроль;

Заключительный контроль осуществляется после завершения работы с модулем.

Модули могут использоваться в любой организационной системе обуче-ния и тем самым улучшать ее качество и повышать эффективность. Резуль-тативно сочетать традиционную систему обучения с модульной.

Технология проектного обучения

Технология проектного обучения является одним из вариантов практи-ческой реализации идеи продуктивного обучения. Продуктивное обучение (в отличие от традиционной практики обучения) характеризуется тем, что образовательный процесс имеет на выходе индивидуальный опыт продук-тивной деятельности. В основе данной технологии лежат идеи Д. Дьюи об организации учеб-ной деятельности по решению практических задач, взятых из повседневной жизни. Д. Дьюи отрицает необходимость стандартизированного содержа-ния образования и фактически сводит обучение к основанному на интере-сах детей практицизму.

В отечественной школе в 20-е гг. XX столетия была предпринята по-пытка внедрения проектного обучения. На основе теоретических идей Д. Дьюи и его последователей была разработана проектная система обуче-ния, или метод проектов, суть которого заключалась в том, что исходя из своих интересов дети вместе с учителем проектировали решение какой-либо практической задачи. Материал различных учебных предметов груп-пировался вокруг комплексов-проектов.

И хотя такой подход обеспечивал формирование практических умений и навыков, однако последовательность и систематичность обучения нару-шалась, что снижало образовательную подготовку учащихся.

В настоящее время педагоги вновь обращаются к проектному обучению в рамках задачи гуманизации образования, видя в нем одно из возможных решений проблемы превращения ученика в субъекта учебной деятельности, развития его познавательных возможностей и потребностей. Целью продук-тивного обучения является не усвоение суммы знаний и не прохождение об-разовательных программ, а реальное использование, развитие и обогащение собственного опыта учащихся и их представлений о мире. По словам разра-ботчиков этой технологии, каждый ребенок должен иметь возможность ре-альной деятельности (для старших школьников — работы), в которой он мо-жет не только проявить свою индивидуальность, но и обогатить ее.

Технология дистанционного обучения

Технология дистанционного обучения — это получение образователь-ных услуг без посещения учебного заведения, с помощью современных сис-тем телекоммуникации, таких как электронная почта, телевидение и Ин-тернет. Учитывая территориальные особенности России и возрастающие по-требности качественного образования в регионах, технология дистанцион-ного обучения дает возможность его получить всем, кто по тем или иным причинам не может учиться очно. В настоящее время технология дистан-ционного обучения используется в высшей школе, а также для повышения квалификации и переподготовки специалистов. Хотя возможности ее го-раздо шире, она открывает большие возможности для инвалидов. Совре-менные информационные образовательные технологии позволяют учиться незрячим, глухим и страдающим заболеваниями опорно-двигательного ап-парата.

Получив учебные материалы в электронном или печатном виде, обу-чающийся может овладевать знаниями дома, на рабочем месте или в спе-циальном компьютерном классе в любой точке России и зарубежья.

Технология дистанционного обучения дает возможность учитывать ин-дивидуальные способности, потребности, темперамент и занятость обучаю-щегося, который может изучать учебные курсы в любой последовательно-сти, быстрее или медленнее. В этом несомненные преимущества техноло-гии дистанционного обучения. Данная технология предполагает использование традиционных форм обучения (лекции, консультации, лабораторные работы, контрольные ра-боты, зачеты, экзамены и др.), но они имеют свои отличительные особен-ности. Лекции исключают живое общение с преподавателем. Для записи лекций используются дискеты, CD-ROM-диски и др. Применение новей-ших информационных технологий (гипертекста, мультимедиа, виртуальной реальности и др.) делает лекции выразительными и на-глядными. Для создания лекций можно использовать все возможности ки-нематографа: режиссуру, сценарий, артистов и т. д. Такие лекции можно слушать в любое время и на любом расстоянии. Кроме того, не требуется конспектировать материал.

Консультации при дистанционном обучении являются одной из форм руководства работой обучаемых и оказания им помощи в самостоятельном изучении дисциплины. Используются телефон и электронная почта. Кон-сультации помогают педагогу оценить личные качества обучаемого: интел-лект, внимание, память, воображение, мышление.

Лабораторные работы предназначены для практического усвоения мате-риала. В традиционной образовательной системе лабораторные работы требуют специального оборудования, макетов, имитаторов, тренажеров, хими-ческих реактивов и т. д. Возможности технологии дистанционного обуче-ния в дальнейшем могут существенно упростить задачу проведения лабора-торного практикума за счет использования мультимедиа-технологий, имитационного моделирования и т. д.

Виртуальная реальность позволит продемонстрировать обучаемым явления, которые в обычных ус-ловиях показать очень сложно или вообще невозможно. Использование со-временной техники позволяет также проводить проверку результатов теоре-тического и практического усвоения обучаемым учебного материала

На днях мне довелось провести практическое занятие по программированию для учеников десятого класса одного из харьковских лицеев. Шесть лет назад я читал курс программирования в политехе, но тогда на посвящение студентов в эту, не побоюсь сказать, науку у меня было целых два семестра времени на лекционные и лабораторные занятия. А здесь было всего от силы полтора часа, да и с таким юным контингентом я ещё не работал. «Ладно» , сказал я себе. И приступил к подготовке. Мне дали несколько задач, которые можно было бы порешать со школьниками. Первая из них занимала аж 70 строк индусского кода. Подготовил своё решение из 10 строк. Думал, «Сначала дам одно решение, потом покажу другое» . Ещё одну задачу переписал для того, чтобы сместить акценты с программистских особенностей в предметную область (задача была геометрическая). Третья задача была наиболее простой – один человек вводит с клавиатуры число, другой отгадывает. Неинтересно. Пусть лучше компьютер загадывает и даёт подсказки. Для каждой задачи придумал последовательность подачи материала. Когда пришло время, а школьники расселись за компьютеры, я их спросил: «Кто-нибудь из вас имеет опыт программирования? Какие-то языки программирования уже изучали?» . Получив отрицательный ответ, мысленно сказал себе «Печально» , отложил в сторону два листа с распечаткой кода из трёх и сделал заявление: «Ну, что ж… Тогда начнём программировать!» .

Для кодеров данная статья, наверняка, интереса не представляет. Мой рассказ будет о методике преподавания в условиях ограниченного времени для людей с неокрепшей детской психикой на примере всего одного урока. Всех желающих приглашаю под кат!

Вводное слово о программировании началось примерно так. «Компьютеры сейчас применяются практически в любой сфере человеческой жизни. Поэтому неважно, какой путь вы выберете, на кого станете учиться, уметь программировать достаточно важно. С помощью этой науки можно получить существенную выгоду» . Далее я привёл пример «задаче о коммивояжёре», сформулировав её следующим образом: «Представьте, что вы работаете в Новой Почте. Вам нужно доставить множество посылок в разные города. Хорошо бы выбрать путь, чтобы был бы как можно короче. Это сэкономит деньги – курьер работать будет меньше часов, бензина потратите меньше литров» . И небольшой переход: «Но, к сожалению, компьютер сам не умеет решать такие задачи. Он умеет выполнять лишь арифметические и логические операции» (ну, и другие, но не будем сейчас об этом). «Причём делает он это над числами в виде нулей и единиц» (не будем тратить время, рассказывая о двоичной системе счисления – надеюсь, в школьной программе она есть). «Команды компьютеру (машинные инструкции) тоже даются в виде чисел. Но обычно программисты пишут программы на языках, понятных человеку – например, C, Java, C++» . Услышав «си-плюс-плюс», дети оживились. «Чтобы преобразовать код программы в команды компьютеру есть несколько видов программ, например, компиляторы. Чтобы более удобно с ним работать будем использовать другую программу – среду разработки, которая также включает текстовый редактор и много других полезных инструментов. Найдите на рабочем столе ярлык программы Code::Blocks и запустите его» .

Потом я рассказал, как создать новый проект и подробно, строчка за строчкой, описал содержимое файла с программой. Нумерация строк очень помогла. А вот трактовки терминов получились довольно вольными.

«Итак, можно увидеть, что в коде программы встречаются английские слова. Это и include , и using , и main , и return . В первой строке мы включаем, т.е. используем, некую библиотеку. Обычно программисты используют код, написанный другими программистами. Он включается во всевозможные библиотеки. В данном случае мы используем библиотеку iostream . Здесь i – это input (ввод), o – output (вывод), stream – поток. Т.е. библиотека содержит код для ввода с клавиатуры и вывода на экран» (перегружать школьников информацией о перенаправлении потоков ввода-вывода не стоит). «Если библиотек много, между ними могут возникнуть конфликты, поэтому код обычно размещают в разных пространствах. using namespace std нужно для того, чтобы выбрать пространство имён (namespace) std – сокращение от standard (стандартный). int говорит, что идёт речь о целых числах, об их хранении и передаче» (т.е. я имел в виду объявление переменных и возвращаемое функцией значение; о явном приведении типов рассказывать не стал) «main – имя функции. Функция – это какой-то логически завершённый участок кода, который возвращает какое-то значение. cout … c – console (консоль – клавиатура и экран), out – вывод, endl – end of line, конец строки. В седьмой строке происходит вывод текста, заключённого в двойные кавычки, на экран. return 0 в данном случае говорит операционной системе об успешном завершении программы» .

После этого предложил нажать F9, чтобы скомпилировать программу («преобразовать текст программы в машинные инструкции» ). «Поздравляю! Вы написали свою первую программу!» , сказал я, когда увидел, что на мониторах появились консоли с текстом. Потом уточнил: «Ну, не совсем написали – за вас это уже сделали другие. Поэтому давайте внесём изменения в код. Измените в двойных кавычках текст Hello world! на какой-нибудь другой на английском языке и ещё раз нажмите F9. Вот теперь другое дело!» . Кто-то не закрыл окно запущенной программы, поэтому компиляция не прошла. Пришлось помогать. «Теперь замените текст на какой-нибудь другой, на русском языке. И удивитесь.» Те, кто написал «Привет», увидели следующее:

«Всё дело в том, что текст тоже преобразуется в нули и единицы. И как именно будет происходить это преобразование, зависит от кодировки. Кто-нибудь сталкивался с этим понятием?» В ответ – неуверенное мычание… «Давайте зададим кодировку для кириллицы. Установим (set) соответствующую локаль (locale). Для этого седьмую строку опустим вниз (поставим курсор в начале строки и нажмём Enter). И в пустой седьмой строке введём setlocale(LC_ALL, "rus"); А во второй строке введём #include » . Кто-то LC_ALL написал строчными буквами (пришлось объяснить, что строчные и заглавные буквы отличаются), кто-то списал с доски L.C.A.L.L. (да, доска в ужасном состоянии), кто-то написал «russ» и не получил должного результата. Но в большинстве случаев я увидел положительный исход. Немного опечалил текст, который написала одна девочка, «хочу кушать». В таком состоянии восприятие информации довольно сильно страдает.

Пришло время сформулировать школьникам условия задачи. «Теперь давайте напишем программу. Пусть компьютер загадает число от 0 до 99, а мы с его подсказками будем это число отгадывать» . Да, это третья задача.

«Для генерации случайного числа используется функция rand, сокращение от слова random – случайный. Чтобы её использовать, нужно подключить библиотеку cstdlib . Для генерации числа от 0 до 99 нужно взять остаток от деления результата, который возвращает функция, на 100. Операция получения остатка от деления записывается символом процента». Тут пришлось напомнить школьникам, что такое остаток от деления. Привёл пример «5%2», и им стало ясно, что я имел в виду. «Результат выполнения операции взятия остатка от деления (т.е. случайное число от 0 до 99) нужно куда-то записать. Это число целое. Странно было бы, если бы мы пытались угадать какое-нибудь вещественное число, например, 2.584 или 35.763. Для хранения результата будем использовать переменную. Переменная – это область памяти компьютера (нам пока неважно, где эта память находится), к которой можно обращаться по имени» . Да, с переменными различных типов можно выполнять определённый набор операций, но это сейчас не имеет значения. «Назовём переменную u (от слова unknown). Для объявления переменной целого типа используется слово int . Такая область памяти на этих компьютерах занимает 4 байта и может вместить число примерно от минус двух до плюс двух миллиардов. Этого достаточно?» Получив утвердительный ответ, написал на доске недостающий код. Получилось следующее (вместе с исправлением вывода – теперь на экране будет не текст, а значение переменной):

Запустив программу, школьники, все до одного, увидели число 41. Не 42, но тоже сойдёт. Причём результат не изменялся от запуска к запуску. «Итак, мы получили случайное число. Действительно, кто бы мог подумать, что компьютер выдаст 41? Число 41 удовлетворяет условиям, которые мы поставили. Оно находится в интервале от 0 до 99. Но как его сделать действительно случайным? Для этого нужно задать так называемое зерно генератора случайных чисел, например, текущим временем. Добавьте перед десятой строкой строку srand(time(0)); Если программа не компилируется – добавьте библиотеку ctime »

Теперь программа выдавала действительно случайные (ну, на самом деле не случайные, но это для этой задачи значения не имеет) числа. Исходник программы на данный момент был таким:

Осталось написать код, отвечающий за его угадывание.

«Не думаю, что вы сможете угадать число от 0 до 99 с первого раза» Школьники улыбнулись. «Если мы будем делать какие-то одни и те же действия несколько раз, то это можно оформить в виде цикла» Так как рассказать на словах, как реализовать цикл, сложно, сначала я записал соответствующие строки на доске.

«В тринадцатой строке мы объявили переменную i (от input), аналогичную переменной u. В ней мы будем хранить введённое число. Собственно ввод осуществляется в 16-й строке. Цикл объявляется ключевым словом do . Всё, что заключено в фигурные скобки, будет повторяться пока (while ) значение переменной i не равно u». Что касается этого участка кода, то типичные ошибки учеников были такие. Во-первых, они ставили вместо фигурных скобок круглые. Во-вторых, операцию сравнения «!=» писали раздельно. После компиляции программы дети настойчиво пытались отгадать число u. Меня поразило, что девочка, которая ранее написала «хочу кушать» делала это весьма успешно. Из ошибок времени исполнения я был рад увидеть следующую:

Это позволило мне объяснить, что в программе нет проверки корректности входных данных, и вводить буквы, когда от нас ожидают лишь цифры – не самая лучшая идея.

Мы подошли к финишной прямой. Осталось добавить подсказки. Я написал на доске два «if-а» и пояснил. «Если введённое число больше загаданного, выводим соответствующее сообщение (строка 17). Если введённое число меньше загаданного – делаем так же (строка 18).» Плюс ко всему я расширил вывод сообщения о завершении «игры».

Это был окончательный текст программы, которую набрал на первом уроке программирования 10-в класс. Программа далеко не идеальна. В частности, мне не нравятся сообщения «Ваше число больше!» и «Ваше число меньше!». Они реально запутывают. Если бы у меня был второй шанс провести подобный урок, сформулировал бы по-другому.

На этом уроке я также хотел показать ученикам алгоритм быстрого поиска загаданного числа (бинарный поиск), но оказалось, что они сами интуитивно пришли к этому решению, что не могло меня не порадовать.

Итоги подведём.

1. Урок прошёл успешно. Все ученики справились с заданием. Задача решена. Всего одна, но решена. Не без трудностей, конечно.

2. Я получил новый опыт преподавания. Последние два года читаю лекции и провожу лабораторные работы только студентам пятого курса, а работать с ними – совершенно иное дело. У них уже есть какая-то база, отношение к учёбе (да и к жизни в целом) другое, а мои предметы узко специализированные – материал, который я даю, в будущем пригодится от силы 2–3 нашим выпускникам из каждой группы. Здесь же есть надежда, что именно этот урок вызовет интерес к программированию у одного-двух учеников.

3. Школьная учебная программа совершенно иная, нежели та, по которой учился я. Да, я ходил не в простую школу. В седьмом классе мы изучали Logo, в восьмом – BASIC, а в девятом – Pascal. Но, тем не менее, даже тем моим одноклассникам, которые не блистали знаниями по другим предметам (а ведь и я тоже не блистал!), информатика нравилась. Я уверен, что давать программирование в школе нужно обязательно. Оно отлично развивает мозг и позволяет понять компьютеры (без которых мы уже не представляем свою жизнь) совершенно с другой стороны.

4. Язык C++ имеет высокий порог вхождения. Одного урока, чтобы раскрыть основы этого языка программирования, явно недостаточно. Да, я не знаю C++. Я обожаю C, а когда мне нужно ООП, я пишу на Java. Но изучать C++ в вузе скорее всего нужно (C по моему скромному мнению – обязательно). Опять же многое зависит от вуза и специальности.

Спасибо за внимание всем, кто прочёл до конца! Буду рад ответить на ваши вопросы.

P.S. Есть идея написать ещё одну статью об информатике в школе. Если поддержите в комментариях, статья, скорее всего (не буду обещать), увидит свет.

Технология программированного обучения начала активно внедряться в образовательную практику с середины 60-х гг. XX столетия. Основная цель программированного обучения состоит в улучшении управления учеб­ным процессом. У истоков программированного обучения стояли амери­канские психологи и дидакты Н. Краудер, Б. Скиннер, С. Пресси. В отече­ственной науке технологию программированного обучения разрабатывали П. Я. Гальперин, Л. Н. Ланда, А. М. Матюшкин, Н. Ф. Талызина и др.

Технология программированного обучения - это технология самостоя­тельного индивидуального обучения по заранее разработанной обучающей программе с помощью специальных средств (программированного учебни­ка, особых обучающих машин, ЭВМ и др.). Она обеспечивает каждому уча­щемуся возможность осуществления учения в соответствии с его индиви­дуальными особенностями (темп обучения, уровень обученное™ и др.).

Характерные черты технологии программированного обучения:

Разделение учебного материала на отдельные небольшие, легко усваи­ваемые части;

Включение системы предписаний по последовательному выполне­нию определенных действий, направленных на усвоение каждой части;

Проверка усвоения каждой части. При правильном выполнении конт­рольных заданий учащийся получает новую порцию материала и выполняет следующий шаг обучения; при неправильном ответе учащийся получает помощь и дополнительные разъяснения;

Фиксирование результатов выполнения контрольных заданий, кото­рые становятся доступными как самим учащимся (внутренняя обратная связь), так и педагогу (внешняя обратная связь).

Основное средство реализации технологии программированного обуче­ния - обучающая программа. Она предписывает последовательность действий по овладению определенной единицей знаний. Обучающие програм­мы могут быть оформлены в виде программированного учебника или дру­гих видов печатных пособий (безмашинное программированное обучение) или в виде программы, подаваемой с помощью обучающей машины (ма­шинное программированное обучение).

В основу обучающих программ кладутся три принципа программирова­ния: линейное, разветвленное и смешанное.

При линейном принципе программирования обучаемый, работая над учеб­ным материалом, последовательно переходит от одного шага программы к следующему. При этом все ученики последовательно выполняют предпи­санные шаги программы. Различия могут быть лишь в темпе проработки материала.

При использовании разветвленного принципа программирования работа учеников, давших верные или неверные ответы, дифференцируется. Если учащийся выбрал верный ответ, то получает подкрепление в виде подтверж­дения правильности ответа и указание о переходе к следующему шагу про­граммы. Если же учащийся выбрал ошибочный ответ, ему разъясняется сущность допущенной ошибки, и он получает указание вернуться к како­му-то из предыдущих шагов программы или же перейти к некоторой под­программе.


Принцип разветвленного программирования по сравнению с линейным позволяет больше индивидуализировать обучение учащихся. Ученик, даю­щий верные ответы, может быстрее продвигаться вперед, переходя без за­держек от одной порции информации к другой. Ученики, делающие ошиб­ки, продвигаются медленнее, но зато читают дополнительные пояснения и устраняют пробелы в знаниях.

Разработаны также смешанные технологии программированного обучения. В качестве таковых известны шеффилдская и блочная технологии.

Шеффилдская технология программированного обучения была разрабо­тана английскими психологами. Согласно этой технологии учебный мате­риал делится на различные по объему части (порции, шаги). Основанием деления является дидактическая цель, которая должна быть достигнута в результате изучения данного фрагмента программированного текста с учетом возраста учащихся и характерных особенностей темы. В зависи­мости от дидактической цели определяется и способ ответа учащихся: пу­тем его выбора или заполнения пробелов, имеющихся в тексте.

Основу блочной технологии программированного обучения составляет гибкая программа, всесторонне учитывающая разнообразие действий, определяющих процесс учения. Она обеспечивает учащимся выполнение разнообразных интеллектуальных операций и оперативное использование приобретаемых знаний при решении определенных задач.

Основным компонентом такой программы является так называемый проблемный блок, который требует от учащегося интенсивной интеллек­туальной работы, например решения задачи с неполными данными, фор­мулировки или проверки гипотезы, планирования эксперимента и т. п. Эта работа предполагает выполнение различных умственных действий (обоб­щения, доказательства, объяснения, проверки), обогащающих объем их знаний.

Независимо от характера технологической системы программированно­го обучения обучающая программа может быть представлена с помощью учебников или машин. Существуют учебники с линейной, разветвленной и смешанной структурами программирования материала.

Разными бывают и машины, предназначенные для представления за­программированных текстов. Их тип зависит от реализуемой дидактиче­ской функции:

Информационные машины, предназначенные для передачи учащим­ся новой информации;

Машины-экзаменаторы, служащие для контроля и оценки знаний учащихся;

Машины-репетиторы, предназначенные для повторения с целью за­крепления знаний;

Тренировочные машины, или тренажеры, используемые для форми­рования у учащихся необходимых практических умений, например печата­ния на машинке, алгоритмизации поиска повреждений в технических устрой­ствах, обслуживания машин и т. п.

Принципиальной разницы между структурой программированных учебни­ков и программ к обучающим машинам нет. Основная разница заключается лишь в технике подачи учебной информации и заданий, получения ответа от учащегося и выдачи ему сообщения о степени правильности его действий.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows